JPH0425309A - Cutting method and device therefore - Google Patents

Cutting method and device therefore

Info

Publication number
JPH0425309A
JPH0425309A JP12993590A JP12993590A JPH0425309A JP H0425309 A JPH0425309 A JP H0425309A JP 12993590 A JP12993590 A JP 12993590A JP 12993590 A JP12993590 A JP 12993590A JP H0425309 A JPH0425309 A JP H0425309A
Authority
JP
Japan
Prior art keywords
cutting
workpiece
point
blade
cemented carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12993590A
Other languages
Japanese (ja)
Inventor
Genichi Sato
佐藤 嚴一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP12993590A priority Critical patent/JPH0425309A/en
Publication of JPH0425309A publication Critical patent/JPH0425309A/en
Pending legal-status Critical Current

Links

Landscapes

  • Auxiliary Devices For Machine Tools (AREA)
  • Milling Processes (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PURPOSE:To enable satisfactory cutting work by using a cutting tool provided with a blade made of super-fine grain sintered hard alloy and jetting high pressure liquid having at least 10kg/cm<2> of jet pressure toward a cutting point as cooling water. CONSTITUTION:A cutting edge 14a made of super-fine frain sintered hard alloy is used, and high pressure liquid having at least 10kg/cm<2> of jet pressure is jetted toward a cutting point of a contact point of the cutting edge 14a with a workpiece 2. Thus, the cutting point is instantly cooled by the high pressure liquid to prevent the exothermic reaction in the cutting point from the transmission to the workpiece 2 and the interior of the cutting edge, so that the workpiece 2 and cutting edge 14a are not subjected to the thermal damage. Thus, high speed cutting is performed so that even the hard workpiece 2 can be satisfactorily cut for a long period.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、フライス盤やマシニングセンタ等を用いて切
削加工を行う場合の切削方法およびそれに用いる装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a cutting method for performing cutting using a milling machine, a machining center, etc., and an apparatus used therefor.

〔従来の技術〕[Conventional technology]

フライス加工やエンドミル加工等の切削加工では、円筒
の外周または端面に複数枚の切刃を備えた回転工具を用
い、工具を高速回転させながら工作物に圧接して上記切
刃によって断続的に工作物表面を切削するようになって
いる。例えば、平面切削に用いられる平フライスカッタ
は、一般に第3図(正面図)および第4図(右側面図)
に示すような形状をしており、周面に所定間隔で突出す
る切刃1が、工作物2に断続的に衝突して切削を行うよ
うになっている。また、より硬い材料の切削を行う場合
には、第5図(正面部)および第6図(右側面図)に示
すような、回転軸と直角な平面切削を能率的に行うこと
のできる正面フライスカッタが用いられる。上記正面フ
ライスカッタでは、超硬素材からなる切刃1aをフライ
ス本体の先端円周部に、所定間隔でねし固定した植刃タ
イプのものが多く、この切刃1a部分に高価な超硬合金
を用いても価格的にはさほど高くならないため、高速度
鋼等の材質に代わり、広く一般的に用いられている。
In cutting processes such as milling and end milling, a rotary tool with multiple cutting blades on the outer periphery or end face of a cylinder is used, and the tool is pressed against the workpiece while rotating at high speed, and the cutting blades intermittently machine the workpiece. It is designed to cut the surface of objects. For example, a flat milling cutter used for surface cutting is generally shown in Figure 3 (front view) and Figure 4 (right side view).
The cutting blade 1 protrudes from the circumferential surface at predetermined intervals and collides with the workpiece 2 intermittently to perform cutting. In addition, when cutting harder materials, a front view that can efficiently perform plane cutting perpendicular to the rotation axis is available, as shown in Figure 5 (front view) and Figure 6 (right side view). A milling cutter is used. Most of the above-mentioned face milling cutters are of the implanted type, in which the cutting blade 1a made of a carbide material is screwed onto the circumference of the tip of the milling cutter body at predetermined intervals, and the cutting blade 1a is made of expensive cemented carbide. Since the price is not very high even if it is used, it is widely used instead of materials such as high-speed steel.

