JPH04264736A - Gallium arsenide field effect transistor - Google Patents

Gallium arsenide field effect transistor

Info

Publication number
JPH04264736A
JPH04264736A JP2591191A JP2591191A JPH04264736A JP H04264736 A JPH04264736 A JP H04264736A JP 2591191 A JP2591191 A JP 2591191A JP 2591191 A JP2591191 A JP 2591191A JP H04264736 A JPH04264736 A JP H04264736A
Authority
JP
Japan
Prior art keywords
layer
gate electrode
type gaas
buffer layer
operating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2591191A
Other languages
Japanese (ja)
Inventor
Makoto Matsunoshita
松野下 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2591191A priority Critical patent/JPH04264736A/en
Publication of JPH04264736A publication Critical patent/JPH04264736A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To suppress kink phenomenon and current control and improve the performance of a field effect transistor(FET) by forming a high-concentration layer between an operating layer other than the part directly under a gate electrode and a buffer layer. CONSTITUTION:On a semi-insulating semiconductor substrate 1, a buffer layer 2, an operating layer 6 and a cap layer 7 are laminated, a Shottky gate electrode 8 is formed on the operating layer 6 and a source electrode 9 and a drain electrode 10 are formed on the cap layer 7. A high-concentration N-type GaAs layer 4 is formed between the operating layer 6 other than the part directly under a gate electrode and the buffer layer 2. A hole in the operating layer 6 is induced on the buffer layer 2 side, however, for the high-concentration N-type GaAs layer 4, since the recombination velocity is high, accumulation is not easily permitted and kink phenomenon is suppressed. The expansion of an area which controls the current of a depleted layer, etc., from the buffer layer 2 side between the gate electrode 8 and the drain electrode 10 while the FET is operating is suppressed by the high-concentration N-type GaAs layer and the deterioration of performance is reduced.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はガリウム砒素電界効果ト
ランジスタに関するものである。
FIELD OF THE INVENTION This invention relates to gallium arsenide field effect transistors.

【0002】0002

【従来の技術】従来技術によるガリウム砒素(GaAs
)電界効果トランジスタ(FET)について、図2を参
照して説明する。
[Prior Art] Gallium arsenide (GaAs)
) A field effect transistor (FET) will be explained with reference to FIG.

【0003】半絶縁性GaAs基板1上にノンドープA
lGaAsバッファ層2、N型GaAs動作層6、高濃
度N型GaAsキャップ層7が積層されている。高濃度
N型GaAsキャップ層7とN型GaAs動作層6の表
面とがメサエッチングされたところにショットキ接触す
るゲート電極8が形成されている。高濃度N型GaAs
キャップ層7にはオーミック接触するソース電極9およ
びドレイン電極10が形成されている。
[0003] Non-doped A is deposited on a semi-insulating GaAs substrate 1.
A lGaAs buffer layer 2, an N-type GaAs operating layer 6, and a highly doped N-type GaAs cap layer 7 are stacked. A gate electrode 8 that makes Schottky contact is formed where the surfaces of the heavily doped N-type GaAs cap layer 7 and the N-type GaAs active layer 6 are mesa-etched. High concentration N-type GaAs
A source electrode 9 and a drain electrode 10 are formed on the cap layer 7 and are in ohmic contact with each other.

【0004】高周波において利得を向上させるためゲー
ト長を短縮化するがバッファ層2の絶縁性が悪いと、利
得の低下などFETの性能を劣化させる。そこでノンド
ープAlGaAsからなるバッファ層2を用いて動作層
6とヘテロ接合を形成することにより、N型GaAs動
作層6からノンドープAlGaAsバッファ層2への電
流を遮断して微小電流におけるgm を改善していた。
[0004] In order to improve the gain at high frequencies, the gate length is shortened, but if the insulation of the buffer layer 2 is poor, the performance of the FET will deteriorate, such as a decrease in gain. Therefore, by forming a heterojunction with the active layer 6 using the buffer layer 2 made of non-doped AlGaAs, the current from the N-type GaAs active layer 6 to the non-doped AlGaAs buffer layer 2 is blocked and the gm in minute currents is improved. Ta.

