JPH04253063A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH04253063A
JPH04253063A JP941391A JP941391A JPH04253063A JP H04253063 A JPH04253063 A JP H04253063A JP 941391 A JP941391 A JP 941391A JP 941391 A JP941391 A JP 941391A JP H04253063 A JPH04253063 A JP H04253063A
Authority
JP
Japan
Prior art keywords
charge
photoreceptor
layer
chemical formula
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP941391A
Other languages
Japanese (ja)
Other versions
JP2817807B2 (en
Inventor
Masami Kuroda
昌美 黒田
Masayo Amano
天野 雅世
Noboru Kosho
古庄 昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP941391A priority Critical patent/JP2817807B2/en
Publication of JPH04253063A publication Critical patent/JPH04253063A/en
Application granted granted Critical
Publication of JP2817807B2 publication Critical patent/JP2817807B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To obtain the electrophotographic sensitive body high in sensitivity and superior in characteristics against repeated uses by incorporating a specified hydrazone compound as an electric charge transfer material in a photosensitive layer. CONSTITUTION:The electrophotographic sensitive body is formed by laminating on a conductive substrate 1 a photosensitive layer 20 containing as the charge transfer material the hydrazone compound represented by formula I in which each of R1 and R2 is H, halogen, or alkyl; each of R3 and R4 optionally substituted alkyl or aryl or alkenyl; each of R5 and R6 is H, alkyl, or aryl; and each of R7 and R8 is optionally substituted alkyl, such aryl, such alkenyl, or such thenyl.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は電子写真用感光体の感
光層に係り、特に感度に優れる感光層の電荷輸送物質に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a photosensitive layer of an electrophotographic photoreceptor, and more particularly to a charge transporting material for a photosensitive layer having excellent sensitivity.

【0002】0002

【従来の技術】従来より電子写真用感光体(以下感光体
とも称する)の感光材料としてはセレンまたはセレン合
金などの無機光導電性物質、酸化亜鉛あるいは硫化カド
ミウムなどの無機光導電性物質を樹脂結着剤中に分散さ
せたもの、ポリ−N−ビニルカルバゾールまたはポリビ
ニルアントラセンなどの有機光導電性物質、フタロシア
ニン化合物あるいはビスアゾ化合物などの有機光導電性
物質を樹脂結着剤中に分散させたものや真空蒸着させた
ものなどが利用されている。
[Prior Art] Conventionally, photosensitive materials for electrophotographic photoreceptors (hereinafter also referred to as photoreceptors) have been made of inorganic photoconductive substances such as selenium or selenium alloys, and inorganic photoconductive substances such as zinc oxide or cadmium sulfide. dispersion in a binder, an organic photoconductive material such as poly-N-vinylcarbazole or polyvinylanthracene, a dispersion of an organic photoconductive material such as a phthalocyanine compound or a bisazo compound in a resin binder; or vacuum-deposited materials are used.

【0003】また、感光体には暗所で表面電荷を保持す
る機能、光を受容して電荷を発生する機能、同じく光を
受容して電荷を輸送する機能とが必要であるが、一つの
層でこれらの機能をあわせもったいわゆる単層型感光体
と、主として電荷発生に寄与する層と暗所での表面電荷
の保持と光受容時の電荷輸送に寄与する層とに機能分離
した層を積層したいわゆる積層型感光体がある。これら
の感光体を用いた電子写真法による画像形成には、例え
ばカールソン方式が適用される。この方式での画像形成
は暗所での感光体へのコロナ放電による帯電、帯電され
た感光体表面上への原稿の文字や絵などの静電潜像の形
成、形成された静電潜像のトナーによる現像、現像され
たトナー像の紙などの支持体への定着により行われ、ト
ナー像転写後の感光体は除電、残留トナーの除去、光除
電などを行った後、再使用に供される。
[0003]Also, a photoreceptor must have the function of retaining a surface charge in the dark, the function of receiving light and generating a charge, and the function of receiving light and transporting a charge. So-called single-layer photoreceptors have these functions in one layer, and the other is a layer that is functionally separated into a layer that mainly contributes to charge generation and a layer that contributes to surface charge retention in the dark and charge transport during light reception. There is a so-called laminated type photoreceptor in which two types of photoreceptors are laminated. For example, the Carlson method is applied to image formation by electrophotography using these photoreceptors. Image formation in this method involves charging the photoconductor in a dark place by corona discharge, forming an electrostatic latent image such as text or pictures on the original on the surface of the charged photoconductor, and forming an electrostatic latent image on the surface of the charged photoconductor. After the toner image has been transferred, the photoreceptor is subjected to static electricity removal, removal of residual toner, photostatic static removal, etc. before being reused. be done.

