JPH0426071A - Secondary battery - Google Patents
Secondary batteryInfo
- Publication number
- JPH0426071A JPH0426071A JP2130471A JP13047190A JPH0426071A JP H0426071 A JPH0426071 A JP H0426071A JP 2130471 A JP2130471 A JP 2130471A JP 13047190 A JP13047190 A JP 13047190A JP H0426071 A JPH0426071 A JP H0426071A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- negative electrode
- strip
- shaped
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000002093 peripheral effect Effects 0.000 claims description 71
- 239000000463 material Substances 0.000 claims description 67
- 239000000470 constituent Substances 0.000 claims description 63
- 239000011230 binding agent Substances 0.000 claims description 33
- 239000011149 active material Substances 0.000 claims description 13
- 239000000126 substance Substances 0.000 abstract description 5
- 239000011255 nonaqueous electrolyte Substances 0.000 description 30
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 30
- 239000002033 PVDF binder Substances 0.000 description 29
- 239000000203 mixture Substances 0.000 description 29
- 238000004519 manufacturing process Methods 0.000 description 17
- 239000002002 slurry Substances 0.000 description 14
- 230000000694 effects Effects 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 11
- 230000007423 decrease Effects 0.000 description 9
- 229910052744 lithium Inorganic materials 0.000 description 8
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 7
- -1 vinylidene nitride Chemical class 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000011888 foil Substances 0.000 description 6
- 239000007773 negative electrode material Substances 0.000 description 6
- 239000002244 precipitate Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000006253 pitch coke Substances 0.000 description 5
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000000571 coke Substances 0.000 description 4
- 239000011889 copper foil Substances 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 239000006258 conductive agent Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000000149 penetrating effect Effects 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 239000007774 positive electrode material Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 229910000733 Li alloy Inorganic materials 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000001989 lithium alloy Substances 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- PPDFQRAASCRJAH-UHFFFAOYSA-N 2-methylthiolane 1,1-dioxide Chemical compound CC1CCCS1(=O)=O PPDFQRAASCRJAH-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 1
- 229910015013 LiAsF Inorganic materials 0.000 description 1
- 229910015044 LiB Inorganic materials 0.000 description 1
- 229910032387 LiCoO2 Inorganic materials 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 229910021446 cobalt carbonate Inorganic materials 0.000 description 1
- ZOTKGJBKKKVBJZ-UHFFFAOYSA-L cobalt(2+);carbonate Chemical compound [Co+2].[O-]C([O-])=O ZOTKGJBKKKVBJZ-UHFFFAOYSA-L 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 150000003623 transition metal compounds Chemical class 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】 以下の順序で本発明を説明する。[Detailed description of the invention] The present invention will be explained in the following order.
A、産業上の利用分野
B1発明の概要
C1従来の技術
り3発明が解決しようとする課題
E1課題を解決するための手段
F6作用
G、実施例
G1.実施例1
Gz、実施例2
G3.実施例3
Ga、実施例4
H1発明の効果
A、産業上の利用分野
本発明は、帯状の第1及び第2の電極と帯状のセパレー
タとが積層された状態で渦巻状に巻回されることによっ
て構成される巻回電極体を具備する二次電池に関するも
のである。A. Industrial field of application B1 Overview of the invention C1 Prior art 3 Problems to be solved by the invention E1 Means for solving the problems F6 Effects G, Examples G1. Example 1 Gz, Example 2 G3. Example 3 Ga, Example 4 H1 Effects of the invention A, Industrial field of application The present invention is characterized in that strip-shaped first and second electrodes and a strip-shaped separator are stacked and wound in a spiral shape. The present invention relates to a secondary battery including a wound electrode body configured by the following methods.
B3発明の概要
請求項1の発明は、電極構成物質層を備える帯状の第1
及び第2の電極と、帯状のセパレータとが積層された状
態で渦巻状に巻回されて、上記第1の電極と上記第2の
電極との間に上記セパレータが介在するように構成され
る巻回電極体を具備する二次電池において、上記帯状の
第1又は第2の電極のうちの少なくとも一方の電極の端
部における厚さをこの電極の中央部における厚さよりも
薄くすることによって、電池の製造中及び使用中に電極
の端部における電極構成物質の脱落や剥離あるいはセパ
レータへの貫通等を未然に防いで、電池の内部短絡を防
止するようにしたものである。B3 Summary of the Invention The invention of claim 1 provides a first strip-shaped first electrode comprising an electrode constituent material layer.
and a second electrode and a band-shaped separator are stacked and wound spirally, so that the separator is interposed between the first electrode and the second electrode. In a secondary battery equipped with a wound electrode body, by making the thickness at the end of at least one of the strip-shaped first or second electrodes thinner than the thickness at the center of the electrode, This is intended to prevent internal short circuits in the battery by preventing electrode constituent materials from falling off, peeling off, or penetrating the separator at the ends of the electrode during manufacturing and use of the battery.
請求項2の発明は、上記巻回電極体を具備する二次電池
において、上記帯状の第1又は第2の電極のうちの少な
くとも一方の電極の隅部が欠如していることによって、
電池の製造中及び使用中に電極の隅部における電極構成
物質の脱落や剥離あるいはセパレータへの貫通等を未然
に防いで、電池の内部短絡を防止するようにしたもので
ある。According to a second aspect of the invention, in the secondary battery including the wound electrode body, a corner of at least one of the strip-shaped first or second electrodes is missing;
This prevents the electrode constituent materials from falling off or peeling off at the corners of the electrode, or from penetrating the separator during battery manufacture and use, thereby preventing internal short circuits in the battery.
請求項3の発明は、上記巻回電極体を具備し、帯状の第
1及び第2の電極が帯状の第1及び第2の集電体を備え
ているとともに、第1及び第2の電極が夫々の集電体の
内周面及び外周面に内周層及び外周層を夫々備えるよう
に構成されている次電池において、上記第1又は第2の
電極のうちの少なくとも一方の電極の電極構成物質は少
なくとも活物質又は活物質担持体と結着剤とを含んでい
るとともに、この電極の上記外周層における結着剤含有
率をこの電極の上記内周層における結着剤含有率よりも
高くすることによって、電極の外周層における電極構成
物質の結合力を増大させ、電池の製造中及び使用中に、
電極の外周層における電極構成物質の脱落や剥離等を未
然に防いで、電池の内部短絡を防止するようにしたもの
である。The invention according to claim 3 is provided with the above-mentioned wound electrode body, and the band-shaped first and second electrodes are provided with band-shaped first and second current collectors, and the first and second electrodes are provided with band-shaped first and second current collectors. In a secondary battery configured to include an inner circumferential layer and an outer circumferential layer on the inner circumferential surface and the outer circumferential surface of each current collector, respectively, an electrode of at least one of the first or second electrodes. The constituent material includes at least an active material or an active material support and a binder, and the binder content in the outer peripheral layer of this electrode is higher than the binder content in the inner peripheral layer of this electrode. By increasing the height, the bonding strength of the electrode constituent materials in the outer peripheral layer of the electrode is increased, and during the manufacturing and use of the battery,
This prevents the electrode constituent material from falling off or peeling off in the outer peripheral layer of the electrode, thereby preventing internal short circuits in the battery.
C0従来の技術
近年のビデオカメラやヘソトフォンステレオ等の電子機
器の高性能化、小型化には目ざましいものがあり、これ
らの電子機器の電源となる二次電池の重負荷特性の改善
や高容量化への要求も強まってきている。二次電池とし
ては、鉛二次電池やニッケルカドミウム電池が従来から
用いられている。C0 Conventional technology In recent years, electronic devices such as video cameras and hesophone stereos have improved in performance and become smaller in size, and there is a need to improve the heavy load characteristics and increase the capacity of the secondary batteries that power these electronic devices. There is also a growing demand for change. As secondary batteries, lead secondary batteries and nickel cadmium batteries have conventionally been used.
更に、最近はリチウム金属やリチウム合金(負極活物質
)もしくはコークスや有機物焼成体等の炭素材(負極活
物質担持体)のような、リチウムイオンをドープ、脱ド
ープできる物質を負極材料として用いた非水電解質二次
電池の開発も活発におこなわれている。Furthermore, recently, materials that can be doped and dedoped with lithium ions have been used as negative electrode materials, such as lithium metal, lithium alloys (negative electrode active material), or carbon materials (negative electrode active material support) such as coke and fired organic materials. Non-aqueous electrolyte secondary batteries are also being actively developed.
このような非水電解質二次電池においては、その重負荷
特性の改良のために渦巻状の巻回電極体が用いられてい
る。このような巻回電極体は、帯状の負極と帯状の正極
と帯状の一対のセパレータとを積層した状態でその長さ
方向に沿って渦巻状に多数回巻回することによって、負
極と正極との間にセパレータが介在するように構成され
る。In such a non-aqueous electrolyte secondary battery, a spirally wound electrode body is used to improve its heavy load characteristics. Such a wound electrode body is made by stacking a strip-shaped negative electrode, a strip-shaped positive electrode, and a pair of strip-shaped separators and winding them spirally many times along the length direction, thereby separating the negative electrode and the positive electrode. A separator is interposed between the two.
また、電極が帯状の集電体を備える場合、巻回電極体に
おける電極はその集電体の内周面及び外周面に内周層及
び外周層を夫々備えている。Further, when the electrode includes a band-shaped current collector, the electrode in the wound electrode body includes an inner circumferential layer and an outer circumferential layer on the inner circumferential surface and outer circumferential surface of the current collector, respectively.
なお、電極を構成する物質には活物質あるいは活物質担
持体、結着剤、導電剤などがある。Note that the materials constituting the electrode include an active material or an active material carrier, a binder, a conductive agent, and the like.
以上のような巻回電極体によれば、帯状の負極及び帯状
の正極は比較的大きな面積を有するから、二次電池に大
きな電流を流しても単位面積当りの電流は小さく、この
二次電池を重負荷状態で使用することが可能となる。According to the wound electrode body as described above, since the strip-shaped negative electrode and the strip-shaped positive electrode have a relatively large area, even if a large current is passed through the secondary battery, the current per unit area is small, and the secondary battery can be used under heavy loads.
また、巻回電極体において電極の厚さを薄くすればする
ほど、面積のより大きい電極を巻回することができるか
ら、二次電池の重負荷特性はより良好になる。Furthermore, the thinner the electrode in the wound electrode body is, the larger the area of the electrode can be wound, and the better the heavy load characteristics of the secondary battery will be.
また、電極において集電体を用いる場合は、集電体によ
り薄い金属箔を用いるのが望ましく、放電容量が損なわ
れずに済む。Further, when a current collector is used in the electrode, it is desirable to use a thinner metal foil for the current collector, so that the discharge capacity is not impaired.
D0発明が解決しようとする課題
ところが、上述のような巻回電極体を備えた二次電池は
その製造中及び使用中に内部短絡を起こし易いという問
題点があった。D0 Problems to be Solved by the Invention However, there is a problem in that the secondary battery equipped with the above-described wound electrode body is susceptible to internal short circuits during its manufacture and use.
この内部短絡は、電池の製造中に帯状の電極と帯状のセ
パレータとを密着させながら巻回する際に、帯状の電極
の端部及び/又は隅部における活物質等の電極構成物質
がセパレータを貫通してしまうことによって生じる。This internal short circuit occurs when a strip-shaped electrode and a strip-shaped separator are wound while being brought into close contact with each other during battery manufacturing, and electrode constituent materials such as active materials at the ends and/or corners of the strip-shaped electrode may cause the separator to This is caused by penetration.
また、電池の製造中及び使用中に帯状の電極の端部及び
/又は隅部における電極構成物質は脱落や剥離を起こし
易く、この脱落や剥離した電極構成物質がセパレータを
貫通してしまうことによって内部短絡が生じる場合があ
る。Furthermore, during battery manufacturing and use, the electrode constituent materials at the ends and/or corners of the strip-shaped electrodes tend to fall off or peel off, and this falling off or peeled electrode constituent material may penetrate the separator. Internal short circuits may occur.