このような切削工具用の超硬合金としては、平均粒子径
が2〜5μのタングステンカーバイド(WC)粒子とコ
バルト(co)粒子とを、タングステンカーバイド90
〜98重量%、コバ用1−10〜2重量%の割合で配合
して焼結させたものをあげることができる。
As a cemented carbide for such a cutting tool, tungsten carbide (WC) particles and cobalt (co) particles with an average particle size of 2 to 5μ are combined with tungsten carbide 90
Examples include those blended and sintered at a ratio of ~98% by weight and 1-10-2% by weight for edges.

〔発明が解決しようきする課題〕[Problems that the invention attempts to solve]

しかしながら、このような超硬合金製の切刃を有する切
削工具は、耐衝撃性に優れ摩耗が少ないという利点を有
する反面、温度変化に弱いため、フライスやエンドミル
のように複数の切刃を断続的に工作物に衝突させて研削
を行うものでは、冷却水をかけながら切削を行う(湿式
)と、切刃が切削点における高温状態と冷却水による冷
却状態を交互に繰り返すこととなり、この急激な熱変化
の繰り返しによって割れてしまうという欠点がある。そ
こで、このような超硬合金製の切削工具を用いる場合に
は、通常、冷却水を用いない乾式で切削を行うようにし
てイル。しかし、冷却水を用いないと、っぎのような作
業上の問題がある。すなわち、■切削によって生じる切
り屑が除去できず、切削工具の切刃が上記切り屑を噛み
込んで刃こぼれが生じる、■345Cのような炭素鋼の
切削では、切削熱によって工作物表面が焼入れしたよう
に硬くなり研磨等の表面仕上げ作業が困難になる、■切
削熱を持った切り屑が工作物表面を被うので、工作物自
体が熱せられて膨張し、その状態で切削すると加工寸法
に狂いが生じる、■切削熱によって工作物表面が熔け、
切削工具の切刃に溶けた金属が付着していわゆる「構成
刃先」が形成され切削できなくなる、等の問題がある。
However, although such cutting tools with cemented carbide cutting blades have the advantage of excellent impact resistance and low wear, they are vulnerable to temperature changes, so they cannot be used with multiple cutting blades intermittently, such as milling cutters and end mills. When grinding is performed by directly colliding with the workpiece, if cutting is performed while spraying cooling water (wet method), the cutting edge will alternate between being at a high temperature at the cutting point and being cooled by the cooling water, resulting in this rapid It has the disadvantage of cracking due to repeated thermal changes. Therefore, when using such a cutting tool made of cemented carbide, the cutting is usually performed using a dry method without using cooling water. However, if cooling water is not used, there will be operational problems. In other words, ■ Chips generated by cutting cannot be removed, and the cutting edge of the cutting tool gets caught in the chips, resulting in a chipped edge. ■ When cutting carbon steel such as 345C, the surface of the workpiece is hardened by the cutting heat. As the chips become hard and difficult to perform surface finishing operations such as polishing, the surface of the workpiece is coated with cutting heat, causing the workpiece itself to heat up and expand. Misalignment occurs, ■The surface of the workpiece melts due to cutting heat,
There are problems such as molten metal adhering to the cutting edge of a cutting tool, forming a so-called "built-up edge" and making cutting impossible.

このような問題を回避するために、切削部に油をかけな
がら切削を行うことも一部でなされているが、油では冷
却力が弱く、また、油を使うと切削時の熱で引火するこ
とがあって危険である。
In order to avoid such problems, some methods are used to perform cutting while applying oil to the cutting part, but oil has a weak cooling power, and the heat generated during cutting can cause a fire if oil is used. It can be dangerous.

これに対し、上記超硬合金製の切削工具の欠点を補うべ
く、合金を構成する各粒子の粒子径を極端に微小にした
超微粒子超硬合金製の切削工具が開発されている。すな
わち、このものは全体の平均粒子径が0.5μ前後に設
定されており、かつ従来の超硬合金に比ベコバルト含有
量が多くなっている(12重量%程度含有)ため、靭性
が大きくて割れにくいという優れた特質を備えている。
On the other hand, in order to compensate for the drawbacks of the above-mentioned cutting tools made of cemented carbide, cutting tools made of ultra-fine particle cemented carbide have been developed in which the particle diameter of each particle constituting the alloy is extremely small. In other words, this material has an overall average particle diameter of around 0.5μ, and has a higher cobalt content (approximately 12% by weight) compared to conventional cemented carbide, so it has high toughness. It has the excellent property of being difficult to break.