【0004】近年、可とう性、熱安定性、膜形成性など
の利点により、電荷輸送能の優れた光導電性有機化合物
の感光体への応用が数多く提案されている。例えばオキ
サジアゾール化合物としては、米国特許第318944
7号明細書、ピラゾリン化合物としては特公昭59−2
023号公報、またヒドラゾン化合物としては特公昭5
5−42380号、特開昭57−101844号、特開
昭54−150128号などにより種々の電荷輸送材料
が知られている。
[0004] In recent years, many applications of photoconductive organic compounds with excellent charge transport ability to photoreceptors have been proposed due to their advantages such as flexibility, thermal stability, and film-forming properties. For example, as an oxadiazole compound, US Pat. No. 318,944
Specification No. 7, as a pyrazoline compound, Japanese Patent Publication No. 59-2
No. 023, and as a hydrazone compound, Japanese Patent Publication No. 5
Various charge transport materials are known from Japanese Patent Application Laid-open No. 5-42380, Japanese Patent Application Laid-Open No. 57-101844, Japanese Patent Application Laid-Open No. 54-150128, etc.

【0005】[0005]

【発明が解決しようとする課題】上述のように有機材料
は無機材料にない多くの長所を持つが、また同時に電子
写真感光体に要求されるすべての特性を充分に満足する
ものが得られていないのが現状であり、特に光感度およ
び繰り返し連続使用時の特性に問題があった。
[Problems to be Solved by the Invention] As mentioned above, organic materials have many advantages that inorganic materials do not have, but at the same time, it is difficult to obtain a material that fully satisfies all the characteristics required of an electrophotographic photoreceptor. At present, there are no such products, and there are problems particularly with photosensitivity and characteristics during repeated and continuous use.

【0006】本発明は、上述の点に鑑みてなされたもの
であって、感光層に電荷輸送物質として今まで用いられ
たことのない新しい有機材料を用いることにより、高感
度で繰り返し特性の優れた複写機用およびプリンター用
電子写真用感光体を提供することを目的とする。
The present invention has been made in view of the above points, and by using a new organic material that has never been used as a charge transport material in the photosensitive layer, high sensitivity and excellent repeatability can be achieved. The purpose of the present invention is to provide an electrophotographic photoreceptor for copying machines and printers.

【0007】[0007]

【課題を解決するための手段】上述の目的はこの発明に
よれば導電性基体上に感光層を有し、感光層は一般化学
式(I)で示されるヒドラゾン化合物を電荷輸送物質と
して含むものである(式中R1 およびR2 は水素原
子,ハロゲン原子,アルキル基、R3 およびR4 は
それぞれ置換もしくは無置換のアルキル基,アリール基
,アルケニル基、R5 およびR6 は水素原子,アル
キル基,アリール基、R7 およびR8 はそれぞれ置
換もしくは無置換のアルキル基,アリール基,アルケニ
ル基,テニル基を表す)とすることにより達せられる。
[Means for Solving the Problems] According to the present invention, the above-mentioned object has a photosensitive layer on a conductive substrate, and the photosensitive layer contains a hydrazone compound represented by the general chemical formula (I) as a charge transport substance ( In the formula, R1 and R2 are hydrogen atoms, halogen atoms, alkyl groups, R3 and R4 are substituted or unsubstituted alkyl groups, aryl groups, alkenyl groups, R5 and R6 are hydrogen atoms, alkyl groups, aryl groups, R7 and R8 represents a substituted or unsubstituted alkyl group, aryl group, alkenyl group, or thenyl group).

【0008】[0008]

【化2】[Case 2]

【0009】本発明に用いられる前記一般化学式(I)
のヒドラゾン化合物は通常の方法により合成することが
できる。すなわち、下記一般化学式13で示されるアル
デヒド類と下記一般化学式14で示されるヒドラジン類
を、酸等の触媒存在下適当な有機溶媒(例えばエタノー
ル等)中で脱水縮合させることにより、容易に合成する
ことができる。
The general chemical formula (I) used in the present invention
The hydrazone compound can be synthesized by a conventional method. That is, it can be easily synthesized by dehydrating and condensing an aldehyde represented by the following general chemical formula 13 and a hydrazine represented by the following general chemical formula 14 in an appropriate organic solvent (e.g. ethanol, etc.) in the presence of a catalyst such as an acid. be able to.

【0010】0010

【化3】[Chemical formula 3]

【0011】こうして得られる前記一般化学式(I)で
示されるヒドラゾン化合物の具体例が化学式1〜12に
例示される。
Specific examples of the hydrazone compound represented by the general chemical formula (I) thus obtained are illustrated in Chemical formulas 1 to 12.

【0012】0012

【化4】[C4]

【0013】[0013]

【化5】[C5]

【0014】本発明の感光体は前述のようなヒドラゾン
化合物を感光層中に含有させたものであるが、これらヒ
ドラゾン化合物の応用の仕方によって、図1、図2、あ
るいは図3に示したごとくに用いることができる。
The photoreceptor of the present invention contains the above-mentioned hydrazone compound in the photosensitive layer, and depending on how these hydrazone compounds are applied, the photoreceptor may have the following properties as shown in FIG. 1, FIG. 2, or FIG. 3. It can be used for.

【0015】図1〜図3は本発明の感光体の概念的断面
図で、1は導電性基体、20,21,22は感光層、3
は電荷発生物質、4は電荷発生層、5は電荷輸送物質、
6は電荷輸送層、7は被覆層である。
1 to 3 are conceptual cross-sectional views of the photoreceptor of the present invention, in which 1 is a conductive substrate, 20, 21, 22 are photosensitive layers, and 3
is a charge generation material, 4 is a charge generation layer, 5 is a charge transport material,
6 is a charge transport layer, and 7 is a coating layer.