また、充放電を繰返した後に内部短絡を起こした電池で
は主に電極の外周層において電極活物質の脱落や剥離が
生しているということが本発明者らによって見い出され
た。この原因は次のように考えられる。即ち、帯状の電
極が巻回された状態においては、電極の外周層ではその
電極の内周層よりも周方向における伸び量(ひずみ)が
大きくなっているから、電池の使用中に充M電が繰返さ
れると巻回電極体の電極の外周層がより劣化し易く、外
周層において内周層よりも電極構成物質の脱落や剥離が
起こり易くなる。よって電池の内部短絡が生してしまう
。In addition, the present inventors have discovered that in batteries that have internal short circuits after repeated charging and discharging, the electrode active material falls off or peels off mainly in the outer peripheral layer of the electrode. The reason for this is thought to be as follows. In other words, when a band-shaped electrode is wound, the amount of elongation (strain) in the circumferential direction is greater in the outer circumferential layer of the electrode than in the inner circumferential layer of the electrode. If this is repeated, the outer peripheral layer of the electrode of the wound electrode body is more likely to deteriorate, and the electrode constituent material is more likely to fall off or peel off in the outer peripheral layer than in the inner peripheral layer. Therefore, an internal short circuit occurs in the battery.
また、電池の使用時に例えば充電中に巻回電極体の上端
面、下端面及び自由端面(帯状の電極の幅方向及び長さ
方向の端面)において、析出物がプントライ]・状に一
方の電極で成長し、このデンドライト状の析出物がセパ
レータを貫通して他方の電極まで達することによって、
内部短絡を起こす場合もある。In addition, when the battery is used, for example, during charging, deposits may form on one electrode on the upper end surface, lower end surface, and free end surface (end surfaces in the width direction and length direction of the strip-shaped electrode) of the wound electrode body. When this dendrite-like precipitate penetrates the separator and reaches the other electrode,
It may also cause an internal short circuit.
本発明の目的は、その製造中及び使用中に内部短絡を生
しることのない二次電池を従供することである。The object of the present invention is to provide a secondary battery that does not develop internal short circuits during its manufacture and use.
E8課題を解決するだめの手段
上記目的を達成するために、請求項1の発明は、巻回電
極体を具備する二次電池において、帯状の第1又は第2
の電極のうちの少なくとも一方の電極の端部における厚
さがこの電極の中央部における厚さよりも薄いことを特
徴とする。E8 Means for Solving the Problem In order to achieve the above object, the invention of claim 1 provides a secondary battery having a wound electrode body.
The thickness at the end of at least one of the electrodes is thinner than the thickness at the center of the electrode.
なお、帯状の電極の長さ方向に沿った端部においてその
厚さをより薄くすることが好ましい。また、帯状の電極
の長さ方向に沿った端部のみならず幅方向に沿った端部
においてもその厚さをより薄くすることがさらに好まし
い。Note that it is preferable that the thickness of the strip-shaped electrode be made thinner at the end portion along the length direction. Furthermore, it is more preferable to make the thickness of the strip-shaped electrode thinner not only at the end portions along the length direction but also at the end portions along the width direction.
また、請求項2の発明は、巻回電極体を具備する二次電
池において、帯状の第1又は第2の電極のうちの少なく
とも一方の帯状の電極における隅部が欠如していること
を特徴とする。なお、この場合、帯状の電極の四隅にお
いて隅部が欠如していることが好ましい。Further, the invention of claim 2 is a secondary battery having a wound electrode body, characterized in that at least one of the strip-shaped first electrode and the second strip-shaped electrode is missing a corner. shall be. In this case, it is preferable that the four corners of the strip-shaped electrode are missing.
また、請求項3の発明は、巻回電極体を具備する二次電
池において、帯状の第1及び第2の集電体を夫々備える
第1及び第2の電極のうちの少なくとも一方の電極の内
周層及び外周層における電極構成物質は少なくとも活物
質又は活物質担持体と結着剤とを含んでいるとともに、
この電極の上記外周層における結着含有率Xa、Xa’
がこの電極の上記内周層における結着剤含有率χb、X
b′よりも高いことを特徴とする。Further, the invention of claim 3 provides a secondary battery including a wound electrode body, in which at least one of the first and second electrodes includes band-shaped first and second current collectors, respectively. The electrode constituent materials in the inner peripheral layer and the outer peripheral layer include at least an active material or an active material support and a binder, and
Bound content Xa, Xa' in the outer peripheral layer of this electrode
is the binder content χb,X in the inner peripheral layer of this electrode
It is characterized by being higher than b'.
なお、上記外周層における結着剤含有率Xa(Xa’
)と上記内周層における結着剤含有率χb(xb’)と
の間には、次の式(1)及び(2)が成り立つことが好
ましい。Note that the binder content Xa (Xa'
) and the binder content χb (xb') in the inner peripheral layer, it is preferable that the following equations (1) and (2) hold true.
1.2≦χa / X b (1)(
1,2≦Xa’/Xb’)
Xa−Xb≦5(2)
(χa’ −Xb’ ≦5)
(Xa、Xa’ 、Xb、Xb’ :重量%)F1作
用
請求項1の二次電池においては、帯状の電極の端部にお
ける厚さがこの電極の中央部よりも薄いから、巻回電極
体を作製する際に帯状の電極を帯状のセパレータととも
に巻回しても電極の端部において電極とセパレータとは
密着せず、電極の端部における電極構成物質がセパレー
タを貫通することはなく、また、電池の製造中及び使用
中に、電極の端部において電極構成物質の脱落及び剥離
が生じることはない。従って、電池の内部短絡を防止で
きる。1.2≦χa/Xb (1)(
1,2≦Xa'/Xb') Xa-Xb≦5(2) (χa' - Since the thickness at the end of the strip-shaped electrode is thinner than that at the center of the electrode, even if the strip-shaped electrode is wound together with a strip-shaped separator when manufacturing a wound electrode body, the electrode at the end of the electrode is thinner than the center of the electrode. and the separator, and the electrode constituent material at the end of the electrode does not penetrate the separator, and during battery manufacturing and use, the electrode constituent material may fall off and peel off at the end of the electrode. Never. Therefore, internal short circuits of the battery can be prevented.
請求項2の二次電池においては、帯状の電極における隅
部が欠如しているから、電池の製造中に、電極の隅部に
おいて電極構成物質がセパレータを貫通することはなく
、また電池の製造中及び使用中に、電極の隅部において
電極構成物質の脱落及び剥離が生じることはない。従っ
て、電池の内部短絡を防止できる。In the secondary battery of claim 2, since the strip-shaped electrode lacks corners, the electrode constituent material does not penetrate the separator at the corners of the electrode during battery manufacturing, and the battery manufacturing process is prevented. During use and during use, electrode constituent materials do not fall off or peel off at the corners of the electrode. Therefore, internal short circuits of the battery can be prevented.
請求項3の二次電池においては、巻回電極体における電
極の外周層はこの電極の内周層と比べてその周方向にお
ける伸び量(ひすみ)が大きく、外周層の表面において
最も伸び量が大きくなるが、この外周層における結着剤
含有率がより高いから、外周層における電極構成物質の
結合力が増大し、その結果、電池の製造中及び使用中に
外周層において電極構成物質の剥離や脱落が生しること
はない。従って、電池の内部短絡を防止できる。In the secondary battery according to claim 3, the outer circumferential layer of the electrode in the wound electrode body has a larger elongation (strain) in the circumferential direction than the inner circumferential layer of the electrode, and the elongation is the largest on the surface of the outer circumferential layer. However, since the binder content in this outer layer is higher, the bonding strength of the electrode constituent materials in the outer circumferential layer increases, and as a result, the bonding strength of the electrode constituent materials in the outer circumferential layer increases during battery manufacturing and use. There will be no peeling or falling off. Therefore, internal short circuits of the battery can be prevented.
G、実施例
以下、本発明による実施例について第1図〜第7図を参
照しながら説明する。なお、本実施例は円筒型非水電解
質二次電池である。G. EXAMPLE Hereinafter, an example according to the present invention will be described with reference to FIGS. 1 to 7. Note that this example is a cylindrical nonaqueous electrolyte secondary battery.
G1.実施例1
本実施例1は帯状の電極の端部における厚さをより薄く
したものである。G1. Example 1 In Example 1, the thickness at the end of the strip-shaped electrode is made thinner.
第1図は、本実施例の非水電解質二次電池の概略的な縦
断面を示すものであるが、この電池を以下に述べるよう
にして作製した。FIG. 1 shows a schematic longitudinal section of the non-aqueous electrolyte secondary battery of this example, and this battery was produced as described below.
まず、負極1は次のようにして作成した。First, negative electrode 1 was created as follows.
粉砕して粒状となったピッチコークスを負極活物質担持
体として用い、このピッチコークス90重量部及び結着
剤としてのポリフッ化ビニリデン(PVDF)10重量
部を加え、混合し、負極合剤(負極構成物質)とした。Pitch coke that has been crushed into granules is used as a negative electrode active material carrier, and 90 parts by weight of this pitch coke and 10 parts by weight of polyvinylidene fluoride (PVDF) as a binder are added and mixed to form a negative electrode mixture (negative electrode active material carrier). constituent substances).
そしてこの負極合剤を溶剤のN−メチルピロリドンに分
散させてスラリー (ペースト状)にした。This negative electrode mixture was then dispersed in a solvent, N-methylpyrrolidone, to form a slurry (paste).
次にこの負極合剤スラリーを、負極集電体11としての
厚さ10μmの帯状の銅箔の両面に塗布して、乾燥し、
その後ローラプレス機により圧縮成型して、第2図に示
すように、その長さ方向に沿った両側の端部15におけ
る厚さも、が150βmであり、その中央平坦部16の
厚さt2が170μmである帯状の負極1を作った。帯
状の負極1は、集電体11の両面において、後述する巻
回電極体10を構成したとき内周側に位置する内周層1
2と外周側に位置する外周層13とを有する。Next, this negative electrode mixture slurry was applied to both sides of a strip-shaped copper foil with a thickness of 10 μm as the negative electrode current collector 11, and dried.
After that, compression molding is performed using a roller press machine, and as shown in FIG. 2, the thickness at both ends 15 along the length direction is also 150 βm, and the thickness t2 of the central flat part 16 is 170 μm. A strip-shaped negative electrode 1 was made. The strip-shaped negative electrode 1 has an inner peripheral layer 1 located on the inner peripheral side when forming a wound electrode body 10, which will be described later, on both sides of the current collector 11.
2 and an outer peripheral layer 13 located on the outer peripheral side.
上記帯状の負極lは、第2図に示すように電極の端の近
傍以外の部分はほぼ平坦になっていて中央平坦部16を
構成し、端部15の近傍において電極の厚みが端部15
に向ってしだいに減少している。後述するように巻回電
極体10を構成したとき、この中央平坦部16はセパレ
ータ3a、3bに密着するが、端部15は密着しない。As shown in FIG. 2, the strip-shaped negative electrode l is substantially flat except for the vicinity of the end of the electrode, forming a central flat part 16.
It is gradually decreasing towards. When the wound electrode body 10 is configured as described later, the central flat portion 16 comes into close contact with the separators 3a and 3b, but the end portions 15 do not come into close contact.
なお、用いたビーチコークスの体積平均粒径Xは10μ
m、その標準偏差σは5μmであった。The volume average particle size X of the beach coke used was 10μ.
m, and its standard deviation σ was 5 μm.
また、ボリフ・ノ化ビニリデンは溶剤のN−メチルピロ
リドンに完全に溶解した。In addition, vinylidene nitride was completely dissolved in the solvent N-methylpyrrolidone.
次に、正極2は次のようにして作成した。Next, positive electrode 2 was created as follows.
炭酸リチウム1モルと炭酸コバルト1モルを混合し、9
00 ”Cの空気中で5時間焼成してLiCoO2を得
て、これを正極活物質として用い、このLiC。Mix 1 mole of lithium carbonate and 1 mole of cobalt carbonate,
00''C in air for 5 hours to obtain LiCoO2, which was used as a positive electrode active material, and this LiC.
0291重量部に導電材としてのグラファイト6重量部
、結着剤としてのポリフッ化ビニリデン(PVDF)
3重量部を加え、混合し、正極合剤(正極構成物質)
とした。そしてこの正極合剤を溶剤のN−メチルビロリ
ドンに分散させてスラリー(ペースト状)にした。0291 parts by weight, 6 parts by weight of graphite as a conductive material, and polyvinylidene fluoride (PVDF) as a binder.
Add 3 parts by weight and mix to form a positive electrode mixture (positive electrode constituent material)
And so. This positive electrode mixture was then dispersed in a solvent, N-methylpyrrolidone, to form a slurry (paste).