しかし、その反面、熱に弱く、低温切削でないと刃先が
欠損するため、冷却水(常圧)をかけることはできでも
、発熱を抑える必要から、加工速度を上げることができ
ないという難点を有している。
However, on the other hand, it is sensitive to heat and the cutting edge will break if it is not cut at low temperatures.Although it is possible to apply cooling water (normal pressure), it is difficult to increase the machining speed because it is necessary to suppress heat generation. ing.

このように、従来の切削方法では、超硬合金の特質を活
かして効果的な切削を行うことは難しいのが実情で、そ
の解決が望ま、れていた。
As described above, with conventional cutting methods, it is difficult to effectively cut by taking advantage of the characteristics of cemented carbide, and a solution to this problem has been desired.

本発明は、このような事情に鑑みなされたもので、超硬
合金製の切削工具によって効果的な切削を行うことので
きる方法およびそれに用いる装置の提供をその目的とす
る。
The present invention was made in view of the above circumstances, and an object of the present invention is to provide a method that allows effective cutting with a cutting tool made of cemented carbide, and a device used therein.

[課題を解決するための手段〕 上記の目的を達成するため、本発明は、工作物に対し断
続的に切刃を衝突させて切削を行う方法であって、上記
切刃として超微粒子超硬合金製のものを用い、かつ、上
記切刃と工作物の接点である切削点に向かって吐出圧1
0kg/afi以上の高圧液体を投射するようにした切
削方法を第1の要旨とし、工作物を支持する工作物支受
手段と、周方向に複数の刃が形成され回転によってその
刃先が上記工作物に対し断続的に衝突して切削を行うよ
う構成された切削工具と、上記切削工具に高速回転を与
える回転駆動手段と、上記切刃と工作物の切削点を適宜
移動させていくための移動手段とを備えた切削装置であ
って、上記切削工具の各月が超微粒子超硬合金製で、か
つ切削点に向かって吐出圧10kg/cm2以上の高圧
液体が投射されるようになっている切削装置を第2の要
旨とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a method for cutting a workpiece by intermittently colliding a cutting blade with the workpiece, the cutting blade being made of ultrafine particle carbide. A material made of alloy is used, and a discharge pressure of 1 is applied toward the cutting point, which is the contact point between the cutting edge and the workpiece.
The first gist is a cutting method in which high-pressure liquid of 0 kg/afi or more is projected, and the cutting method includes a workpiece support means for supporting the workpiece, and a plurality of blades formed in the circumferential direction, whose cutting edges rotate to move the workpiece into the workpiece. A cutting tool configured to perform cutting by intermittently colliding with an object, a rotary drive means for rotating the cutting tool at high speed, and a rotary drive means for appropriately moving the cutting point of the cutting blade and the workpiece. A cutting device equipped with a moving means, wherein each month of the cutting tool is made of ultrafine cemented carbide, and a high-pressure liquid with a discharge pressure of 10 kg/cm2 or more is projected toward the cutting point. The second gist is the cutting equipment used.

〔作用〕[Effect]

すなわち、本発明者は、超硬合金製の切削工具によって
効果的な切削を行う方法について一連の研究を行った。
That is, the present inventor conducted a series of studies on a method for effective cutting with a cutting tool made of cemented carbide.

その結果、従来、低温切削しかできなかった超微粒子超
硬合金製の刃を備えた切削工具を用い、かつ切削点に向
かって吐出圧10kg/cm2以上の高圧液体を冷却水
として投射するようにすると、切削点が上記高圧切削液
によって瞬時に冷やされ、殆ど工作物および切削工具切
刃内部への熱伝動が行われない状態となるため、切削工
具の切刃が常時低温状態に置かれ、超硬合金製の切り刃
が大幅な熱変動を受けることがなく、非常に良好な切削
加工を行うことを見いだし本発明に到達した。
As a result, we now use a cutting tool with a blade made of ultra-fine cemented carbide, which could only perform low-temperature cutting, and project high-pressure liquid with a discharge pressure of 10 kg/cm2 or more toward the cutting point as cooling water. Then, the cutting point is instantly cooled by the high-pressure cutting fluid, and there is almost no heat transfer to the workpiece and the inside of the cutting tool cutting edge, so the cutting tool cutting edge is always kept in a low temperature state. The present invention was achieved by discovering that a cutting blade made of cemented carbide performs very good cutting without undergoing significant thermal fluctuations.