【0016】図1は導電性基体1上に電荷発生物質3と
電荷輸送物質5であるヒドラゾン化合物を樹脂バインダ
ー(結着剤)中に分散した感光層20(通常単層型感光
体と称せられる構成)が設けられたものである。
FIG. 1 shows a photosensitive layer 20 (usually referred to as a single-layer photoreceptor) in which a charge generating substance 3 and a hydrazone compound as a charge transporting substance 5 are dispersed in a resin binder on a conductive substrate 1. configuration) is provided.

【0017】図2は、導電性基体1上に電荷発生物質3
を主体とする電荷発生層4と、電荷輸送物質5であるヒ
ドラゾン化合物を含有する電荷輸送層6との積層からな
る感光層21(通常積層型感光体と称せられる構成)が
設けられたものである。
FIG. 2 shows a charge generating substance 3 on a conductive substrate 1.
A photosensitive layer 21 (commonly referred to as a laminated photoreceptor) is provided, which is a laminated structure of a charge generation layer 4 mainly composed of a charge-generating layer 4 and a charge-transport layer 6 containing a hydrazone compound as a charge-transporting substance 5. be.

【0018】図3は、図2の逆の層構成のものである。 この場合には、電荷発生層4を保護するためさらに被覆
層7を設けるのが一般的である。
FIG. 3 shows an inverse layer structure to that shown in FIG. In this case, it is common to further provide a coating layer 7 to protect the charge generation layer 4.

【0019】図2および図3に示す2種類の層構成とす
る理由は、負帯電方式として通常用いられる図2の層構
成で正帯電方式で用いようとしても、これに適合する電
荷輸送物質がまだ見つかっておらず、したがって、正帯
電方式の感光体として現段階では図3に示した層構成と
することが必要なためである。
The reason why the two types of layer configurations shown in FIGS. 2 and 3 are used is that even if the layer configuration shown in FIG. 2, which is normally used in a negative charging system, is used in a positive charging system, it is difficult to find a compatible charge transport material. This is because the layer structure shown in FIG. 3 is required at this stage as a positive charging type photoreceptor.

【0020】図1の感光体は、電荷発生物質を電荷輸送
物質及び樹脂バインダーを溶解した溶液中に分散せしめ
、この分散液を導電性基体上に塗布することによって作
成できる。
The photoreceptor shown in FIG. 1 can be prepared by dispersing a charge generating material in a solution containing a charge transporting material and a resin binder, and applying this dispersion onto a conductive substrate.

【0021】図2の感光体は、導電性基体上に電荷発生
物質を真空蒸着するか、あるいは電荷発生物質の粒子を
溶剤または樹脂バインダー中に分散して得た分散液を塗
布、乾燥し、その上に電荷輸送物質および樹脂バインダ
ーを溶解した溶液を塗布、乾燥することにより作成でき
る。
The photoreceptor shown in FIG. 2 is produced by vacuum-depositing a charge-generating substance on a conductive substrate, or by applying a dispersion obtained by dispersing particles of a charge-generating substance in a solvent or a resin binder, and drying the resulting material. It can be created by applying a solution containing a charge transport substance and a resin binder thereon and drying it.

【0022】図3の感光体は、電荷輸送物質および樹脂
バインダーを溶解した溶液を導電性基体上に塗布、乾燥
し、その上に電荷発生物質を真空蒸着するか、あるいは
電荷発生物質の粒子を溶剤または樹脂バインダー中に分
散して得た分散液を塗布、乾燥し、さらに被覆層を形成
することにより作成できる。
The photoreceptor shown in FIG. 3 is produced by coating a conductive substrate with a solution containing a charge transporting substance and a resin binder and drying it, and then vacuum-depositing a charge generating substance thereon, or by depositing charge generating substance particles thereon. It can be created by applying a dispersion obtained by dispersing it in a solvent or a resin binder, drying it, and further forming a coating layer.

【0023】導電性基体1は感光体の電極としての役目
と同時に他の各層の支持体となっており、円筒状、板状
、フィルム状のいずれでも良く、材質的にはアルミニウ
ム、ステンレス鋼、ニッケルなどの金属、あるいはガラ
ス、樹脂などの上に導電処理をほどこしたものでも良い
The conductive substrate 1 serves as an electrode of the photoreceptor and at the same time serves as a support for other layers, and may be cylindrical, plate-shaped, or film-shaped, and may be made of aluminum, stainless steel, It may also be made of metal such as nickel, glass, resin, etc., which has been subjected to conductive treatment.