【0005】[0005]

【発明が解決しようとする課題】従来技術によるGaA
s電界効果トランジスタにおいては、ヘテロ接合の動作
層側に正孔が誘導され蓄積される。そのため部分的にア
バランシェ破壊して正孔が発生し、その正孔が界面に流
れる(キンク現象)。
[Problem to be solved by the invention] GaA according to prior art
In the s-field effect transistor, holes are induced and accumulated on the active layer side of the heterojunction. As a result, holes are generated due to partial avalanche breakdown, and these holes flow to the interface (kink phenomenon).

【0006】またバッファ層から空乏層が延びてきて、
キャリアの通り道であるゲート−ドレイン間の動作層が
狭められて、電流を制限して性能を劣化させるという問
題があった。
[0006] Also, a depletion layer extends from the buffer layer,
There is a problem in that the active layer between the gate and drain, which is the path for carriers, is narrowed, limiting current and degrading performance.

【0007】[0007]

【課題を解決するための手段】本発明のガリウム砒素電
界効果トランジスタは、半絶縁性半導体基板の一主面上
にバッファ層、動作層、キャップ層が順に積層され、前
記キャップ層が除去されて露出した前記動作層上にショ
ットキゲート電極が形成され、前記キャップ層上にオー
ミック接触するソース−ドレイン電極が形成され、前記
ショットキゲート電極直下以外の前記動作層と前記バッ
ファ層との間に高濃度層が形成されているものである。
[Means for Solving the Problems] A gallium arsenide field effect transistor of the present invention has a buffer layer, an active layer, and a cap layer stacked in this order on one main surface of a semi-insulating semiconductor substrate, and the cap layer is removed. A Schottky gate electrode is formed on the exposed active layer, a source-drain electrode in ohmic contact is formed on the cap layer, and a high concentration layer is formed between the active layer and the buffer layer except directly below the Schottky gate electrode. It is made up of layers.

【0008】[0008]

【実施例】本発明の第1の実施例について、図1(a)
を参照して説明する。
[Example] Regarding the first example of the present invention, FIG. 1(a)
Explain with reference to.

【0009】半絶縁性GaAs基板1上にノンドープA
lGaAsバッファ層2、N型GaAs動作層6、高濃
度N型GaAsキャップ層7が積層され、N型GaAs
動作層6にはショットキゲート電極8が形成され、高濃
度N型GaAsキャップ層7にはソース電極9およびド
レイン電極10が形成されているのは従来と同様である
Non-doped A is deposited on the semi-insulating GaAs substrate 1.
A lGaAs buffer layer 2, an N-type GaAs operating layer 6, and a high concentration N-type GaAs cap layer 7 are laminated, and the N-type GaAs
As in the prior art, a Schottky gate electrode 8 is formed on the active layer 6, and a source electrode 9 and a drain electrode 10 are formed on the highly doped N-type GaAs cap layer 7.

【0010】本実施例においては、ゲート電極直下以外
のN型GaAs動作層6とノンドープAlGaAsバッ
ファ層2との間に電子キャリア濃度5.0×1023〜
1.0×1024cm−3、厚さ5〜30nmの高濃度
N型GaAs層4が形成されている。
In this embodiment, an electron carrier concentration of 5.0 x 1023 to
A highly concentrated N-type GaAs layer 4 having a size of 1.0×10 24 cm −3 and a thickness of 5 to 30 nm is formed.

【0011】N型GaAs動作層6中の正孔はノンドー
プAlGaAsバッファ層2側に誘導されるが、高濃度
N型GaAs層4では再結合速度が大きいので蓄積が起
りにくく、「キンク」を抑制することができる。
Holes in the N-type GaAs active layer 6 are guided toward the non-doped AlGaAs buffer layer 2, but the high concentration N-type GaAs layer 4 has a high recombination rate, so accumulation is difficult to occur and "kink" is suppressed. can do.