次に、この正極合剤スラリーを、正極集電体21として
の厚さ20μmの帯状のアルミニウム箔の両面に均一に
塗布して、乾燥し、その後ローラープレス機により圧縮
成型して帯状の正極2を作った。帯状の正極2の中央部
及び端部における厚さは、ともに180μmであった。Next, this positive electrode mixture slurry is uniformly applied to both sides of a strip-shaped aluminum foil with a thickness of 20 μm as the positive electrode current collector 21, dried, and then compression-molded using a roller press machine to form the strip-shaped positive electrode 2. made. The thickness of the strip-shaped positive electrode 2 at the center and at the ends were both 180 μm.
なお、帯状の負極1の幅は帯状の正極20幅よりも若干
大きい。Note that the width of the strip-shaped negative electrode 1 is slightly larger than the width of the strip-shaped positive electrode 20.
上記帯状の負極1、上記帯状の正極2及び厚さ25μm
の微孔性ポリプロピレンフィルムからなる第1及び第2
のセパレータ3a、3bを第2のセパレータ3b、正極
2、第1のセパレータ3a、負極1の順序で積層して積
層体を得た。この積層体を負極1が最内周に位置するよ
うに積層体の長さ方向(電極の長さ方向)へ巻芯33上
で渦巻状に多数回巻回することによって、巻回電極体1
0を作成した。The above strip-shaped negative electrode 1, the above strip-shaped positive electrode 2, and a thickness of 25 μm
a first and a second microporous polypropylene film of
The separators 3a and 3b were stacked in the order of second separator 3b, positive electrode 2, first separator 3a, and negative electrode 1 to obtain a laminate. The wound electrode body 1
0 was created.
上記巻回電極体10の概略的な一部横断面を第3図に示
す。A schematic partial cross section of the wound electrode body 10 is shown in FIG.
この巻回電極体10において、同図に示すように、負極
1は負極集電体11の内周面及び外周面に上述した負極
構成物質から成る負極内周層12及び負極外周層13を
夫々備え、正極2は正極集電体21の内周面及び外周面
に上述した正極構成物質層から成る正極内周層22及び
正極外周層23を夫々備えている。そして、負極外周層
13と正極内周層22との間に第1のセパレータ3aが
介在し、正極外周層23と負極内周層12との間に第2
のセパレータ3bが介在している。In this wound electrode body 10, as shown in the figure, the negative electrode 1 has a negative electrode inner peripheral layer 12 and a negative electrode outer peripheral layer 13 made of the above-mentioned negative electrode constituent materials on the inner peripheral surface and outer peripheral surface of the negative electrode current collector 11, respectively. The positive electrode 2 includes a positive electrode inner peripheral layer 22 and a positive electrode outer peripheral layer 23 made of the above-described positive electrode constituent material layer on the inner peripheral surface and the outer peripheral surface of the positive electrode current collector 21, respectively. A first separator 3a is interposed between the negative electrode outer peripheral layer 13 and the positive electrode inner peripheral layer 22, and a second separator 3a is interposed between the positive electrode outer peripheral layer 23 and the negative electrode inner peripheral layer 12.
A separator 3b is interposed therebetween.
また、第1図の二次電池の縦断面図に示すように、巻回
電極体10の上端部及び下端部においで、負極内周層1
2又は負極外周層13と第2のセパレータ3b又は第1
のセパレータ3aとの間に三角形状に隙間18が形成さ
れ、端部i5bこおいて負極1の表面とセパレータ3a
、3bとは互btaこ密着していない。Further, as shown in the vertical cross-sectional view of the secondary battery in FIG.
2 or the negative electrode outer peripheral layer 13 and the second separator 3b or the first
A triangular gap 18 is formed between the surface of the negative electrode 1 and the separator 3a at the end i5b.
, 3b are not in close contact with each other.
なお、上記積層体において負極1と正極2との積層の順
序を入れかえて、巻回電極体10において正極2が最内
周に位置するようにしてもよい。Note that the order of stacking the negative electrode 1 and the positive electrode 2 in the above-mentioned laminate may be reversed so that the positive electrode 2 is located at the innermost periphery of the wound electrode body 10.
上述のようにして作った巻回電極体10を、第1図に示
すように、ニッケルめっきを施した鉄製電池缶5に収納
した。そして正極2の集電を行うためにアルミニウム製
の正極り一部9を正極2に取り付け、これを正極2から
導出して金属製の安全弁34の突起部34aに溶接した
。また負極1の集電を行うために、ニッケル製の負極リ
ード8を負極1に取り付け、これを負極1から導出して
、電池缶5に溶接した。この電池缶5の中に、六フッ化
リン酸リチウムを1モル/l溶解した炭酸プロピレンと
1,2−ジメトキシエタンとを混合して得た非水電解液
を注入した。The wound electrode body 10 produced as described above was housed in a nickel-plated iron battery can 5, as shown in FIG. In order to collect current from the positive electrode 2, an aluminum positive electrode part 9 was attached to the positive electrode 2, led out from the positive electrode 2, and welded to the protrusion 34a of the metal safety valve 34. Further, in order to collect current from the negative electrode 1, a nickel negative electrode lead 8 was attached to the negative electrode 1, led out from the negative electrode 1, and welded to the battery can 5. A non-aqueous electrolyte obtained by mixing propylene carbonate in which 1 mol/l of lithium hexafluorophosphate was dissolved and 1,2-dimethoxyethane was injected into the battery can 5.
次に、巻回電極体10の上下面に対向するように、電池
缶5内に一対の絶縁板4a、4bを夫々配設した。また
この電池缶5、互いにそれらの外周で密着している安全
弁34及び電池蓋7を絶縁封口ガスケント6を介してか
しめて、電池缶5を封口した。このとき、ガスケント6
の第1図における下端側は絶縁板4aの外周面と当接し
て、絶縁板4aが巻回電極体10の上面側と密着する。Next, a pair of insulating plates 4a and 4b were placed inside the battery can 5 so as to face the upper and lower surfaces of the wound electrode body 10, respectively. Further, this battery can 5, the safety valve 34 and the battery lid 7 which were in close contact with each other at their outer peripheries were caulked via an insulating sealing gasket 6 to seal the battery can 5. At this time, Gaskent 6
The lower end side in FIG. 1 is in contact with the outer peripheral surface of the insulating plate 4a, and the insulating plate 4a is in close contact with the upper surface side of the wound electrode body 10.
以上のように、直径14mm、高さ50画の円筒型非水
電解質二次電池を作製した。この電池を、後掲の第1表
に示すように、便宜上、電池Aとずる。As described above, a cylindrical nonaqueous electrolyte secondary battery with a diameter of 14 mm and a height of 50 mm was produced. This battery is referred to as Battery A for convenience, as shown in Table 1 below.
なお、上記円筒型非水電解質二次電池は、安全弁34、
ストリッパ35、これらの安全弁34とストリンパ36
とを一体にするための絶縁材料から成る中間嵌合体35
を備えている。図示省略するが、安全弁34にはこの安
全弁34が変形したときに開裂する開裂部が、電池蓋7
には孔が夫々設けられている。万一、電池内圧が何らか
の原因で上昇した場合、安全弁34がその突起部34a
を中心にして第1図の上方へ変形することによって、正
極り一ト9と突起部34aとの接続が断たれて電池電流
を遮断するように、あるいは安全弁34の開習部が開裂
して電池内に発生したガスを排気するように夫々構成さ
れている。Note that the cylindrical nonaqueous electrolyte secondary battery has a safety valve 34,
stripper 35, these safety valves 34 and strippers 36
An intermediate fitting body 35 made of an insulating material for integrating the
It is equipped with Although not shown, the safety valve 34 has a cleavage part that ruptures when the safety valve 34 is deformed.
A hole is provided in each. In the event that the battery internal pressure rises for some reason, the safety valve 34 will close its protrusion 34a.
By deforming upward in FIG. 1 around They are each configured to exhaust gas generated within the battery.
また、第1及び第2のセパレータ3a、3bは、負極1
及び正極2のよりも長さ方向及び幅方向に若干大きく、
第1図に示すように負極1及び正極2のそれぞれの端部
かられずかにはみ出ている。Further, the first and second separators 3a and 3b are connected to the negative electrode 1.
and slightly larger in the length and width directions than the positive electrode 2,
As shown in FIG. 1, it slightly protrudes from the respective ends of the negative electrode 1 and the positive electrode 2.
また、上記非水電解質二次電池において、負極1の活物
質としてリチウム、リチウム合金、あるいは活物質担持
体としてポリアセチレンのような導電性ポリマー、コー
クスのような炭素材などを用いることができ、これらは
いずれもリチウムをドープし脱ドープし得るものである
。一方、正極2の活物質としては二酸化マンガン、五酸
化バナジウムのような遷移金属化合物や、硫化鉄等の遷
移金属カルコゲン化合物、さらには遷移金属とリチウム
との複合化合物を用いることができる。In the non-aqueous electrolyte secondary battery, lithium or lithium alloy can be used as the active material of the negative electrode 1, or a conductive polymer such as polyacetylene or a carbon material such as coke can be used as the active material carrier. Both can be doped and dedoped with lithium. On the other hand, as the active material of the positive electrode 2, transition metal compounds such as manganese dioxide and vanadium pentoxide, transition metal chalcogen compounds such as iron sulfide, and even composite compounds of transition metals and lithium can be used.
また、電解液としては、例えばリチウム塩を電解質とし
これを有機溶剤(非水溶媒)に溶解した非水電解液が使
用される。Further, as the electrolytic solution, for example, a non-aqueous electrolytic solution in which a lithium salt is used as an electrolyte and dissolved in an organic solvent (non-aqueous solvent) is used.
ここで有機溶剤としては、特に限定されるものではない
が、例えばプロピレンカーボネート、エチレンカーボネ
ート、 1,2−ジメトキシエタン、1.2−ジェトキ
シエタン、T−ブチロラクトン、テトラヒドロフラン、
1.3−ジオキソラン、4−メチル−1,3−ジオキシ
ソラン、シュチルエーテル、スルホラン、メチルスルホ
ラン、アセトニトリル、プロピオニトリル等の単独もし
くは2種以上の混合溶剤が使用できる。The organic solvent here is not particularly limited, but includes, for example, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-jethoxyethane, T-butyrolactone, tetrahydrofuran,
Single or mixed solvents such as 1,3-dioxolane, 4-methyl-1,3-dioxysolane, styl ether, sulfolane, methylsulfolane, acetonitrile, and propionitrile can be used.
電解質も従来より公知のものがいずれも使用可能であり
、LiClO4、LiAsF、、、LiPF6、LiB
F、 、LiB(C6H5)4、LjCI、 LiBr
、 CH35O3Li、 CH35O3Li等がある。Any conventionally known electrolytes can be used, including LiClO4, LiAsF, LiPF6, LiB
F, , LiB(C6H5)4, LjCI, LiBr
, CH35O3Li, CH35O3Li, etc.
また、非水電解質において、従来より公知の固体状の電
解質を用いることもできる。Further, as the non-aqueous electrolyte, a conventionally known solid electrolyte can also be used.
次に、帯状の負極1の長さ方向に沿った端部15におけ
る厚さも、を130μmに変えた以外は、上記電池Aと
同様にして円筒型非水電解質二次電池Bを作製した。Next, a cylindrical nonaqueous electrolyte secondary battery B was produced in the same manner as the battery A, except that the thickness at the end 15 along the length of the strip-shaped negative electrode 1 was changed to 130 μm.
また、本発明の効果を確認するための比較例として、帯
状の負極1の長さ方向に沿った端部15における厚さt
、を170μmに変えた以外は、上記電池Aと同様して
円筒型非水電解質二次電池Cを作製した。In addition, as a comparative example for confirming the effects of the present invention, the thickness t at the end portion 15 along the length direction of the strip-shaped negative electrode 1 was
A cylindrical nonaqueous electrolyte secondary battery C was produced in the same manner as the battery A above, except that , was changed to 170 μm.
上記3種類の電池A、B、Cについて、夫々100個づ
つ作製し、組み立てた時点における未充電状態の二次電
池(未充電孔)の内部短絡孔の発注率を調査した。さら
にこれらの電池を460mAの電流で上限電圧4.1■
として2時間充電した充電状態の二次電池(充電品)の
内部短絡孔の発注率を調査した。For the above three types of batteries A, B, and C, 100 pieces each were produced, and the order rate of internal short circuit holes in uncharged secondary batteries (uncharged holes) at the time of assembly was investigated. Furthermore, these batteries have an upper limit voltage of 4.1■ at a current of 460mA.