【0024】電荷発生層4は、前記したように電荷発生
物質3の粒子を樹脂バインダー中に分散させた材料を塗
布するか、あるいは、真空蒸着などの方法により形成さ
れ、光を受容して電荷を発生する。また、その電荷発生
効率が高いことと同時に発生した電荷の電荷輸送層6お
よび被覆層7への注入性が重要で、電場依存性が少なく
低電場でも注入の良いことが望ましい。電荷発生物質と
しては、無金属フタロシアニン、チタニルフタロシアニ
ンなどのフタロシアニン化合物、各種アゾ、キノン、イ
ンジゴ顔料あるいは、シアニン,スクアリリウム,アズ
レニウム,ピリリウム化合物などの染料や、セレンまた
はセレン化合物などが用いられ、画像形成に使用される
露光光源の光波長領域に応じて好適な物質を選ぶことが
できる。電荷発生層は電荷発生機能を有すればよいので
、その膜厚は電荷発生物質の光吸収係数より決まり一般
的には5μm以下であり、好適には1μm以下である。 電荷発生層は電荷発生物質を主体としてこれに電荷輸送
性物質などを添加して使用することも可能である。 樹脂バインダーとしては、ポリカーボネート、ポリエス
テル、ポリアミド、ポリウレタン、塩化ビニル、フェノ
キシ樹脂、ポリビニルブチラール、エポキシ、ジアリル
フタレート樹脂、シリコン樹脂、メタクリル酸エステル
の重合体および共重合体などを適宜組合わせて使用する
ことが可能である。
The charge generation layer 4 is formed by applying a material in which particles of the charge generation substance 3 are dispersed in a resin binder as described above, or by a method such as vacuum evaporation, and receives light to generate charges. occurs. In addition to the high charge generation efficiency, the ability to inject the generated charges into the charge transport layer 6 and the coating layer 7 is also important, and it is desirable that the charge is less dependent on the electric field and can be easily injected even in a low electric field. As charge-generating substances, phthalocyanine compounds such as metal-free phthalocyanine and titanyl phthalocyanine, various azo, quinone, and indigo pigments, dyes such as cyanine, squarylium, azulenium, and pyrylium compounds, and selenium or selenium compounds are used to form images. A suitable material can be selected depending on the light wavelength range of the exposure light source used. Since the charge generation layer only needs to have a charge generation function, its thickness is determined by the light absorption coefficient of the charge generation substance and is generally 5 μm or less, preferably 1 μm or less. The charge generation layer is mainly composed of a charge generation substance, and a charge transporting substance can also be added thereto. As the resin binder, appropriate combinations of polycarbonate, polyester, polyamide, polyurethane, vinyl chloride, phenoxy resin, polyvinyl butyral, epoxy, diallyl phthalate resin, silicone resin, methacrylic acid ester polymers and copolymers may be used. is possible.

【0025】電荷輸送層6は樹脂バインダー中に有機電
荷輸送性物質として前記一般化学式(I)で示されるヒ
ドラゾン化合物を分散させた塗膜であり、暗所では絶縁
体層として感光体の電荷を保持し、光受容時には電荷発
生層から注入される電荷を輸送する機能を発揮する。樹
脂バインダーとしては、ポリカーボネート、ポリエステ
ル、ポリスチレン、メタクリル酸エステルの重合体およ
び共重合体などを用いることができる。
The charge transport layer 6 is a coating film in which a hydrazone compound represented by the general chemical formula (I) as an organic charge transport substance is dispersed in a resin binder, and acts as an insulating layer in the dark to absorb the charges on the photoreceptor. It functions to hold and transport charges injected from the charge generation layer when receiving light. As the resin binder, polycarbonate, polyester, polystyrene, polymers and copolymers of methacrylic acid ester, etc. can be used.

【0026】被覆層7は暗所ではコロナ放電の電荷を受
容して保持する機能を有しており、かつ電荷発生層が感
応する光を透過する性能を有し、露光時に光を透過し、
電荷発生層に到達させ、発生した電荷の注入を受けて表
面電荷を中和消滅させることが必要である。被覆材料と
しては、ポリエステル、ポリアミドなどの有機絶縁性皮
膜形成材料が適用できる。また、これら有機材料とガラ
ス樹脂、SiO2 などの無機材料さらには金属、金属
酸化物などの電気抵抗を低減せしめる材料とを混合して
用いることもできる。被覆材料としては有機絶縁性皮膜
形成材料に限定されることはなくSiO2 などの無機
材料さらには金属、金属酸化物などを蒸着、スパッタリ
ングなどの方法により形成することも可能である。被覆
材料は前述の通り電荷発生物質の光の吸収極大の波長領
域においてできるだけ透明であることが望ましい。
The coating layer 7 has the function of receiving and retaining charges of corona discharge in a dark place, and has the ability to transmit the light to which the charge generation layer is sensitive, and transmits the light upon exposure.
It is necessary to allow the charge to reach the charge generation layer and receive the generated charge to neutralize and eliminate the surface charge. As the coating material, organic insulating film-forming materials such as polyester and polyamide can be used. Further, these organic materials can be mixed with inorganic materials such as glass resin and SiO2, and materials that reduce electrical resistance such as metals and metal oxides. The coating material is not limited to organic insulating film forming materials, and may also be formed of inorganic materials such as SiO2, metals, metal oxides, etc. by methods such as vapor deposition and sputtering. As mentioned above, it is desirable that the coating material be as transparent as possible in the wavelength region where the charge generating substance absorbs maximum light.

【0027】被覆層自体の膜厚は被覆層の配合組成にも
依存するが、繰り返し連続使用したとき残留電位が増大
するなどの悪影響が出ない範囲で任意に設定できる。
The thickness of the coating layer itself depends on the composition of the coating layer, but it can be set arbitrarily within a range that does not cause any adverse effects such as an increase in residual potential when used repeatedly and continuously.