つぎに、本発明を実施例にもとづいて詳細に説明する。Next, the present invention will be explained in detail based on examples.

〔実施例〕〔Example〕

第1図は、本発明を横フライス盤装置に適用した例を示
している。この装置は、基本的な構成は通常の横フライ
ス盤装置と同じで、本体10内で高速回転するスピンド
ル11と、このスピンドル11先端のテーバ穴12に着
脱自在に嵌合されるフライス取付用のアーバ13と、こ
のテーバ13先端に取り付けられるフライスカッタ14
とを備えている。そして、この図では、フライスカッタ
14が正面フライスカッタであり、テーブル(図示せず
)に取り付けられた工作物2の垂直面を、工作物2をテ
ーブルことX、Y、Z方向に送りながら切削することが
できるようになっている。また、15は、本発明におい
て特に設けた高圧水吐出ノズルで、水。
FIG. 1 shows an example in which the present invention is applied to a horizontal milling machine. This device has the same basic configuration as a normal horizontal milling machine, including a spindle 11 that rotates at high speed within a main body 10, and an arbor for attaching a milling cutter that is removably fitted into a tapered hole 12 at the tip of the spindle 11. 13, and a milling cutter 14 attached to the tip of this taper 13.
It is equipped with In this figure, the milling cutter 14 is a face milling cutter, and cuts the vertical surface of the workpiece 2 attached to a table (not shown) while feeding the workpiece 2 in the X, Y, and Z directions. It is now possible to do so. Moreover, 15 is a high-pressure water discharge nozzle especially provided in the present invention.

極圧添加剤を含む水等の所定の冷却用水溶液が10〜2
00 kg/cdの高圧で吐出するようになっている。
A predetermined cooling aqueous solution such as water containing an extreme pressure additive is 10 to 2
It is designed to be discharged at a high pressure of 0.00 kg/cd.

上記吐出ノズル15の吐出方向は、切削点に向かってい
れば差し支えないが、とりわけ、第1図のA−A’断面
図である第2図に示すように、フライスカッタ14の回
転方向を考慮して、工作物2に対しこれから切刃14a
が入ろうとする方向に高圧水を投射するようにすると、
切削点の冷却と切り屑除去を効果的に行うことができ好
適である。あるいは、これから切刃14aが工作物2に
入ろうとする方向に高圧水を投射するノズル15を設け
るとともに、第2図に鎖線で示すように、もう1本ノズ
ル15′を設け、このノズル15’によって、切刃14
aが工作物2から出た直後の方向にも高圧水を投射する
ようにすると、−層効果的に切り屑除去を行うことがで
きる。
There is no problem with the discharge direction of the discharge nozzle 15 as long as it is directed toward the cutting point, but in particular, the direction of rotation of the milling cutter 14 is taken into consideration, as shown in FIG. 2, which is a cross-sectional view taken along line A-A' in FIG. Then, from now on, the cutting blade 14a is applied to the workpiece 2.
By projecting high-pressure water in the direction where the water is trying to enter,
This is preferable because it can effectively cool the cutting point and remove chips. Alternatively, a nozzle 15 for projecting high-pressure water in the direction in which the cutting edge 14a is about to enter the workpiece 2 is provided, and another nozzle 15' is provided as shown by the chain line in FIG. By cutting edge 14
By projecting high-pressure water also in the direction immediately after a emerges from the workpiece 2, chips can be removed more effectively.

また、上記フライスカッタ14の各切刃14aは、超微
粒子超硬合金で形成されていることが必要である。上記
超微粒子超硬合金とは、すテニ述べたように、例えばタ
ングステンカーバイド粒子とコバルト粒子を焼結して構
成されており、その平均粒子径が0.3〜1.0μで、
タングステンカーバイド粒子とコバルト粒子の配合割合
が、タングステンカーバイド85〜901量%、コバル
ト15〜10重量%に設定されているものが一般的であ
る。
Further, each cutting edge 14a of the milling cutter 14 needs to be made of ultrafine cemented carbide. As mentioned above, the ultrafine particle cemented carbide is composed of, for example, sintered tungsten carbide particles and cobalt particles, and has an average particle diameter of 0.3 to 1.0μ,
Generally, the blending ratio of tungsten carbide particles and cobalt particles is set to 85 to 901% by weight of tungsten carbide and 15 to 10% by weight of cobalt.