We investigated the ordering rate for internal short-circuit holes in rechargeable batteries (charged products) that had been charged for 2 hours.
この結果を下記の第1表に示す。The results are shown in Table 1 below.
−以下余白一
上記第1表かられかるように、比較例の電池Cでは、電
池を組み立てた時点において内部短絡品が発生し、充電
すると内部短絡品が増加した。- Margin below - As can be seen from Table 1 above, in Battery C of Comparative Example, internal short circuits occurred when the battery was assembled, and the number of internal short circuits increased after charging.
また電池Aでは、電池を組み立てた時点において内部短
絡品は見られ無かったが、充電すると内部短絡品がわず
かに発生した。Further, in battery A, no internal short circuits were observed when the battery was assembled, but a small number of internal short circuits occurred after charging.
電池Bでは、充電しても内部短絡品は発生しなかった。In battery B, no internal short circuit occurred even after charging.
上述のように本実施例1では、帯状の負極1の長さ方向
に沿った端部15における厚さがその中央部16よりも
薄いので、巻回電極体10を作製する際に負極1の端部
15において負極1とセパレータ3a、3bとは互いに
密着することがなく、それらの間に隙間18が形成され
ているので、負極構成物質が端部15においてセパレー
タ3a、3bを貫通する恐れがない。また、負極1の端
部15においては剥離や脱落を起こし易い電極構成物質
がすでに少なくなっているから、電池の製造中及び使用
中に、負極1の端部15において電極構成物質が脱落し
たり剥離したりする恐れが極めて少ない。この結果、電
池の内部短絡が効果的に防止される。As described above, in this Example 1, the thickness of the strip-shaped negative electrode 1 at the end portion 15 along the length direction is thinner than that of the central portion 16, so when the wound electrode body 10 is manufactured, the thickness of the negative electrode 1 is Since the negative electrode 1 and the separators 3a, 3b do not come into close contact with each other at the end portion 15, and a gap 18 is formed between them, there is a risk that the negative electrode constituent material may penetrate the separators 3a, 3b at the end portion 15. do not have. In addition, since the amount of electrode constituent materials that are likely to peel or fall off has already decreased at the end 15 of the negative electrode 1, the electrode constituent materials may fall off at the end 15 of the negative electrode 1 during battery manufacturing and use. There is very little risk of it peeling off. As a result, internal short circuits in the battery are effectively prevented.
なお、本実施例1においては、帯状の負極1の長さ方向
に沿った端部15における厚さを薄くしたが、これに加
えて負極10幅方向に沿った端部17における厚さを同
様に薄<シてもよく、これによって巻回電極体10の最
内周及び最外周に存在する負極1の端部17において、
同様の効果が得られる。In Example 1, the thickness at the end 15 along the length of the strip-shaped negative electrode 1 was made thin, but in addition, the thickness at the end 17 along the width direction of the negative electrode 10 was made thinner. As a result, at the ends 17 of the negative electrode 1 located at the innermost and outermost peripheries of the wound electrode body 10,
A similar effect can be obtained.
また、正極2の端部における厚さを負極1の場合と同様
に薄くすればより効果的である。Further, it is more effective if the thickness at the end of the positive electrode 2 is made thin as in the case of the negative electrode 1.
また、本発明者らのさらなる研究によれば、複数種類の
物質から成る電極構成物質のうちの少なくとも1種類が
電極において粒状として存在する場合、その粒状の物質
の平均粒径をXとし、その標準偏差をσとすると、電極
の中央平坦部16と電極の端部15との厚さの差(t2
−LI)は、12 (、r ≧X+5 σ
(3)を満足することが電池の内部短絡の防
止の上で好ましい。なお、複数種類の粒状の物質が電極
において存在する場合、粒径の最も大きいものについて
上記式(3)を満足するようにすればよい。Further, according to further research by the present inventors, when at least one kind of electrode constituent materials consisting of multiple kinds of materials is present in the electrode as particulates, the average particle size of the particulate material is defined as X; If the standard deviation is σ, then the difference in thickness between the central flat part 16 of the electrode and the end part 15 of the electrode (t2
-LI) is 12 (, r ≧X+5 σ
It is preferable to satisfy (3) in order to prevent internal short circuits in the battery. In addition, when a plurality of types of granular substances are present in the electrode, the above formula (3) may be satisfied for the one with the largest particle size.
上記式(3)から上記第1表における内部短絡品発生率
を考察すると、電池Aについての上記厚さの差は上記式
(3)を満足しないが、より効果のよい電池Bについて
の上記厚さの差は式(3)を満足することがわかる。従
って、粒状の電極構成物質を含んで構成される電極の端
部を薄くする場合、その中央部と端部との厚さの差(t
2 t+ )を式(3)を満足するように決定する
と、電池の内部短絡の防止の上で一層効果的である。Considering the internal short circuit occurrence rate in Table 1 above from equation (3) above, the difference in thickness for battery A does not satisfy equation (3) above, but the difference in thickness for battery B, which has a better effect, It can be seen that the difference in height satisfies equation (3). Therefore, when thinning the ends of an electrode that includes particulate electrode constituent materials, the difference in thickness between the center and the ends (t
2 t+ ) is determined to satisfy equation (3), which is more effective in preventing internal short circuits in the battery.
G2.実施例2
本実施例2は、帯状の電極の四隅を力y)することによ
って電極の隅部が欠如しているものである。G2. Example 2 In Example 2, the corners of the electrode are missing by applying force to the four corners of the strip-shaped electrode.
第4図は、本実施例の非水電解質二次電池の概略的な縦
断面図を示すものであるが、この電池を以下に述べるよ
うにして作製した。FIG. 4 shows a schematic vertical cross-sectional view of the non-aqueous electrolyte secondary battery of this example, which was manufactured as described below.
帯状の負極1aを作るために、実施例1と同様の負極合
剤(負極構成物質)のスラリーを負極集電体11として
の厚さ10μmの帯状の銅箔の両面に塗布して、乾燥し
、その後ローラプレス機により圧縮成型した。そして、
この四隅を力・ツトすることによって帯状の負極1aを
得た。In order to make the strip-shaped negative electrode 1a, a slurry of the same negative electrode mixture (negative electrode constituent material) as in Example 1 was applied to both sides of a strip-shaped copper foil with a thickness of 10 μm as the negative electrode current collector 11, and dried. , and then compression molded using a roller press machine. and,
By tightening the four corners, a strip-shaped negative electrode 1a was obtained.
この帯状の負極1aの平面図を第5A図に示すが、帯状
の負極1aの四隅は直線状にカフ)されており、四隅に
存在した破線で示す隅部19はほぼ三角状に取り除かれ
て欠如している。A plan view of this strip-shaped negative electrode 1a is shown in FIG. 5A, and the four corners of the strip-shaped negative electrode 1a are cuffed in a straight line, and the corners 19 shown by broken lines that existed at the four corners have been removed to form an almost triangular shape. lacking.
次に、帯状の正極2aを作るために、実施例1と同様の
正極合剤(正極構成物質)のスラリーを正極集電体21
としての厚さ20μmの帯状のアルミニウム箔の両面に
塗布して、乾燥し、その後ローラプレス機により圧縮成
型した。そして、この四隅をカットすることによって帯
状の正極2aを得た。Next, in order to make a strip-shaped positive electrode 2a, a slurry of the same positive electrode mixture (positive electrode constituent material) as in Example 1 was applied to the positive electrode current collector 2a.
It was coated on both sides of a strip-shaped aluminum foil with a thickness of 20 μm, dried, and then compression-molded using a roller press. Then, by cutting the four corners, a strip-shaped positive electrode 2a was obtained.
この帯状の正極2aは、第5A図に示す帯状の負極1a
と実質的に同様の形状であって、その四隅に存在した隅
部はほぼ三角形状に取り除かれて欠如している。This strip-shaped positive electrode 2a is a strip-shaped negative electrode 1a shown in FIG. 5A.
It has a substantially similar shape, with the corners that existed at the four corners being removed and missing in a roughly triangular shape.
上記帯状の負極1a、上記帯状の正極2a及び厚さ25
μmの微孔性ポリプロピレンフィルムからなる帯状の第
1及び第2のセパレータ3a、3bを積層し、実施例1
と同様に渦巻状に多数回巻回することによって巻回電極
体10aを作成した。The above-mentioned band-shaped negative electrode 1a, the above-mentioned band-shaped positive electrode 2a, and the thickness 25
In Example 1, strip-shaped first and second separators 3a and 3b made of microporous polypropylene films of μm were laminated.
Similarly, a wound electrode body 10a was created by spirally winding the electrode body 10a many times.
この巻回電極体10aの横断面の構造は、第3図に示す
巻回電極体10と実質的に同じであり、負極1aは負極
構成物質から成る内周層12及び外周層13を備え、正
極2aは正極構成物質から成る内周層22及び外周層2
3を備えている。The cross-sectional structure of this wound electrode body 10a is substantially the same as the wound electrode body 10 shown in FIG. 3, and the negative electrode 1a includes an inner peripheral layer 12 and an outer peripheral layer 13 made of negative electrode constituent materials, The positive electrode 2a includes an inner peripheral layer 22 and an outer peripheral layer 2 made of positive electrode constituent materials.
It has 3.
上述の巻回電極体10aを用いて実施例1と同様にして
、第4図に示すような直径14mm、高さ50■の円筒
型非水電解質二次電池を作製した。A cylindrical non-aqueous electrolyte secondary battery having a diameter of 14 mm and a height of 50 cm as shown in FIG. 4 was fabricated using the above-described wound electrode body 10a in the same manner as in Example 1.
この電池を、後掲の第2表に示すように、便宜上電池り
とする。This battery will be referred to as a battery for convenience as shown in Table 2 below.
次に、帯状の負極1aにおいて、その四隅をカントした
後の形状が第5B図に示すように円形状であるような帯
状の負極1aを電池りの場合と同様にして得た。この帯
状の負極1aは、四隅に存在した破線で示す隅部19が
同図のように取り除かれて欠如している。Next, a strip-shaped negative electrode 1a having a circular shape after canting its four corners as shown in FIG. 5B was obtained in the same manner as in the case of the battery. In this strip-shaped negative electrode 1a, the corner portions 19 shown by broken lines, which were present at the four corners, have been removed and are missing as shown in the figure.
また、帯状の正極2aを上記電池りの場合と同様にして
得たが、この帯状の正極2aは、第5B図と実質的に同
様の形状であって、その四隅に存在した隅部は同図のよ
うに取り除かれて欠如している。Further, a strip-shaped positive electrode 2a was obtained in the same manner as in the case of the battery cell described above, but this strip-shaped positive electrode 2a has a shape substantially similar to that in FIG. 5B, and the four corners of the strip-shaped positive electrode 2a are the same. It has been removed and is missing as shown.
以上のような帯状の負極1a及び帯状の正極2aを用い
た以外は、上記電池りと同様の円筒型非水電解質二次電
池Eを作製した。A cylindrical non-aqueous electrolyte secondary battery E was produced in the same manner as the battery described above, except that the strip-shaped negative electrode 1a and strip-shaped positive electrode 2a as described above were used.
次に、本発明による効果を確認するための比較例として
、電極の四隅を取り除いていない帯状の負極及び帯状の
正極を用いた以外は、上記電池りと同様にして円筒型非
水電解質二次電池Fを作製した。Next, as a comparative example for confirming the effects of the present invention, a cylindrical non-aqueous electrolyte secondary battery was prepared in the same manner as the above battery except that a strip-shaped negative electrode and a strip-shaped positive electrode were used with the four corners of the electrodes not removed. Battery F was produced.
上記3種類の電池り、F、Fについて、夫々50個づつ
作製し、組み立てた時点における未充電状態の二次電池
の内部短絡品の発生率を調査した。Fifty pieces each of the above three types of batteries F and F were manufactured, and the incidence of internal short circuits in uncharged secondary batteries at the time of assembly was investigated.
この結果を下記の第2表示す。This result is shown in the second display below.