【0028】[0028]

【作用】前記一般化学式(I)で示されるヒドラゾン化
合物を感光層に用いた例は知られていない。本発明者ら
は、前記目的を達成するために各種有機材料について鋭
意検討するなかで、これらヒドラゾン化合物について数
多くの実験を行った結果、その技術的解明はまだ充分な
されてはいないが前記一般化学式(I)で示されるイオ
ウ原子を含んだ2種類の複素環よりなる特定のヒドラゾ
ン化合物を電荷輸送物質として使用すると、電荷輸送能
が大幅に改良され電子写真特性の向上に極めて有効であ
ることを見出し、高感度で繰り返し特性の優れた感光体
を得るに至ったのである。
[Operation] There is no known example of using a hydrazone compound represented by the general chemical formula (I) in a photosensitive layer. In order to achieve the above object, the present inventors conducted a number of experiments on these hydrazone compounds while intensively studying various organic materials, and found that the general chemical formula shown above is It has been shown that when a specific hydrazone compound represented by (I) consisting of two types of heterocycles containing sulfur atoms is used as a charge transport material, the charge transport ability is greatly improved and it is extremely effective in improving electrophotographic properties. As a result, we have achieved a photoreceptor with high sensitivity and excellent repeatability.

【0029】[0029]

【実施例】(実施例1)x型無金属フタロシアニン(H
2 Pc)50重量部と前記化学式1で示されるヒドラ
ゾン化合物100重量部をポリエステル樹脂(商品名バ
イロン200:東洋紡製)100重量部とテトラヒドロ
フラン(THF)溶剤とともに3時間混合機により混練
して塗布液を調製し、導電性基体であるアルミ蒸着ポリ
エステルフィルム(Al−PET)上に、ワイヤーバー
法にて塗布して、乾燥後の膜厚が15μmになるように
感光体を作成した。
[Example] (Example 1) x-type metal-free phthalocyanine (H
2Pc) and 100 parts by weight of the hydrazone compound represented by the above chemical formula 1 were kneaded together with 100 parts by weight of polyester resin (trade name: Vylon 200, manufactured by Toyobo) and a tetrahydrofuran (THF) solvent in a mixer for 3 hours to prepare a coating solution. was prepared and coated on an aluminum-deposited polyester film (Al-PET), which is a conductive substrate, by a wire bar method, so that the film thickness after drying was 15 μm to prepare a photoreceptor.

【0030】(実施例2)前記化学式2で示されるヒド
ラゾン化合物80重量部とポリカーボネート樹脂(商品
名パンライトL−1225:帝人化成)100重量部を
塩化メチレンに溶解してできた塗液をアルミ蒸着ポリエ
ステルフィルム基体上にワイヤーバーにて塗布し、乾燥
後の膜厚が15μmになるように電荷輸送層を形成した
。このようにして得られた電荷輸送層上に、ボールミル
により150時間粉砕処理したチタニルフタロシアニン
(TiOPc)50重量部、ポリエステル樹脂(商品名
バイロン200:東洋紡製)50重量部、THF溶剤と
ともに3時間混合機により混練して塗布液を調製し、ワ
イヤーバーにて塗布し、乾燥後の膜厚が1μmになるよ
うに電荷発生層を形成した。
(Example 2) A coating liquid prepared by dissolving 80 parts by weight of the hydrazone compound represented by the chemical formula 2 and 100 parts by weight of polycarbonate resin (trade name Panlite L-1225: Teijin Chemicals) in methylene chloride was applied to aluminum. A charge transport layer was formed by coating onto a vapor-deposited polyester film substrate using a wire bar so that the film thickness after drying was 15 μm. On the thus obtained charge transport layer, 50 parts by weight of titanyl phthalocyanine (TiOPc) which had been pulverized for 150 hours in a ball mill, 50 parts by weight of a polyester resin (trade name: Vylon 200, manufactured by Toyobo), and a THF solvent were mixed for 3 hours. A coating solution was prepared by kneading with a machine, and applied with a wire bar to form a charge generation layer so that the film thickness after drying was 1 μm.

【0031】(実施例3)実施例2において、TiOP
cに変えて下記化学式15で示されるスクアリリウム化
合物を用い、電荷輸送物質を前記化学式3で示されるヒ
ドラゾン化合物に変えて実施例2と同様に感光体を作製
した。
(Example 3) In Example 2, TiOP
A photoreceptor was prepared in the same manner as in Example 2 except that a squarylium compound represented by the following chemical formula 15 was used instead of c and a hydrazone compound represented by the chemical formula 3 was used as the charge transport material.

【0032】[0032]

【化6】[C6]

【0033】(実施例4)実施例2において、TiOP
cに変えて例えば特開昭47−37543号公報に示さ
れるようなビスアゾ顔料であるクロロダイアンブルーを
用い、電荷輸送物質を前記化学式4で示されるヒドラゾ
ン化合物に変えて実施例2と同様に感光体を作製した。
(Example 4) In Example 2, TiOP
Photosensitization was carried out in the same manner as in Example 2, using chlorodiane blue, which is a bisazo pigment as shown in JP-A No. 47-37543, instead of C, and changing the charge transport substance to the hydrazone compound shown by the chemical formula 4. The body was created.