この横フライス盤装置を用い、上記高圧切削水吐出ノズ
ル15から高圧水を吐出しながら切削を行うと、上記高
圧水が切削点を瞬時に冷却して工作物2に対しても切刃
14aに対しても殆ど熱伝動させないため、上記フライ
スカッタ14の切刃14aが、従来低速でしか使用でき
ないものであったにもかかわらず、高速で切削を行って
も切刃14aの刃先を損傷することなく長期にわたって
良好な切削を維持することができる。より具体的な例で
いえば、355Cの工作物に対し、φ10のエンドミル
2抜刃カッタで、切削速度10 Q m/aiin 、
切込み1閣。
When cutting is performed using this horizontal milling machine device while discharging high-pressure water from the high-pressure cutting water discharging nozzle 15, the high-pressure water instantly cools the cutting point and acts against the workpiece 2 and the cutting edge 14a. Even though the cutting blade 14a of the milling cutter 14 can be used only at low speeds, the cutting edge of the cutting blade 14a can be cut at high speeds without damaging the cutting edge. Good cutting quality can be maintained over a long period of time. To give a more specific example, for a 355C workpiece, with a φ10 end mill 2-blade cutter, the cutting speed is 10 Q m/aiin,
1 incision.

切削幅2鵬の切削を行う場合の切削送り速度を500 
mm/minm/m型ることができる。また、切削熱が
蓄熱されないため、工作物2が345C等の線素鋼が、
焼入れしたように硬くなることがなく、研磨等の表面仕
上げ作業がやりやすい。さらに、切削熱によって工作物
2表面が溶けて「構成刃先Jが形成されるようなことも
ない。しかも、上記高圧水が切削点がら切り屑を瞬時に
除去するため、切刃14aが切り屑を噛み込んで刃こぼ
れが生じたり、工作物2自体が熱膨張して加工寸法に狂
いを生じたりすることがない。そしてさらに、上記押圧
水の作用により、従来損傷しやすかった、いわゆる「2
番」の刃先(工作物2表面に衝突して食い込む刃が「1
番Jであり、「2番」はこの1番刃と切刃先端角を形成
する他辺側の刃をいう)の損傷が皆無になる。
When cutting with a cutting width of 2 mm, the cutting feed rate is set to 500.
mm/minm/m type. In addition, since the cutting heat is not stored, the workpiece 2 is made of wire steel such as 345C.
It does not become hard like hardening, making it easier to perform surface finishing work such as polishing. Furthermore, the surface of the workpiece 2 will not melt due to cutting heat and a built-up cutting edge J will not be formed. Moreover, since the high-pressure water instantly removes chips from the cutting point, the cutting edge 14a There is no possibility that the workpiece 2 will be bitten and cause the blade to spill, or that the workpiece 2 itself will not thermally expand and the machining dimensions will be distorted.Furthermore, due to the action of the pressurized water, the so-called "2"
(The blade that collides with the surface of workpiece 2 and bites into it is
No. J, and "No. 2" refers to the blade on the other side that forms the tip angle of the cutting edge with this No. 1 blade).