【0012】またFETの動作中にゲート電極8とドレ
イン電極10間のノンドープAlGaAsバッファ層2
側から空乏層などの電流を制限する領域の拡がりを、高
濃度N型GaAs層4により抑制して、性能劣化を低減
する効果がある。
Also, during the operation of the FET, the non-doped AlGaAs buffer layer 2 between the gate electrode 8 and the drain electrode 10 is
The highly doped N-type GaAs layer 4 suppresses the expansion of a region that limits current, such as a depletion layer, from the side, which has the effect of reducing performance deterioration.

【0013】さらにノンドープAlGaAsバッファ層
2は、ゲート電極8直下のN型GaAs動作層6からの
不純物拡散を阻止する効果がある。
Furthermore, the non-doped AlGaAs buffer layer 2 has the effect of preventing impurity diffusion from the N-type GaAs active layer 6 directly below the gate electrode 8.

【0014】つぎに本発明の第2の実施例について、図
1(b)を参照して説明する。
Next, a second embodiment of the present invention will be described with reference to FIG. 1(b).

【0015】本実施例においては、半絶縁性GaAs基
板1上にノンドープGaAsバッファ層3、N型GaA
s動作層6、高濃度N型GaAsキャップ層7が積層さ
れ、N型GaAs動作層6にはショットキゲート電極8
が形成され、高濃度N型GaAsキャップ層7にはソー
ス電極9およびドレイン電極10が形成されている。
In this embodiment, a non-doped GaAs buffer layer 3 and an N-type GaAs layer are formed on a semi-insulating GaAs substrate 1.
An s-active layer 6 and a high concentration N-type GaAs cap layer 7 are laminated, and a Schottky gate electrode 8 is formed on the N-type GaAs active layer 6.
is formed, and a source electrode 9 and a drain electrode 10 are formed on the heavily doped N-type GaAs cap layer 7.

【0016】バッファ層としてAlGaAs層の替りに
GaAs層を用いているので、正孔が蓄積することはな
いが電流の制限を緩和する効果がある。
Since the GaAs layer is used instead of the AlGaAs layer as the buffer layer, holes are not accumulated, but there is an effect of relaxing the current restriction.

【0017】また高濃度N型GaAs層4の間をP型G
aAs層5にすることにより、基板1へのリーク電流を
遮断することができる。
[0017] Also, between the high concentration N type GaAs layers 4 is a P type G layer.
By forming the aAs layer 5, leakage current to the substrate 1 can be blocked.

【0018】[0018]

【発明の効果】ゲート電極直下以外の動作層とバッフア
層との間に高濃度層を形成することにより、「キンク」
および電流制限を抑制し、FETの性能を向上させるこ
とができた。
[Effect of the invention] By forming a high concentration layer between the active layer and the buffer layer other than directly under the gate electrode, "kink" can be prevented.
It was also possible to suppress current limitation and improve FET performance.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例を示す断面図である。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】従来技術によるGaAs電界効果トランジスタ
の構造を示す断面図である。
FIG. 2 is a cross-sectional view showing the structure of a GaAs field effect transistor according to the prior art.