【0034】このようにして得られた感光体の電子写真
特性を川口電機製静電記録紙試験装置「SP−428」
を用いて測定した。
The electrophotographic properties of the photoreceptor thus obtained were measured using an electrostatic recording paper tester "SP-428" manufactured by Kawaguchi Electric.
Measured using

【0035】感光体の表面電位Vs (ボルト)は暗所
で+6.0kVのコロナ放電を10秒間行って感光体表
面を正帯電せしめたときの初期の表面電位であり、続い
てコロナ放電を中止した状態で2秒間暗所保持したとき
の表面電位Vd (ボルト)を測定し、さらに続いて感
光体表面に照度2ルックスの白色光を照射してVd が
半分になるまでの時間(秒)を求め半減衰露光量E1/
2 (ルックス・秒)とした。また、照度2ルックスの
白色光を10秒間照射したときの表面電位を残留電位V
r (ボルト)とした。また、実施例1〜3については
、長波長光での高感度が期待できるので、波長780n
mの単色光をもちいたときの電子写真特性も同時に測定
した。すなわち、Vd までは同時に測定し、次に白色
光の替わりに1μWの単色光(780nm)を照射して
半減衰露光量(μJ/cm2 )を求め、また、この光
を10秒間感光体表面に照射したときの残留電位Vr 
(ボルト)を測定した。測定結果を表1に示す。
The surface potential Vs (volts) of the photoreceptor is the initial surface potential when +6.0 kV corona discharge is performed in a dark place for 10 seconds to positively charge the photoreceptor surface, and then the corona discharge is stopped. Measure the surface potential Vd (volts) when the photoreceptor surface is held in the dark for 2 seconds, and then irradiate the surface of the photoreceptor with white light with an illuminance of 2 lux and measure the time (seconds) it takes for Vd to be halved. Determined half-attenuation exposure amount E1/
2 (looks/seconds). In addition, the surface potential when irradiated with white light with an illuminance of 2 lux for 10 seconds is the residual potential V
r (volt). In addition, for Examples 1 to 3, high sensitivity with long wavelength light can be expected, so the wavelength is 780 nm.
At the same time, the electrophotographic characteristics when using m monochromatic light were also measured. That is, measurements are taken at the same time up to Vd, then 1 μW monochromatic light (780 nm) is irradiated instead of white light to determine the half-attenuation exposure (μJ/cm2), and this light is applied to the photoreceptor surface for 10 seconds. Residual potential Vr when irradiated
(volts) was measured. The measurement results are shown in Table 1.

【0036】[0036]

【表1】[Table 1]

【0037】表1に見られるように、実施例1、2、3
、4は半減衰露光量、残留電位ともに遜色はなく、また
表面電位でも良好な特性を示している。また、実施例1
〜3においては波長780nmの長波長光でも高感度を
示し、半導体レーザプリンタ用として充分使用可能であ
ることが判る。
As seen in Table 1, Examples 1, 2, and 3
, 4 are comparable in both half-attenuation exposure and residual potential, and also exhibit good characteristics in terms of surface potential. In addition, Example 1
It can be seen that samples 3 to 3 show high sensitivity even to long wavelength light of 780 nm, and can be sufficiently used for semiconductor laser printers.

【0038】(実施例5)厚さ500μmのアルミニウ
ム板上にセレンを厚さ1.5μmに真空蒸着し電荷発生
層を形成し、次に、化学式5で示されるヒドラゾン化合
物100重量部とポリカーボネート樹脂(PCZ200
:三菱ガス化学)100重量部を塩化メチレンに溶解し
てできた塗液をワイヤーバーにて塗布し、乾燥後の膜厚
が20μmになるように電荷輸送層を形成した。この感
光体を、−6.0kVのコロナ帯電を10秒間行ったと
ころ、VS =−680V,Vr =−15V,E1/
2 =2.0ルックス・秒と良好な結果が得られた。
(Example 5) A charge generation layer was formed by vacuum-depositing selenium to a thickness of 1.5 μm on an aluminum plate having a thickness of 500 μm, and then 100 parts by weight of a hydrazone compound represented by the chemical formula 5 and a polycarbonate resin were deposited on an aluminum plate having a thickness of 500 μm. (PCZ200
A coating liquid prepared by dissolving 100 parts by weight of (Mitsubishi Gas Chemical) in methylene chloride was applied using a wire bar to form a charge transport layer so that the film thickness after drying was 20 μm. When this photoreceptor was corona charged at -6.0 kV for 10 seconds, VS = -680V, Vr = -15V, E1/
A good result of 2 = 2.0 lux/sec was obtained.