第2表
上記第2表に示すように、比較例の電池Fでは、内部短
絡品の発生が認められたが、本実施例2の電池り及びE
では内部短絡品の発生が認められなかった。Table 2 As shown in Table 2 above, the occurrence of internal short circuits was observed in Battery F of Comparative Example, but battery F of Example 2 and E
No internal short circuits were observed.
上述のように本実施例2では帯状の画電極の四隅におい
て隅部19が欠如しているから、巻回電極体10aを作
製する際に電極の四隅において電極構成物質がセパレー
タを貫通することはない。As described above, in Example 2, the corner portions 19 are missing at the four corners of the strip-shaped picture electrode, so that the electrode constituent material does not penetrate the separator at the four corners of the electrode when manufacturing the wound electrode body 10a. do not have.
また、電池の製造中及び使用中に電極の四隅において電
極活物質が脱落したり剥離したりすることはない。この
結果、電池の内部短絡が効果的に防止される。Further, the electrode active material does not fall off or peel off at the four corners of the electrode during manufacture and use of the battery. As a result, internal short circuits in the battery are effectively prevented.
なお、帯状の負極1a及び帯状の正極2aを作る際に、
集電体11.21を予め第5A図又は第5B図に示すよ
うな形状にしておいてもよい。In addition, when making the strip-shaped negative electrode 1a and the strip-shaped positive electrode 2a,
The current collector 11.21 may be shaped in advance as shown in FIG. 5A or 5B.
また、本実施例2では、画電極の四隅において隅部を取
り除いているが、負極又は正極のいずれか一方において
のみその隅部を欠如させるようにしてもよい。Further, in Example 2, the corners are removed from the four corners of the picture electrode, but the corners may be removed only from either the negative electrode or the positive electrode.
G3.実施例3
本実施例3は、電極の外周層における結着剤含有率をそ
の電極の内周層よりも高くしたものである。G3. Example 3 In Example 3, the binder content in the outer circumferential layer of the electrode was higher than that in the inner circumferential layer of the electrode.
本実施例3の非水電解質二次電池の縦断面は第4図に示
すものと同様であり、巻回電極体10bの横断面は第3
図に示すものと同様である。The longitudinal section of the non-aqueous electrolyte secondary battery of Example 3 is the same as that shown in FIG.
It is similar to that shown in the figure.
最初に、負極外周層13における結着剤含有率を負極内
周層12よりも高くし、正極乙こついては外周層23と
内周層22とにおける結着剤含有率を等しくした電池を
次のように作製した。First, the binder content in the negative electrode outer circumferential layer 13 was made higher than that in the negative electrode inner circumferential layer 12, and in the case of the positive electrode, the binder content in the outer circumferential layer 23 and the inner circumferential layer 22 were made equal. It was made as follows.
帯状の負極1bを次のようにして得た。A strip-shaped negative electrode 1b was obtained as follows.
粉砕したピッチコークスを負極活物質担持体として用い
、このピッチコークス88重量部及び結着剤としてのポ
リフン化ビニリデン(PVDF)12重量部を加え、混
合し、第1の負極合剤(負極構成物質)とした。Using pulverized pitch coke as a negative electrode active material carrier, 88 parts by weight of this pitch coke and 12 parts by weight of polyvinylidene fluoride (PVDF) as a binder were added and mixed to form the first negative electrode mixture (negative electrode constituent material). ).
また、ピッチコークス90重量部及びPVDF10重量
部を同様に混合し、第2の負極合剤(負極構成物質)と
した。Further, 90 parts by weight of pitch coke and 10 parts by weight of PVDF were similarly mixed to form a second negative electrode mixture (negative electrode constituent material).
上述の第1及び第2の負極合剤から、夫々実施例1の場
合と同様にして第1及び第2の負極合剤のスラリーを得
た。Slurries of first and second negative electrode mixtures were obtained from the above-mentioned first and second negative electrode mixtures in the same manner as in Example 1, respectively.
次に負極集電体11の一方の面(第3図に示す巻回電極
体10bにおける負極外周層13に相当する側)に上記
第1の負極合剤のスラリーを塗布し、そして他方の面(
負極内周層12に相当する側)に上記第2の負極合剤の
スラリーを塗布して乾燥し、その後ローラブレス機によ
り圧縮成型することによって、帯状の負極1bを得た。Next, the slurry of the first negative electrode mixture is applied to one surface of the negative electrode current collector 11 (the side corresponding to the negative electrode outer peripheral layer 13 in the wound electrode body 10b shown in FIG. 3), and the other surface is coated with the slurry of the first negative electrode mixture. (
A slurry of the second negative electrode mixture was coated on the side corresponding to the negative electrode inner circumferential layer 12) and dried, and then compression molded using a roller press machine to obtain a strip-shaped negative electrode 1b.
このとき、負極外周層13側及び負極内周層12例の厚
さは同一で夫々80μmであり、帯状の負極1の幅は4
1.5mm、長さは270閣であった。At this time, the thicknesses of the negative electrode outer circumferential layer 13 side and the negative electrode inner circumferential layer 12 examples are the same, 80 μm, respectively, and the width of the strip-shaped negative electrode 1 is 4 μm.
It was 1.5 mm and 270 mm long.
この帯状の負極1bの外周層13及び内周層12におけ
る結着剤としてのPVDFの含有率Xa、xbは、第1
及び第2の負極合剤におけるPVDFの混合比(配合比
)が上述の通りであるから、それぞれ12重量%及び1
0重量%である。The content rates Xa and xb of PVDF as a binder in the outer peripheral layer 13 and inner peripheral layer 12 of this strip-shaped negative electrode 1b are
Since the mixing ratio (blending ratio) of PVDF in the and second negative electrode mixture is as described above, 12% by weight and 1% by weight, respectively.
It is 0% by weight.
次に、帯状の正極2bを実施例1の場合と同様の正極合
剤を用いて同様にして得た。このとき、正極外周層23
側及び正極内周層22側の厚さは同一で夫々80μmで
あり、帯状の正極2bの幅は40.5mm、長さは23
0mmであった。Next, a strip-shaped positive electrode 2b was obtained in the same manner as in Example 1 using the same positive electrode mixture. At this time, the positive electrode outer peripheral layer 23
The thickness of the side and the positive electrode inner circumferential layer 22 side are the same, 80 μm, respectively, and the width of the band-shaped positive electrode 2b is 40.5 mm, and the length is 23 mm.
It was 0 mm.
この帯状の正極2bの外周層23及び内周層22におけ
る結着剤としてのPVDFの含有率XaXb′は同一で
夫々3重量%である。また、正極活物質としてのLiC
o0□及び導電剤としてのグラファイトの各含有率は9
1重量%及び6重量%である。The content XaXb' of PVDF as a binder in the outer circumferential layer 23 and inner circumferential layer 22 of this strip-shaped positive electrode 2b is the same, 3% by weight, respectively. In addition, LiC as a positive electrode active material
The content of o0□ and graphite as a conductive agent is 9
1% by weight and 6% by weight.
上記帯状の負極1b、上記帯状の正極2b及び厚さ25
μmの微孔性ポリプロプレンフィルムからなる帯状の第
1及び第2のセパレータ3a、3bを用いて、実施例1
と同様にして第3図に示すものと同様の構造の巻回電極
体10bを作成した。The strip-shaped negative electrode 1b, the strip-shaped positive electrode 2b, and the thickness 25
Example 1 Using band-shaped first and second separators 3a and 3b made of microporous polypropylene film of μm,
In the same manner as above, a wound electrode body 10b having a structure similar to that shown in FIG. 3 was created.
上述の巻回電極体10bを用いて実施例Iと同様にして
、第4図に示すような直径14IIIIIl、高さ50
InI11の円筒型非水電解質二次電池を作製した。Using the above-mentioned wound electrode body 10b, a diameter of 14IIIIIIl and a height of 50mm was obtained in the same manner as in Example I as shown in FIG.
A cylindrical nonaqueous electrolyte secondary battery of InI11 was produced.
この電池を、後掲の第3表に示すように便宜上、電池G
とする。For convenience, this battery is designated as Battery G as shown in Table 3 below.
shall be.
次に、上記第1及び第2の負極合剤におけるPVDFの
配合比を変えることによって、負極外周層13及び負極
内周層12におけるPVDF含有率Xa、xbを第3表
に示すように二連りに変えた以外は、上記電池Gと同様
にして円筒型非水電解質二次電池H及びIを夫々作製し
た。Next, by changing the blending ratio of PVDF in the first and second negative electrode mixtures, the PVDF contents Xa, Cylindrical non-aqueous electrolyte secondary batteries H and I were respectively produced in the same manner as Battery G, except that the battery was changed.
また、本発明の効果を確認するための比較例として、第
3表に示すように負極外周層13及び負極内周層12に
おけるPVDFの含有率Xa、Xbを二連りに等しくし
た以外は、上記電池Gと同様にして円筒型非水電解質二
次電池J及びKを夫々作製した。In addition, as a comparative example for confirming the effects of the present invention, as shown in Table 3, except that the PVDF contents Xa and Xb in the negative electrode outer circumferential layer 13 and the negative electrode inner circumferential layer 12 were made equal to two, Cylindrical nonaqueous electrolyte secondary batteries J and K were produced in the same manner as Battery G above, respectively.
以下余白−
上記5種類の電池G−Kについて、夫々50個づつ作製
し、夫々460mAの電流で上限電圧4゜1■として2
時間充電し、続いて18Ωで放電終止電圧2.75Vま
で放電させる充放電サイクルを100回行った。そして
、放電容量の安定する10回目における電池の平均放電
容量及び100回目における電池の内部短絡孔の発生率
を調査した。The following margin - 50 pieces of each of the above five types of batteries G-K were manufactured, each with a current of 460 mA and an upper limit voltage of 4°1■.
A charge/discharge cycle of charging for an hour and then discharging at 18Ω to a discharge end voltage of 2.75V was performed 100 times. Then, the average discharge capacity of the battery at the 10th time when the discharge capacity became stable and the incidence of internal short circuit holes in the battery at the 100th time were investigated.
この結果を第4表に示す。The results are shown in Table 4.
第4表
上記第3表及び第4表に示すように、負極外周層13に
おける結着剤としてのPVDFの含有率Xaが負極内周
層12におけるPVDF含有率Xbよりも高い電池G、
H,Iは、比較例の電池K(負極外周層13及び負極内
周層12のPVDF含有率Xa、Xbが等しくかつ最も
低い)よりも内部短絡孔の発生率は低い。しかし、電池
1では、負極外周層13のPVDF含有率Xaをかなり
高くしたため放電容量が低下してしまう。また、比較例
の電池Jは、負極外周層13におけるPVDF含有率χ
aが電池によりも高いため内部短絡孔の発生率は低くな
っている。Table 4 As shown in Tables 3 and 4 above, a battery G in which the content Xa of PVDF as a binder in the negative electrode outer peripheral layer 13 is higher than the PVDF content Xb in the negative electrode inner peripheral layer 12;
In H and I, the rate of occurrence of internal short circuit holes is lower than in the battery K of the comparative example (PVDF contents Xa and Xb of the negative electrode outer circumferential layer 13 and the negative electrode inner circumferential layer 12 are equal and lowest). However, in the battery 1, the PVDF content Xa of the negative electrode outer peripheral layer 13 was made considerably high, resulting in a decrease in discharge capacity. Further, in the battery J of the comparative example, the PVDF content χ in the negative electrode outer peripheral layer 13 was
Since a is higher than that of the battery, the incidence of internal short circuit holes is low.
また、電池Jと電池Hとを比較すると両者の負極外周N
13におけるPVDF含有率Xaは等しいが、電池Jの
負極内周層12におけるPVDF含有率xbが電池Hよ
りも高い(ピンチコークスの含有率がより低い)ため、
電池Jの放電容量は低くなっている。Also, when comparing battery J and battery H, the negative electrode outer circumference N of both
Although the PVDF content Xa in No. 13 is the same, the PVDF content xb in the negative electrode inner peripheral layer 12 of Battery J is higher than that of Battery H (the content of pinch coke is lower).
The discharge capacity of battery J is low.