なお、上記実施例は、本発明を横フライス盤に適用した
ものであるが、もちろん、立フライス盤やマシニングセ
ンタに応用することもできる。また、切削工具としては
、上記実施例では正面フライスカッタ14を用いている
が、各種のフライスカッタの外、エンドミル、ホブ等、
回転して断続的に切刃を工作物2に衝突させて切削を行
う工具であれば、どのようなものを用いてもよい。
In the above embodiment, the present invention is applied to a horizontal milling machine, but of course it can also be applied to a vertical milling machine or a machining center. In addition, as a cutting tool, a face milling cutter 14 is used in the above embodiment, but in addition to various milling cutters, end mills, hobs, etc.
Any tool may be used as long as it rotates and causes its cutting blade to collide with the workpiece 2 intermittently to perform cutting.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明は、切削工具として超微粒子超硬
合金製の刃を備える切削工具を用い、かつ切削に向かっ
て吐出圧10kg/cd1以上の高圧液体を冷却水とし
て投射するようにしたものである。したがって、本発明
によれば、切削点が上記高圧液体によって瞬時に冷やさ
れ、切削点での発熱が殆ど工作物および切削工具切刃内
部に伝動しないため、工作物も切刃も熱的ダメージを受
けることがない。これにより、従来低温切削、すなわち
低速切削しかできなかった超微粒子超硬合金製の切削工
具によって、高速切削が可能となり、硬い工作物に対し
ても良好な切削を長期にわたって行うことができるよう
になった。
As described above, the present invention uses a cutting tool equipped with a blade made of ultrafine cemented carbide, and projects high-pressure liquid with a discharge pressure of 10 kg/cd1 or more as cooling water toward cutting. It is something. Therefore, according to the present invention, the cutting point is instantly cooled by the high-pressure liquid, and almost no heat generated at the cutting point is transmitted to the workpiece or cutting tool cutting edge, so that neither the workpiece nor the cutting edge is thermally damaged. I never receive it. As a result, cutting tools made of ultrafine grain cemented carbide, which were previously only capable of low-temperature cutting, i.e., low-speed cutting, are now capable of high-speed cutting, making it possible to perform good cutting over a long period of time even on hard workpieces. became.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の要部を示す断面図、第2図
はそのA−A’断面図、第3図および第4図は従来の平
フライスカッタの説明図、第5図および第6図は従来の
正面フライスカッタの説明図である。
FIG. 1 is a cross-sectional view showing the essential parts of an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along the line AA', FIGS. 3 and 4 are explanatory diagrams of a conventional flat milling cutter, and FIG. and FIG. 6 are explanatory diagrams of a conventional face milling cutter.

Claims (3)

【特許請求の範囲】[Claims] (1)工作物に対し断続的に切刃を衝突させて切削を行
う方法であつて、上記切刃として超微粒子超硬合金製の
ものを用い、かつ、上記切刃と工作物の接点である切削
点に向かつて吐出圧10kg/cm^2以上の高圧液体
を投射するようにしたことを特徴とする切削方法。
(1) A method of cutting by intermittent collision of a cutting blade with a workpiece, in which the cutting blade is made of ultrafine cemented carbide, and the contact point between the cutting blade and the workpiece is A cutting method characterized in that a high-pressure liquid with a discharge pressure of 10 kg/cm^2 or more is projected toward a certain cutting point.
(2)工作物を支持する工作物支受手段と、周方向に複
数の刃が形成され回転によつてその刃先が上記工作物に
対し断続的に衝突して切削を行うよう構成された切削工
具と、上記切削工具に高速回転を与える回転駆動手段と
、上記切刃と工作物の切削点を適宜移動させていくため
の移動手段とを備えた切削装置であつて、上記切削工具
の各刃が超微粒子超硬合金製で、かつ切削点に向かつて
吐出圧10kg/cm^2以上の高圧液体が投射される
ようになつていることを特徴とする切削装置。
(2) A workpiece support means for supporting a workpiece, and a cutting device configured to have a plurality of blades formed in the circumferential direction and whose cutting edges intermittently collide with the workpiece as it rotates to perform cutting. A cutting device comprising a tool, a rotary drive means for causing the cutting tool to rotate at high speed, and a moving means for appropriately moving the cutting blade and the cutting point of the workpiece, the cutting device comprising: A cutting device characterized in that the blade is made of ultra-fine particle cemented carbide and is configured to project high-pressure liquid with a discharge pressure of 10 kg/cm^2 or more toward the cutting point.
(3)上記超微粒子超硬合金が、平均粒子径が0.3〜
1.0μmのタングステンカーバイド粒子とコバルト粒
子によつて構成されているものである請求項(2)記載
の切削装置。
(3) The ultrafine particle cemented carbide has an average particle diameter of 0.3 to
The cutting device according to claim 2, wherein the cutting device is composed of 1.0 μm tungsten carbide particles and cobalt particles.
JP12993590A 1990-05-18 1990-05-18 Cutting method and device therefore Pending JPH0425309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12993590A JPH0425309A (en) 1990-05-18 1990-05-18 Cutting method and device therefore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12993590A JPH0425309A (en) 1990-05-18 1990-05-18 Cutting method and device therefore

Publications (1)