【0039】(実施例6)x型無金属フタロシアニン5
0重量部、塩化ビニル共重合体(商品名MR−110:
日本ゼオン)50重量部を塩化メチレンとともに3時間
混合機により混練して塗布液を調整し、アルミニウム支
持体上に約1μmになるように塗布し、電荷発生層を形
成した。次に、化学式6で示されるヒドラゾン化合物1
00重量部とポリカーボネート樹脂(パンライトL−1
250)100重量部、シリコンオイル0.1重量部を
塩化メチレンで混合し、電荷発生層の上に約15μmと
なるように塗布し、電荷輸送層を形成した。
(Example 6) x-type metal-free phthalocyanine 5
0 parts by weight, vinyl chloride copolymer (trade name MR-110:
A coating solution was prepared by kneading 50 parts by weight of Nippon Zeon) with methylene chloride for 3 hours in a mixer, and the coating solution was coated onto an aluminum support to a thickness of about 1 μm to form a charge generation layer. Next, hydrazone compound 1 shown by chemical formula 6
00 parts by weight and polycarbonate resin (Panlite L-1
250) 100 parts by weight of silicone oil and 0.1 parts by weight of silicone oil were mixed with methylene chloride and coated on the charge generation layer to a thickness of about 15 μm to form a charge transport layer.

【0040】このようにして得られた感光体を実施例2
と同様にして、−6.0kVのコロナ帯電を10秒間行
ったところ、Vs =−730V,E1/2 =1.7
ルックス・秒と良好な結果が得られた。
The photoreceptor thus obtained was used in Example 2.
When -6.0kV corona charging was performed for 10 seconds in the same manner as above, Vs = -730V, E1/2 = 1.7
Good results were obtained in terms of looks and seconds.

【0041】(実施例7)実施例6において、無金属フ
タロシアニンに変えて下記の化学式16示されるビスア
ゾ顔料を用い、また電荷輸送物質を化学式7で示される
ヒドラゾン化合物に変えて実施例6と同様に感光体を作
成した。
(Example 7) In Example 6, a bisazo pigment represented by the following chemical formula 16 was used instead of the metal-free phthalocyanine, and a hydrazone compound represented by the chemical formula 7 was used as the charge transport substance, but the same procedure as in Example 6 was carried out. A photoreceptor was created.

【0042】[0042]

【化7】[C7]

【0043】このようにして得られた感光体を実施例4
と同様にして、−6.0kVのコロナ帯電を10秒間行
ったところ、Vs =−770V,E1/2 =1.5
ルックス・秒と良好な結果が得られた。
The photoreceptor thus obtained was used in Example 4.
When -6.0kV corona charging was performed for 10 seconds in the same manner as above, Vs = -770V, E1/2 = 1.5
Good results were obtained in terms of looks and seconds.

【0044】(実施例8)化学式8〜12で表されるそ
れぞれの化合物について実施例4と同様に感光体を作成
し「SP−428」を用いて測定した結果を表2に示す
。暗所で+6.0kVのコロナ放電を10秒間行い正帯
電せしめ、照度2ルックスの白色光を照射した場合の半
減衰露光量E1/2 (ルックス・秒)で示した。
(Example 8) Photoreceptors were prepared in the same manner as in Example 4 for each of the compounds represented by chemical formulas 8 to 12, and the results of measurements using "SP-428" are shown in Table 2. Corona discharge of +6.0 kV was performed for 10 seconds in a dark place to positively charge the sample, and the half-attenuation exposure amount E1/2 (lux seconds) is shown when white light with an illuminance of 2 lux is irradiated.

【0045】[0045]

【表2】[Table 2]

【0046】表2に見られるように、前記化学式8〜1
2で表されるヒドラゾン化合物を電荷輸送物質として用
いた感光体についても、半減衰露光量E1/2 は良好
であった。
As seen in Table 2, the chemical formulas 8 to 1
The half-attenuation exposure amount E1/2 was also good for the photoreceptor using the hydrazone compound represented by 2 as a charge transport material.

【0047】[0047]

【発明の効果】本発明によれば、導電性基体上に電荷輸
送物質として前記一般化学式(I)で示されるヒドラゾ
ン化合物を用いる事としたため、正帯電および負帯電に
おいても高感度でしかも繰り返し特性の優れた感光体を
得る事ができる。また、電荷発生物質は露光光源の種類
に対応して好適な物質を選ぶことができ、一例をあげる
とフタロシアニン化合物、スクアリリウム化合物および
ある種のビスアゾ化合物などを用いれば半導体レーザプ
リンターに使用可能な感光体を得ることができる。さら
に、必要に応じて表面に被覆層を設置して耐久性を向上
することが可能である。
[Effects of the Invention] According to the present invention, since the hydrazone compound represented by the general chemical formula (I) is used as a charge transport substance on a conductive substrate, it has high sensitivity and repeatability even in positive and negative charging. It is possible to obtain an excellent photoreceptor. In addition, a suitable charge-generating substance can be selected depending on the type of exposure light source. For example, phthalocyanine compounds, squarylium compounds, and certain bisazo compounds can be used as light-sensitive materials that can be used in semiconductor laser printers. You can get a body. Furthermore, if necessary, it is possible to provide a coating layer on the surface to improve durability.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の実施例に係る単層型感光体を示す断
面図
FIG. 1 is a cross-sectional view showing a single-layer photoconductor according to an embodiment of the present invention.

【図2】この発明の実施例に係る負帯電の積層型感光体
を示す断面図
FIG. 2 is a cross-sectional view showing a negatively charged laminated photoreceptor according to an embodiment of the present invention.