ここで結着剤含有率Xa、Xbの好ましい範囲を示す上
述した式(1)及び(2)から上記第3表及び表4の結
果を見ると、電池G、Hの場合は式(1)及び(2)を
満足しているのに対し、電池Iの場合は式(1)を満足
しているものの式(2)を満足していない。従って、電
極の外周層における結着剤含有率Xaをその電極の内周
層における結着剤含有率xbよりも高くする場合、上述
の式(1)及び(2)を満足するように結着剤含有率X
a及びxbを決定すれば、電池容量をさほど低下させる
ことなく電池の内部短絡防止に効果があることがわかる
。Looking at the results of Table 3 and Table 4 above from the above formulas (1) and (2) showing the preferable ranges of the binder contents Xa and Xb, in the case of batteries G and H, formula (1) and (2), while battery I satisfies equation (1) but does not satisfy equation (2). Therefore, when the binder content Xa in the outer circumferential layer of an electrode is made higher than the binder content xb in the inner circumferential layer of the electrode, the binder is Agent content X
It can be seen that by determining a and xb, it is effective in preventing internal short circuits in the battery without significantly reducing the battery capacity.
次に、負極1bのみならず正極2bにおいても正極外周
層23における結着剤含有率Xa’を正極内周J!22
における結着剤含有率Xb′よりも高くした電池を次の
ように作製した。Next, in not only the negative electrode 1b but also the positive electrode 2b, the binder content Xa' in the positive electrode outer peripheral layer 23 is set to the positive electrode inner circumference J! 22
A battery in which the binder content was higher than Xb' was produced as follows.
負極1bの外周層13におけるPVDF含有率Xaを1
4%とし、負極内周層12におけるPVDF含有率xb
を10%とした以外は、上記電池Gと同様にして帯状の
負極1bを得た。The PVDF content Xa in the outer peripheral layer 13 of the negative electrode 1b is 1
4%, and the PVDF content xb in the negative electrode inner peripheral layer 12
A strip-shaped negative electrode 1b was obtained in the same manner as in Battery G, except that the negative electrode 1b was changed to 10%.
帯状の正極2bを次のようにして得た。A strip-shaped positive electrode 2b was obtained as follows.
上記電池Gにおける正極活物質(lico、o□)、導
電剤〔グラファイト〕及び結着剤(PVDF)を夫々用
いて、LiCoz0□90重量部にグラファイト6重量
部及びpVDF4重量部を加え、混合し、第1の正極合
剤(正極構成物質)とした。Using the positive electrode active material (lico, o□), conductive agent [graphite], and binder (PVDF) in the above Battery G, 6 parts by weight of graphite and 4 parts by weight of pVDF were added to 90 parts by weight of LiCoz0□ and mixed. , a first positive electrode mixture (positive electrode constituent material).
次に上記電池Gにおいて用いた正極合剤を第2の正極合
剤とした。Next, the positive electrode mixture used in the battery G was used as a second positive electrode mixture.
上記第1及び第2の正極合剤から、夫々実施例1と同様
にして第1及び第2の正極合剤スラリーを得た。First and second positive electrode mixture slurries were obtained from the first and second positive electrode mixtures in the same manner as in Example 1, respectively.
次に正極集電体21の一方の面(第3図に示す巻回電極
体10bにおける正極外周層23に相当する側)に上記
第1の正極合剤のスラリーを塗布し、そして他方の面(
正極内周層22に相当する側)に上記第2の正極合剤の
スラリーを塗布し、続いて実施例1と同様にして電池G
と同様の帯状の正極2bを得た。Next, a slurry of the first positive electrode mixture is applied to one surface of the positive electrode current collector 21 (the side corresponding to the positive electrode outer peripheral layer 23 in the wound electrode body 10b shown in FIG. 3), and the other surface is coated with the slurry of the first positive electrode mixture. (
A slurry of the second positive electrode mixture was applied to the side corresponding to the positive electrode inner peripheral layer 22, and then a battery G was prepared in the same manner as in Example 1.
A strip-shaped positive electrode 2b similar to the above was obtained.
この帯状の正極2bの外周層23におけるP■DF含有
率Xa’は4重量%、LiCo20□含有率は90重量
%及びグラファイト含有率6重量%である。また正極内
周層22におけるPVDF含有率Xb′は3重量%であ
る。In the outer peripheral layer 23 of this strip-shaped positive electrode 2b, the P■DF content Xa' is 4% by weight, the LiCo20□ content is 90% by weight, and the graphite content is 6% by weight. Further, the PVDF content Xb' in the positive electrode inner peripheral layer 22 is 3% by weight.
上述の帯状の負極1b及び帯状の正極2bを用いて上記
電池Gと同様にして巻回電極体10bを得てから上記電
池Gと同様の円筒型非水電解質−次電池を作製した。こ
の電池を、後掲の第5表に示すように、便宜上、電池り
とする。Using the above-mentioned strip-shaped negative electrode 1b and strip-shaped cathode 2b, a wound electrode body 10b was obtained in the same manner as in the above-mentioned battery G, and then a cylindrical non-aqueous electrolyte secondary battery similar to the above-mentioned battery G was produced. For convenience, this battery is referred to as a battery as shown in Table 5 below.
次に、上記第1の正極合剤におけるPVDF及びLiC
0Jzの配合比を変えることによって、正極外周層23
におけるPVDF含有率Xa’を第5表に示すように回
通りに変えた以外は、上記電池Gと同様にして、円筒型
非水電解質二次電池M、N、0及びPを夫々作製した。Next, PVDF and LiC in the first positive electrode mixture
By changing the blending ratio of 0Jz, the positive electrode outer peripheral layer 23
Cylindrical non-aqueous electrolyte secondary batteries M, N, 0, and P were produced in the same manner as in Battery G, except that the PVDF content Xa' was changed several times as shown in Table 5.
−以下余白
上記5種類の電池L−Pについて、夫々50個づつ作製
し、上述したのと同様の充放電サイクルを100回行う
ことによって、10回目における電池の平均放電容量及
び100回目における電池の内部短絡品の発生率を調査
した。この結果を第6表に示す。- Margin below 50 of each of the above five types of batteries L-P were manufactured and the same charge/discharge cycles as described above were performed 100 times. We investigated the incidence of internally shorted products. The results are shown in Table 6.
第6表
上記第5表及び第6表に示すように、負極1b及び正極
2bの各外周層13.23におけるPVDF含有率Xa
、Xa’を各内周層12.22におけるPVDF含有率
xb、xb’よりも高くした電池L−Pにおいていずれ
も内部短絡の発生が認められなかった。しかも放電容量
の減少も許容できる範囲内であった。なお、上記電池L
−Pの場合は、いずれも上記式(1)及び(2)を満足
している。Table 6 As shown in Tables 5 and 6 above, the PVDF content Xa in each outer peripheral layer 13.23 of the negative electrode 1b and the positive electrode 2b
, Xa' was higher than the PVDF content xb, xb' in each inner peripheral layer 12.22, and no internal short circuit was observed in any of the batteries LP. Furthermore, the decrease in discharge capacity was within an acceptable range. In addition, the above battery L
In the case of -P, both satisfy the above formulas (1) and (2).
以上のような本実施例3及び比較例における電池G−P
の結果から、負極1bにおいてだけ負極外周層13の結
着剤含有率Xaを負極内周層12の結着剤含有率χbよ
りも高くした場合でも電池の内部短絡の防止効果は得ら
れるとともに、正極2bにおいても正極外周層23の結
着剤含有率χa′を正極内周層の結着剤含有率Xb′よ
りも高くすると電池の内部短絡の防止効果が一層増大し
、しかも電池容量の低下も少ないことがわかる。そして
、上記PVDFの各含有率Xa、Xb、Xa’χb′が
上述の式(1)及び(2)を満足すれば、電池の内部短
絡の防止及び電池容量の低下の防止について満足できる
結果を得ることができる。Battery G-P in Example 3 and Comparative Example as described above
From the results, even if the binder content Xa of the negative electrode outer circumferential layer 13 is made higher than the binder content χb of the negative electrode inner circumferential layer 12 only in the negative electrode 1b, the effect of preventing internal short circuits of the battery can be obtained, and Also in the positive electrode 2b, if the binder content χa' of the positive electrode outer circumferential layer 23 is made higher than the binder content Xb' of the positive electrode inner circumferential layer, the effect of preventing internal short circuits in the battery will further increase, and the battery capacity will decrease. It can be seen that there are few If each of the contents Xa, Xb, and Xa'χb' of the PVDF satisfies the above formulas (1) and (2), a satisfactory result can be obtained regarding prevention of internal short circuit of the battery and prevention of decrease in battery capacity. Obtainable.
以上説明したように、本実施例3においては、電極の外
周層における結着剤含有率をその電極の内周層よりも高
くしたから、外周層における電極構成物質の結合力が増
大し、その結果、電極の巻回時に生じる伸び量が内周層
よりも多いため電極構成物質の脱落や剥離の生じ易い外
周層において、電池の特に使用中に電極構成物質の脱落
及び剥離を防止できる。従って、電池の内部短絡の防止
に効果的となりかつ充放電サイクル特性が向上する。As explained above, in this Example 3, since the binder content in the outer peripheral layer of the electrode was higher than that in the inner peripheral layer of the electrode, the bonding strength of the electrode constituent materials in the outer peripheral layer increased, and As a result, it is possible to prevent the electrode constituent material from falling off or peeling off, particularly during use of the battery, in the outer circumferential layer where the electrode constituent material tends to fall off or peel off because the amount of elongation that occurs during winding of the electrode is greater than that of the inner circumferential layer. Therefore, it is effective to prevent internal short circuits of the battery and the charge/discharge cycle characteristics are improved.
G4.実施例4
本実施例4は、特に電池の使用中におけるデンドライト
状の析出物による電池の内部短絡の防止及び電池容量の
低下の防止のために、上述した実施例1〜3においで使
用した負極集電体11について改良を加えたものであり
、第3図及び第4図に示す非水電解質二次電池と実質的
に同様のものである。G4. Example 4 In this Example 4, the negative electrode used in Examples 1 to 3 described above was used in order to prevent an internal short circuit of the battery due to dendrite-like precipitates and a decrease in battery capacity during use of the battery. This is an improved current collector 11, and is substantially the same as the non-aqueous electrolyte secondary battery shown in FIGS. 3 and 4.
最初に、集電体に加える改良に関する本発明者らが得た
知見について説明する。First, the findings obtained by the present inventors regarding improvements to the current collector will be explained.
すなわち、第3図に示す構造の巻回電極体10において
、負極1のほぼ中央に集電体11が存在するため外周層
13と内周層12との間にはイオンの移動がないから、
負極1の最内周(1同口)における負極内周層27及び
負極1の最外周における負極外周層32は、実際の電池
の充放電反応に寄与しない。また、例えば負極1の最内
周における外周層28では、特に充電反応において比較
的負荷が重く (負極102周目同右ける内周層29と
比較して活物質担持体の量がより少ないため)、リチウ
ムが電極表面に偏って析出してそれがデンドライト状に
成長し易い。そして、このデンドライト状の析出物がセ
パレータを貫通して内部短絡を起こしてしまい易く、信
転性が損なわれてしまう。That is, in the wound electrode body 10 having the structure shown in FIG. 3, since the current collector 11 exists almost at the center of the negative electrode 1, there is no movement of ions between the outer circumferential layer 13 and the inner circumferential layer 12.
The negative electrode inner peripheral layer 27 at the innermost periphery of the negative electrode 1 (one same opening) and the negative electrode outer peripheral layer 32 at the outermost periphery of the negative electrode 1 do not contribute to the actual charging/discharging reaction of the battery. Furthermore, for example, the outer peripheral layer 28 at the innermost circumference of the negative electrode 1 has a relatively heavy load, especially in the charging reaction (because the amount of active material carrier is smaller compared to the inner peripheral layer 29 at the 102nd turn of the negative electrode). , lithium precipitates unevenly on the electrode surface and tends to grow in the form of dendrites. This dendrite-like precipitate is likely to penetrate the separator and cause an internal short circuit, impairing reliability.
負極内周層27及び負極外周層32は、充放電反応に寄
与せずに無駄であり、さらに電池の内容積は限られてい
るから、電池内における有効体積が減少し、この結果、
電池の容量が減少してしまう。The negative electrode inner circumferential layer 27 and the negative electrode outer circumferential layer 32 are useless because they do not contribute to the charge/discharge reaction, and furthermore, since the internal volume of the battery is limited, the effective volume within the battery decreases, and as a result,
Battery capacity will decrease.