【符号の説明】[Explanation of symbols]

1    半絶縁性GaAs基板 2    ノンドープAlGaAsバッファ層3   
 ノンドープGaAsバッファ層4    高濃度N型
GaAs層 5    P型GaAs層 6    N型GaAs動作層 7    高濃度N型GaAsキャップ層8    ゲ
ート電極 9    ソース電極 10    ドレイン電極
1 Semi-insulating GaAs substrate 2 Non-doped AlGaAs buffer layer 3
Non-doped GaAs buffer layer 4 High concentration N-type GaAs layer 5 P-type GaAs layer 6 N-type GaAs operating layer 7 High concentration N-type GaAs cap layer 8 Gate electrode 9 Source electrode 10 Drain electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  半絶縁性半導体基板の一主面上にバッ
ファ層、動作層、キャップ層が順に積層され、前記キャ
ップ層が除去されて露出した前記動作層上にショットキ
ゲート電極が形成され、前記キャップ層上にオーミック
接触するソース−ドレイン電極が形成されたガリウム砒
素電界効果トランジスタにおいて、前記ショットキゲー
ト電極直下以外の前記動作層と前記バッファ層との間に
高濃度層が形成されていることを特徴とするガリウム砒
素電界効果トランジスタ。
1. A buffer layer, an active layer, and a cap layer are sequentially stacked on one main surface of a semi-insulating semiconductor substrate, and a Schottky gate electrode is formed on the active layer exposed by removing the cap layer, In the gallium arsenide field effect transistor in which a source-drain electrode is formed in ohmic contact on the cap layer, a high concentration layer is formed between the active layer other than directly under the Schottky gate electrode and the buffer layer. A gallium arsenide field effect transistor featuring:
【請求項2】  高濃度層に挟まれたショットキゲート
電極直下にP型層が形成された請求項1記載のガリウム
砒素電界効果トランジスタ。
2. The gallium arsenide field effect transistor according to claim 1, wherein a P-type layer is formed directly under the Schottky gate electrode sandwiched between the high concentration layers.
JP2591191A 1991-02-20 1991-02-20 Gallium arsenide field effect transistor Pending JPH04264736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2591191A JPH04264736A (en) 1991-02-20 1991-02-20 Gallium arsenide field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2591191A JPH04264736A (en) 1991-02-20 1991-02-20 Gallium arsenide field effect transistor

Publications (1)

Publication Number Publication Date
JPH04264736A true JPH04264736A (en) 1992-09-21

Family

ID=12178962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2591191A Pending JPH04264736A (en) 1991-02-20 1991-02-20 Gallium arsenide field effect transistor

Country Status (1)

Country Link
JP (1) JPH04264736A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6656802B2 (en) * 2000-02-04 2003-12-02 Koninklijke Philps Electronics N.V. Process of manufacturing a semiconductor device including a buried channel field effect transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6656802B2 (en) * 2000-02-04 2003-12-02 Koninklijke Philps Electronics N.V. Process of manufacturing a semiconductor device including a buried channel field effect transistor

Similar Documents

Publication Publication Date Title
US8264002B2 (en) Field-effect transistor
US7557389B2 (en) Field-effect transistor
US11588024B2 (en) High voltage blocking III-V semiconductor device
JPH0624208B2 (en) Semiconductor device
EP0482726B1 (en) Heterojunction field-effect transistor
US5351128A (en) Semiconductor device having reduced contact resistance between a channel or base layer and a contact layer
US5448086A (en) Field effect transistor
EP1083606B1 (en) Field-effect semiconductor device
JP2689057B2 (en) Static induction semiconductor device
US7208777B1 (en) Field-effect semiconductor device
JPH04264736A (en) Gallium arsenide field effect transistor
JPH11214676A (en) Semiconductor device
JPH0428149B2 (en)
JP3255973B2 (en) Semiconductor device
JP2000208754A (en) High electric-charge mobility transistor and its manufacture
JPH05283439A (en) Semiconductor device
JP2669327B2 (en) Field effect transistor
JP2834172B2 (en) Field effect transistor
JPH06252175A (en) Transistor having high electron mobility
JP2010267817A (en) Field-effect transistor
JPH05102190A (en) Compound-semiconductor heterojunction-gate field-effect transistor
JPS63204658A (en) Compound semiconductor device
JPH04298051A (en) Field effect transistor of high electron mobility
JPH07235552A (en) Semiconductor device
JPH05144843A (en) Field-effect transistor