【図3】この発明の実施例に係る正帯電の積層型感光体
を示す断面図
FIG. 3 is a cross-sectional view showing a positively charged laminated photoreceptor according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1      導電性基体 3      電荷発生物質 4      電荷発生層 5      電荷輸送物質 6      電荷輸送層 7      被覆層 20    感光層 21    感光層 22    感光層 1 Conductive substrate 3 Charge generating substance 4 Charge generation layer 5 Charge transport material 6 Charge transport layer 7 Coating layer 20 Photosensitive layer 21 Photosensitive layer 22 Photosensitive layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】導電性基体上に感光層を有し、感光層は一
般化学式(I)で示されるヒドラゾン化合物を電荷輸送
物質として含むものであることを特徴とする電子写真用
感光体(式中R1 およびR2 は水素原子,ハロゲン
原子,アルキル基、R3 およびR4 はそれぞれ置換
もしくは無置換のアルキル基,アリール基,アルケニル
基、R5 およびR6 は水素原子,アルキル基,アリ
ール基、R7 およびR8 はそれぞれ置換もしくは無
置換のアルキル基,アリール基,アルケニル基,テニル
基を表す)。 【化1】
1. An electrophotographic photoreceptor (in the formula R1 and R2 are hydrogen atoms, halogen atoms, and alkyl groups; R3 and R4 are each substituted or unsubstituted alkyl groups, aryl groups, and alkenyl groups; R5 and R6 are hydrogen atoms, alkyl groups, and aryl groups; R7 and R8 are each substituted or represents an unsubstituted alkyl group, aryl group, alkenyl group, or thenyl group). [Chemical formula 1]
【請求項2】請求項1記載の感光体において、感光層は
電荷輸送物質を含む電荷輸送層と電荷発生物質を含む電
荷発生層の積層されたものであることを特徴とする電子
写真用感光体。
2. The photoreceptor according to claim 1, wherein the photosensitive layer is a laminate of a charge transport layer containing a charge transport substance and a charge generation layer containing a charge generation substance. body.
【請求項3】請求項1記載の感光体において、一般化学
式Iで表されるヒドラゾン化合物は、R1 ,R2 が
それぞれ水素原子、R5 ,R6 がそれぞれメチル基
、R3 ,R4 ,R8 がそれぞれフェニル基、R7
 がテニル基であることを特徴とする電子写真用感光体
3. In the photoreceptor according to claim 1, in the hydrazone compound represented by general chemical formula I, R1 and R2 are each a hydrogen atom, R5 and R6 are each a methyl group, and R3, R4 and R8 are each a phenyl group. , R7
An electrophotographic photoreceptor, characterized in that is a tenyl group.
【請求項4】請求項1記載の感光体において、一般化学
式Iで表されるヒドラゾン化合物は、R1 ,R2 ,
R5 ,R6 がそれぞれ水素原子、R3,R4 ,R
8 がそれぞれフェニル基、R7 がメチル基であるこ
とを特徴とする電子写真用感光体。
4. In the photoreceptor according to claim 1, the hydrazone compound represented by general chemical formula I comprises R1, R2,
R5 and R6 are hydrogen atoms, R3, R4 and R
8 is a phenyl group, and R7 is a methyl group.
JP941391A 1991-01-30 1991-01-30 Electrophotographic photoreceptor Expired - Lifetime JP2817807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP941391A JP2817807B2 (en) 1991-01-30 1991-01-30 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP941391A JP2817807B2 (en) 1991-01-30 1991-01-30 Electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JPH04253063A true JPH04253063A (en) 1992-09-08
JP2817807B2 JP2817807B2 (en) 1998-10-30

Family

ID=11719708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP941391A Expired - Lifetime JP2817807B2 (en) 1991-01-30 1991-01-30 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP2817807B2 (en)

Also Published As

Publication number Publication date
JP2817807B2 (en) 1998-10-30

Similar Documents

Publication Publication Date Title
JPH0279855A (en) Electrophotographic sensitive body
US5134049A (en) Photoconductor for electrophotography
JPH0524507B2 (en)
JPH05204175A (en) Electrophotographic sensitive body
US5213925A (en) Photoconductor for electrophotography
JP3006329B2 (en) Electrophotographic photoreceptor
JPH05134435A (en) Electrophotographic sensitive body
JPH04304465A (en) Electrophotographic sensitive body
US5252416A (en) Photoconductor for electrophotography
JP3114394B2 (en) Electrophotographic photoreceptor
JP2817807B2 (en) Electrophotographic photoreceptor
JP3240765B2 (en) Electrophotographic photoreceptor
JPH0513499B2 (en)
JPH03255453A (en) Electrophotographic sensitive body
JP3173298B2 (en) Electrophotographic photoreceptor
JPH04263265A (en) Electrophotograhic sensitive body
JP3346411B2 (en) Electrophotographic photoreceptor
JPH09134021A (en) Electrophotographic photoreceptor
JPH03109554A (en) Electrophotographic sensitive body
JPH05158260A (en) Electrophotographic sensitive body
JPH03109555A (en) Electrophotographic sensitive body
JPH0394263A (en) Electrophotographic sensitive body
JPH04136949A (en) Electrophotographic sensitive body
JPH0683084A (en) Electrophotographic sensitive body
JPH0784385A (en) Electrophotographic photoreceptor