このような欠点をなくすために、巻回電極体における電
極最内周側の長さ部分、あるいは電極最内周の長さ部分
及び電極最外周側の長さ部分において、帯状の集電体に
孔を多数設けることが効果的であることを見い出した。In order to eliminate these drawbacks, a strip-shaped current collector is used in the innermost length of the electrode in the wound electrode body, or in the length of the innermost electrode and the outermost length of the electrode. It has been found that providing a large number of holes is effective.
さらに、多数の孔を上記各部分に設ける場合、孔の空孔
率は3〜30%の範囲内にあることが好ましいことがわ
かった。空孔率が3%以下であるとイオンの移動が十分
に行なわれず、30%以上になると電極構成物質が脱落
し易くなって好ましくない。Furthermore, it has been found that when a large number of holes are provided in each of the above portions, the porosity of the holes is preferably within the range of 3 to 30%. If the porosity is less than 3%, ions will not move sufficiently, and if it is more than 30%, the electrode constituent material will easily fall off, which is undesirable.
これによって、例えば第3図に示す巻回電極体において
、最内周の負極内周層27と負極外周層28との間、及
び最外周の負極外周層32と負極内周層31との間で、
リチウムの移動が可能となる。従って、負極外周層28
における充電時の負荷が軽減されてデンドライト状に析
出物が発生しにくくなるから、電池内部短絡の防止に効
果的となる。そして、負極内周層27及び負極外周層3
2が放充電反応に寄与して、これらが無駄とならずに電
池内における有効体積が減少することはないから、電池
容量の低下の防止に効果的となる。As a result, for example, in the wound electrode body shown in FIG. in,
Lithium transfer becomes possible. Therefore, the negative electrode outer peripheral layer 28
Since the load during charging is reduced and dendrite-like precipitates are less likely to occur, it is effective in preventing short circuits inside the battery. Then, the negative electrode inner peripheral layer 27 and the negative electrode outer peripheral layer 3
2 contributes to the discharging and charging reaction, and since they are not wasted and the effective volume within the battery does not decrease, it is effective in preventing a decrease in battery capacity.
以上のような知見に基づいて本実施例4では、帯状の負
極集電体11aを次のように構成した。Based on the above findings, in Example 4, the strip-shaped negative electrode current collector 11a was configured as follows.
第6A図は帯状の負極集電体11aの平面図である。FIG. 6A is a plan view of the strip-shaped negative electrode current collector 11a.
帯状の銅箔において、多数の円形の孔41を、負極1b
の最内周側の部分に長さ11の範囲内に空孔率が3%と
なるように設けることによって孔部38を形成して、帯
状の負極集電体11aを得た。このとき、負極集電体1
1aの幅方向に沿った端部45及び長さ方向に沿った端
部46には、負極構成物質が設けられたとき、この負極
構成物質の脱落防止のため孔41を設けないことが望ま
しい。なお、上記β1は約20mmであった。In the strip-shaped copper foil, a large number of circular holes 41 are inserted into the negative electrode 1b.
A hole 38 was formed by providing a porosity of 3% within a length 11 on the innermost circumferential side of the electrode, thereby obtaining a strip-shaped negative electrode current collector 11a. At this time, the negative electrode current collector 1
It is desirable that holes 41 are not provided in the end portion 45 along the width direction and the end portion 46 along the length direction of 1a in order to prevent the negative electrode constituent material from falling off when the negative electrode constituent material is provided. Note that the above β1 was approximately 20 mm.
以上のような負極集電体11aを用いた以外は、実施例
3における上記電池にと同様の円筒型非水電解質二次電
池を作製した。この電池を、後掲の第7表に示すよ、う
に、便宜上、電池B′とする。A cylindrical nonaqueous electrolyte secondary battery similar to the battery in Example 3 was produced except that the negative electrode current collector 11a as described above was used. For convenience, this battery will be referred to as battery B' as shown in Table 7 below.
次に、上記負極集電体11aの孔部38の空孔率を第7
表に示すように五通りに変えた以外は、上記電池B′と
同様の円筒型非水電解質二次電池A’ 、C’ 、D’
、E’及びF′を作製した。Next, the porosity of the pores 38 of the negative electrode current collector 11a is adjusted to the seventh level.
Cylindrical non-aqueous electrolyte secondary batteries A', C', and D' are similar to the above battery B' except that the changes were made in five ways as shown in the table.
, E' and F' were produced.
なお、電池F′における負極集電体11aの孔部38は
、第6B図に示すように四角形の多数の孔42から成っ
ている。Note that the hole 38 of the negative electrode current collector 11a in the battery F' consists of a large number of square holes 42, as shown in FIG. 6B.
また、巻回電極体10bの外径は13閣、中心部の中空
部の内径は3.5 mであった。Further, the outer diameter of the wound electrode body 10b was 13 m, and the inner diameter of the hollow part at the center was 3.5 m.
また、本実施例4の効果を確認するための比較例として
、孔を設けていない負極集電体を用いた以外は上記電池
B′と同様の円筒型非水電解質二次電池G′を得た。In addition, as a comparative example to confirm the effect of Example 4, a cylindrical nonaqueous electrolyte secondary battery G' similar to the above battery B' was obtained except that a negative electrode current collector without holes was used. Ta.
上記7種類の電池A′〜G′について、夫)?10個づ
つ作製し、実施例3において行ったのと同様の充放電サ
イクルを行って、10回目における電池の平均充放電容
量を求めた。この結果を第7表に示す。What about the above seven types of batteries A' to G'? Ten batteries were produced at a time, and the same charge/discharge cycles as in Example 3 were performed to determine the average charge/discharge capacity of the batteries at the 10th cycle. The results are shown in Table 7.
第7表
上記第7表に示すように、孔部38を有する負極集電体
11aを用いた電池A′〜F′は、比較例の電池G′よ
りも放電容量が高くなっている。Table 7 As shown in the above Table 7, the batteries A' to F' using the negative electrode current collector 11a having the holes 38 have higher discharge capacities than the battery G' of the comparative example.
中でも電池B’ 、C’ 、D’及びF′では空孔率Y
が3%〜30%内であるから、容量が400mA、 H
以上あり良好な結果を示している。Among them, in batteries B', C', D' and F', the porosity Y
is within 3% to 30%, so the capacity is 400mA, H
This shows good results.
また、充放電を繰返した上記電池A′〜G′を解体して
調査したところ、電池B’、C’、D’及びF′では負
極集電体11aの孔部38の長さ11部分に相当する負
極1bの部分は電池反応をしており、デンドライト状の
リチウムは観察されなかった。また、比較例の電池G′
では負極1bの最内周の内周層27に相当する部分は電
池反応をしておらず、また、電池E′では負極1bの孔
部38において孔41のところで負極構成物質が脱落し
ているのが観察された。In addition, when the batteries A' to G', which had been repeatedly charged and discharged, were disassembled and investigated, it was found that in batteries B', C', D', and F', the length 11 of the hole 38 of the negative electrode current collector 11a The corresponding portion of the negative electrode 1b underwent a battery reaction, and no dendrite-like lithium was observed. In addition, battery G′ of the comparative example
In this case, the innermost portion of the negative electrode 1b corresponding to the inner peripheral layer 27 does not undergo a battery reaction, and in the battery E', the negative electrode constituent material falls off at the hole 41 in the hole 38 of the negative electrode 1b. was observed.
次に、巻回電極体の電極における集電体の最内周側の孔
部38だけでなく最外周側にも孔部39を設けた負極集
電体11bを用いた例について説明する。Next, an example using a negative electrode current collector 11b in which holes 39 are provided not only at the innermost circumferential side of the current collector but also at the outermost circumferential side in the electrode of the wound electrode body will be described.
第7A図に示すように、帯状の銅箔において、多数の円
形の孔41を、負極1bの最外周側の部分に長さ12の
範囲内に空孔率が3%となるように設けることによって
、□孔部39を形成して、帯状の負極集電体11bを得
た。このような負極集電体11bを用いた以外は、上記
電池B′と同様の円筒型非水電解質二次電池I′を作製
した。As shown in FIG. 7A, in the strip-shaped copper foil, a large number of circular holes 41 are provided in the outermost portion of the negative electrode 1b within a length 12 so that the porosity is 3%. □ holes 39 were formed, and a strip-shaped negative electrode current collector 11b was obtained. A cylindrical non-aqueous electrolyte secondary battery I' was produced in the same manner as the battery B', except that such a negative electrode current collector 11b was used.
なお、上記!!、2は約50mmであり、孔部38にお
ける空孔率は孔部39と同一であった。In addition, the above! ! , 2 was about 50 mm, and the porosity in the holes 38 was the same as that in the holes 39.
次に、上記負極集電体11bの孔部38及び孔部39に
おける空孔率を下記第8表に示すように回通りに変えた
以外は、上記電池ビと同様の円筒型、非水電解質二次電
池H’ J’ 、K’及びL′を作製した。Next, a cylindrical, non-aqueous electrolyte similar to that of the battery B was used, except that the porosity in the holes 38 and 39 of the negative electrode current collector 11b was changed as shown in Table 8 below. Secondary batteries H'J',K' and L' were produced.
上記5種類の電池H′〜L′について夫々10個づつ作
製し、上述と同様の充放電サイクルを行って、10回目
における電池の平均放電容量を求めた。この結果を第8
表に示す。Ten batteries were prepared for each of the five types of batteries H' to L', and the same charge/discharge cycles as described above were performed to determine the average discharge capacity of the batteries at the 10th cycle. This result is the 8th
Shown in the table.
以下余白
第8表
上記第8表に示すように、負極集電体11bの孔部38
及び孔部391こおける空孔率が3%〜30%内である
電池I’ J’及びに′は容量が400mAH以上あ
り良好な結果を示している。また、第8表における結果
を第7表と比較すると、第8表における電池はいずれも
孔部38に加えて孔部39を設けた負極集電体1 ]、
bを用いているから容量が大きくなっていることがわ
かる。Margin Table 8 Below: As shown in Table 8 above, the hole 38 of the negative electrode current collector 11b
Batteries I'J' and Ni' in which the porosity in the pores 391 was within the range of 3% to 30% had a capacity of 400 mAH or more, showing good results. Furthermore, when comparing the results in Table 8 with Table 7, all of the batteries in Table 8 have negative electrode current collectors 1 which are provided with holes 39 in addition to holes 38.
It can be seen that the capacity is large because b is used.
以上の結果から、巻回電極体における最内周側において
集電体に空孔率が3〜30%である孔部38を設けるこ
とによってデンドライト状のリチウムの析出物が負極表
面に生じるのを防くことができて電池の内部短絡を防止
できるとともに、電池容量の向上を達成することができ
る。また、好ましくは、最外周側においても集電体に空
孔率が3〜30%である孔部39を設けることによって
、さらに電池容量の向上を達成できる。From the above results, by providing the holes 38 with a porosity of 3 to 30% in the current collector on the innermost side of the wound electrode body, it is possible to prevent dendrite-like lithium precipitates from forming on the negative electrode surface. This makes it possible to prevent internal short circuits in the battery and improve battery capacity. Preferably, by providing the current collector with holes 39 having a porosity of 3 to 30% on the outermost circumferential side as well, it is possible to further improve the battery capacity.
この結果、金属箔を集電体とした高容量でかつ信顛性の
ある円筒型非水電解質二次電池を得ることができる。As a result, a high capacity and reliable cylindrical nonaqueous electrolyte secondary battery using metal foil as a current collector can be obtained.
なお、本実施例4の電池では巻回電極体において最内周
及び最外周に位置する電極は負極であったが、正極が最
内周及び最外周に位置する場合は同様に正極集電体に孔
部を設けることによって、同様の効果が得られる。また
、金属箔集電体の材質としては特に限定しないが、アル
ミニウム、銅、鉄、ステンレス、チタンが好ましい。更
に好ましくは、この中でもアルミニウムと銅である。金
属箔の厚さは200μm以下が好ましい。孔の形状も、
円形や四角形をあげることが出来るがこの中でも円形の
孔のほうが、機械的強度が強く望ましい。また電極から
電極構成物質の脱落を防止するために電極端部には孔を
設けないことが望ましい。Note that in the battery of Example 4, the electrodes located at the innermost and outermost peripheries of the wound electrode body were negative electrodes, but when the positive electrodes were located at the innermost and outermost peripheries, the positive electrode current collector A similar effect can be obtained by providing a hole in the hole. Further, the material of the metal foil current collector is not particularly limited, but aluminum, copper, iron, stainless steel, and titanium are preferable. Among these, aluminum and copper are more preferred. The thickness of the metal foil is preferably 200 μm or less. The shape of the hole also
Although circular or square holes can be used, circular holes are preferable because they have stronger mechanical strength. Further, in order to prevent the electrode constituent material from falling off from the electrode, it is desirable that no hole be provided at the end of the electrode.