Publication Number Publication Date
JPH0425309A true JPH0425309A (en) 1992-01-29

Family

ID=15022068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12993590A Pending JPH0425309A (en) 1990-05-18 1990-05-18 Cutting method and device therefore

Country Status (1)

Country Link
JP (1) JPH0425309A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5378091A (en) * 1992-06-17 1995-01-03 Makino Milling Machine Co., Ltd. Method and apparatus for machining a workpiece
EP1153708A1 (en) * 2000-05-11 2001-11-14 ROLLS-ROYCE plc High speed milling
JP2005081541A (en) * 2003-09-04 2005-03-31 United Technol Corp <Utc> Coolant nozzle for machine tools
US20090250187A1 (en) * 2006-05-26 2009-10-08 Seidel Juergen Device for Producing a Metal Strip by Continuous Casting
CN102343444A (en) * 2010-07-28 2012-02-08 株式会社迪思科 Processing apparatus
CN102343443A (en) * 2010-07-23 2012-02-08 株式会社迪思科 Processing apparatus having cutter
JP2012066070A (en) * 2010-09-10 2012-04-05 Stanley Black & Decker Inc Utility knife blade
US20120294690A1 (en) * 2011-05-18 2012-11-22 Disco Corporation Tool cutting apparatus and tool cutting method for workpiece
JP2015024479A (en) * 2013-07-29 2015-02-05 株式会社トクピ製作所 U-shaped drill or gun drill

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5378091A (en) * 1992-06-17 1995-01-03 Makino Milling Machine Co., Ltd. Method and apparatus for machining a workpiece
EP1153708A1 (en) * 2000-05-11 2001-11-14 ROLLS-ROYCE plc High speed milling
JP2005081541A (en) * 2003-09-04 2005-03-31 United Technol Corp <Utc> Coolant nozzle for machine tools
US20090250187A1 (en) * 2006-05-26 2009-10-08 Seidel Juergen Device for Producing a Metal Strip by Continuous Casting
CN102343443A (en) * 2010-07-23 2012-02-08 株式会社迪思科 Processing apparatus having cutter
JP2012024885A (en) * 2010-07-23 2012-02-09 Disco Corp Working device with cutting tool
KR20120011809A (en) * 2010-07-28 2012-02-08 가부시기가이샤 디스코 Machining apparatus
CN102343444A (en) * 2010-07-28 2012-02-08 株式会社迪思科 Processing apparatus
JP2012030290A (en) * 2010-07-28 2012-02-16 Disco Corp Machining device
JP2012066070A (en) * 2010-09-10 2012-04-05 Stanley Black & Decker Inc Utility knife blade
US20120294690A1 (en) * 2011-05-18 2012-11-22 Disco Corporation Tool cutting apparatus and tool cutting method for workpiece
US9156096B2 (en) * 2011-05-18 2015-10-13 Disco Corporation Tool cutting apparatus and tool cutting method for workpiece
JP2015024479A (en) * 2013-07-29 2015-02-05 株式会社トクピ製作所 U-shaped drill or gun drill

Similar Documents

Publication Publication Date Title
US5592863A (en) Cryogenic machining of soft/ductile materials
JPH0631502A (en) Cutting tool
JPH0425309A (en) Cutting method and device therefore
JPH10225814A (en) Cutting work method
JP2009045715A (en) Cutting method using high-pressure coolant
US3984213A (en) Slow grinding technique
JP2015024479A (en) U-shaped drill or gun drill
JP6389205B2 (en) Machining method using drill and drill with coolant injection hole
JPH06134648A (en) Cutting method and device
JPH1133812A (en) End mill
JP6266129B2 (en) Cutting device
JP2511368B2 (en) Coolant supply method and device
JPH0751980A (en) Lathe device
JPH0631579A (en) Cutting tool
JPH0751981A (en) Method and device for machining
CN211331514U (en) T-shaped internal-cooling milling cutter
JPH0493101A (en) Lathing device
JP2010269407A (en) Milling method
JP2016215287A (en) Cutting processing device
JPH11333665A (en) Fluid pin point blow method
JPH0639675A (en) Cutting tool
JPH0623648A (en) Cutting method and cutting tool used therefor
JPS6347004A (en) Deep boring method with gun drill
JPH06190625A (en) End mill
JPH06190681A (en) Cutting tool