H6発明の効果
本発明は上述のように構成されているので、次のような
効果を奏する。H6 Effects of the Invention Since the present invention is configured as described above, it has the following effects.
請求項1の二次電池では帯状の電極の端部において、請
求項2の二次電池では帯状の電極の隅部において、電極
構成物質の脱落、剥離及びセパレータへの貫通を夫々防
くことができるから、電池の製造中及び使用中における
内部短絡を防止できる。In the secondary battery of claim 1, it is possible to prevent the electrode constituent materials from falling off, peeling off, and penetrating the separator at the ends of the band-shaped electrode, and in the secondary battery of claim 2, at the corners of the band-shaped electrode. Therefore, internal short circuits can be prevented during battery manufacture and use.
請求項3の二次電池では、巻回電極体の電極の外周層に
おける電極構成物質の結合力が増大して二の外周層にお
いて電極構成物質の脱落及び剥離を防ぐことができるか
ら、電池の製造中及び使用中における内部短絡を防止で
きる。In the secondary battery according to claim 3, the bonding force of the electrode constituent material in the outer peripheral layer of the electrode of the wound electrode body is increased, and it is possible to prevent the electrode constituent material from falling off and peeling off in the second outer peripheral layer. Internal short circuits can be prevented during manufacturing and use.
従って、信転性の高い、重負荷特性の優れた二次電池を
提供することができる。Therefore, a secondary battery with high reliability and excellent heavy load characteristics can be provided.
第1図〜第7図は本発明による実施例を示すものであっ
て、第1図は実施例1の円筒型非水電解質二次電池の概
略的な縦断面図、第2図は第1図に示す二次電池に用い
た帯状の負極の斜視図、第3図は第1図及び第4図に示
す二次電池において用いた巻回電極体の概略的な一部横
断面図、第4図は実施例2.3及び4の円筒型非水電解
質二次電池の概略的な縦断面図、第5A図及び第5B図
は実施例2の第4図に示す二次電池において用いた帯状
の負極の平面図、第6A図、第6B図及び第7図は実施
例3の第4図に示す二次電池において用いた帯状の負極
集電体の平面図である。
なお図面に用いられた符号において、
帯状の負極
帯状の正極
b−・−第1及び第2のセパレータ
巻回電極体
負極集電体
負極内周層(負極構成物質層)
負極外周層(負極構成物質層)
負極の長さ方向に沿った端部
(端部)
負極の中央平坦部(中央部)
・−一一一一負極の隅部
・−正極集電体
正極内周層(正極構成物質層)
正極外周層(正極構成物質層)1 to 7 show examples according to the present invention, in which FIG. 1 is a schematic vertical cross-sectional view of a cylindrical nonaqueous electrolyte secondary battery of Example 1, and FIG. Figure 3 is a perspective view of a strip-shaped negative electrode used in the secondary battery shown in Figure 3; Figure 4 is a schematic longitudinal sectional view of the cylindrical non-aqueous electrolyte secondary batteries of Examples 2.3 and 4, and Figures 5A and 5B are the batteries used in the secondary battery shown in Figure 4 of Example 2. FIG. 6A, FIG. 6B, and FIG. 7 are plan views of the strip-shaped negative electrode current collector used in the secondary battery shown in FIG. 4 of Example 3. In the symbols used in the drawings, the following symbols are used: Band-shaped negative electrode Band-shaped positive electrode b - First and second separator wound electrode body Negative current collector Negative inner circumferential layer (negative electrode constituent material layer) Negative electrode outer circumferential layer (negative electrode structure) Material layer) Ends along the length direction of the negative electrode (ends) Central flat part (center) of the negative electrode ・-1111 Corners of the negative electrode ・-Positive electrode current collector Positive electrode inner peripheral layer (positive electrode constituent material layer) Positive electrode outer peripheral layer (positive electrode constituent material layer)
Claims (1)
第1の電極と、正極構成物質層又は負極構成物質層を備
える帯状の第2の電極と、帯状のセパレータとが積層さ
れた状態でその長さ方向に沿って渦巻状に巻回されて、
上記第1の電極と上記第2の電極との間に上記セパレー
タが介在するように構成される巻回電極体を具備する二
次電池において、 上記帯状の第1又は第2の電極のうちの少なくとも一方
の電極の端部における厚さがこの電極の中央部における
厚さよりも薄いことを特徴とする二次電池。 2、負極構成物質層又は正極構成物質層を備える帯状の
第1の電極と、正極構成物質層又は負極構成物質層を備
える帯状の第2の電極と、帯状のセパレータとが積層さ
れた状態でその長さ方向に沿って渦巻状に巻回されて、
上記第1の電極と上記第2の電極との間に上記セパレー
タが介在するように構成される巻回電極体を具備する二
次電池において、 上記帯状の第1又は第2の電極のうちの少なくとも一方
の帯状の電極における隅部が欠如していることを特徴と
する二次電池。 3、負極構成物質層又は正極構成物質層を備える帯状の
第1の電極と、正極構成物質層又は負極構成物質層を備
える帯状の第2の電極と、帯状のセパレータとが積層さ
れた状態でその長さ方向に沿って渦巻状に巻回されて、
上記第1の電極と上記第2の電極との間に上記セパレー
タが介在するように構成される巻回電極体を具備し、上
記巻回電極体における上記第1の電極は上記第1の集電
体の内周面及び外周面に上記負極又は正極構成物質から
成る内周層及び外周層を夫々備えるとともに上記第2の
電極は上記第2の集電体の内周面及び外周面に上記正極
又は負極構成物質から成る内周層及び外周層を夫々備え
るように上記巻回電極体を構成している二次電池におい
て、 上記第1又は第2の電極のうちの少なくとも一方の電極
の電極構成物質は少なくとも活物質又は活物質担持体と
結着剤とを含んでいるとともに、この電極の上記外周層
における結着剤含有率がこの電極の上記内周層における
結着剤含有率よりも高いことを特徴とする二次電池。[Claims] 1. A strip-shaped first electrode including a negative electrode constituent material layer or a positive electrode constituent material layer, a strip-shaped second electrode including a positive electrode constituent material layer or a negative electrode constituent material layer, and a strip-shaped separator. are stacked and spirally wound along their length,
In a secondary battery comprising a wound electrode body configured such that the separator is interposed between the first electrode and the second electrode, one of the strip-shaped first or second electrodes A secondary battery characterized in that the thickness of at least one electrode at an end is thinner than the thickness at the center of this electrode. 2. In a state in which a strip-shaped first electrode comprising a negative electrode constituent material layer or a positive electrode constituent material layer, a strip-shaped second electrode comprising a positive electrode constituent material layer or a negative electrode constituent material layer, and a strip-shaped separator are laminated. It is wound in a spiral along its length,
In a secondary battery comprising a wound electrode body configured such that the separator is interposed between the first electrode and the second electrode, one of the strip-shaped first or second electrodes A secondary battery characterized in that at least one strip-shaped electrode lacks a corner. 3. A strip-shaped first electrode comprising a negative electrode constituent material layer or a positive electrode constituent material layer, a strip-shaped second electrode comprising a positive electrode constituent material layer or a negative electrode constituent material layer, and a strip-shaped separator are laminated. It is wound in a spiral along its length,
a wound electrode body configured such that the separator is interposed between the first electrode and the second electrode; The electric body is provided with an inner layer and an outer layer made of the negative electrode or positive electrode constituent material on the inner and outer surfaces of the second current collector, respectively, and the second electrode is provided with the inner and outer layers on the inner and outer surfaces of the second current collector. In a secondary battery in which the wound electrode body is configured to include an inner circumferential layer and an outer circumferential layer each comprising a positive electrode or a negative electrode constituent material, an electrode of at least one of the first or second electrodes. The constituent material includes at least an active material or an active material support and a binder, and the binder content in the outer peripheral layer of this electrode is higher than the binder content in the inner peripheral layer of this electrode. A secondary battery characterized by its high price.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13047190A JP3371908B2 (en) | 1990-05-21 | 1990-05-21 | Non-aqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13047190A JP3371908B2 (en) | 1990-05-21 | 1990-05-21 | Non-aqueous electrolyte secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0426071A true JPH0426071A (en) | 1992-01-29 |
JP3371908B2 JP3371908B2 (en) | 2003-01-27 |
Family
ID=15035040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13047190A Expired - Fee Related JP3371908B2 (en) | 1990-05-21 | 1990-05-21 | Non-aqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3371908B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993006628A1 (en) * | 1991-09-13 | 1993-04-01 | Asahi Kasei Kogyo Kabushiki Kaisha | Secondary cell |
AU655710B2 (en) * | 1993-02-24 | 1995-01-05 | Asahi Kasei Emd Corporation | .econdary battery |
JP2004303963A (en) * | 2003-03-31 | 2004-10-28 | Nissan Diesel Motor Co Ltd | Electric double layer capacitor and its manufacturing method |
JP2005174790A (en) * | 2003-12-12 | 2005-06-30 | Matsushita Electric Ind Co Ltd | Lithium ion secondary battery and its constituting method |
JP2008091054A (en) * | 2006-09-29 | 2008-04-17 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary battery |
US8187738B2 (en) | 2000-10-26 | 2012-05-29 | Isao Matsumoto | Spirally-rolled electrodes with separator and the batteries therewith |
JP2015144135A (en) * | 2015-03-30 | 2015-08-06 | 株式会社Gsユアサ | battery |
-
1990
- 1990-05-21 JP JP13047190A patent/JP3371908B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993006628A1 (en) * | 1991-09-13 | 1993-04-01 | Asahi Kasei Kogyo Kabushiki Kaisha | Secondary cell |
US5631100A (en) * | 1991-09-13 | 1997-05-20 | Asahi Kasei Kogyo Kabushiki Kaisha | Secondary battery |
AU655710B2 (en) * | 1993-02-24 | 1995-01-05 | Asahi Kasei Emd Corporation | .econdary battery |
US8187738B2 (en) | 2000-10-26 | 2012-05-29 | Isao Matsumoto | Spirally-rolled electrodes with separator and the batteries therewith |
JP2004303963A (en) * | 2003-03-31 | 2004-10-28 | Nissan Diesel Motor Co Ltd | Electric double layer capacitor and its manufacturing method |
JP2005174790A (en) * | 2003-12-12 | 2005-06-30 | Matsushita Electric Ind Co Ltd | Lithium ion secondary battery and its constituting method |
JP2008091054A (en) * | 2006-09-29 | 2008-04-17 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary battery |
JP2015144135A (en) * | 2015-03-30 | 2015-08-06 | 株式会社Gsユアサ | battery |
Also Published As
Publication number | Publication date |
---|---|
JP3371908B2 (en) | 2003-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4623786B2 (en) | Non-aqueous secondary battery | |
US8338022B2 (en) | Lithium secondary battery and method for manufacturing the same | |
US7556881B2 (en) | Lithium secondary battery | |
JP5018173B2 (en) | Lithium ion secondary battery | |
JP2010262826A (en) | Active material, battery, and method for manufacturing electrode | |
JPH08171917A (en) | Cell | |
JP3160920B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3589021B2 (en) | Lithium ion secondary battery | |
JP3131976B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2003331825A (en) | Nonaqueous secondary battery | |
JPH1092414A (en) | Nonaqueous electrolyte secondary battery | |
JPH0426071A (en) | Secondary battery | |
JPH04109551A (en) | Tubular cell | |
JP2003100278A (en) | Nonaqueous electrolyte secondary battery | |
JP3475759B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2002075460A (en) | Lithium secondary cell | |
JP4365633B2 (en) | Lithium secondary battery | |
JP3246553B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2003282143A (en) | Nonaqueous electrolyte secondary battery | |
JP4983124B2 (en) | Positive electrode active material, positive electrode and non-aqueous electrolyte battery using the same | |
JPH0434855A (en) | Spiral type non-aqueous electrolyte battery | |
JP2006155960A (en) | Negative electrode and battery | |
JP2007213875A (en) | Lithium secondary battery and its manufacturing method | |
JP2932516B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2503541Y2 (en) | Non-aqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |