JPH0784385A - Electrophotographic photoreceptor - Google Patents

Electrophotographic photoreceptor

Info

Publication number
JPH0784385A
JPH0784385A JP22933693A JP22933693A JPH0784385A JP H0784385 A JPH0784385 A JP H0784385A JP 22933693 A JP22933693 A JP 22933693A JP 22933693 A JP22933693 A JP 22933693A JP H0784385 A JPH0784385 A JP H0784385A
Authority
JP
Japan
Prior art keywords
layer
charge
formula
photoconductor
aryl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22933693A
Other languages
Japanese (ja)
Inventor
Masayo Amano
雅世 天野
Masami Kuroda
昌美 黒田
Noboru Kosho
昇 古庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP22933693A priority Critical patent/JPH0784385A/en
Publication of JPH0784385A publication Critical patent/JPH0784385A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a photoreceptor excellent in sensitivity and a repetition characteristic. CONSTITUTION:In a photosensitive layer, at least one kind of a benzothiophene derivative expressed by a formula I or II is used as charge transport material. In the formula I, R1 represents a hydrogen atom or an alkyl group, R2 represents a hydrogen atom, an alkyl group or an aryl group, and Ar1 represents an aryl group. In the formula II, R3, R4 represent an hydrogen atom, an alkyl group or an aryl group, and Ar2, Ar3 represent an aryl group.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子写真用感光体の感光
層に係り、特に感光層に用いられる電荷輸送物質に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photosensitive layer of an electrophotographic photoreceptor, and more particularly to a charge transport material used in the photosensitive layer.

【0002】[0002]

【従来の技術】従来より電子写真用感光体(以下感光体
とも称する)の感光材料としてはセレンまたはセレン合
金などの無機光導電性物質、フタロシアニン化合物ある
いはビスアゾ化合物などの有機光導電性物質を樹脂結着
剤等に分散させたものや真空蒸着させたものなどが利用
されている。
2. Description of the Related Art Conventionally, as a photosensitive material for an electrophotographic photoreceptor (hereinafter also referred to as a photoreceptor), an inorganic photoconductive substance such as selenium or a selenium alloy, or an organic photoconductive substance such as a phthalocyanine compound or a bisazo compound is used as a resin. Those dispersed in a binder or the like and those vacuum-deposited are used.

【0003】感光体には暗所で表面電荷を保持する機
能、光を受容して電荷を発生する機能、同じく光を受容
して電荷を輸送する機能とが必要であるが、一つの層で
これらの機能をあわせもったいわゆる単層型感光体と、
主として電荷発生に寄与する層と暗所での表面電荷の保
持と光受容時の電荷輸送に寄与する層とに機能分離した
層を積層したいわゆる積層型感光体がある。これらの感
光体を用いた電子写真法による画像形成には、例えばカ
ールソン方式が適用される。この方式での画像形成は暗
所での感光体へのコロナ放電による帯電、帯電された感
光体表面上への原稿の文字や絵などの静電潜像の形成、
形成された静電潜像のトナーによる現像、現像されたト
ナー像の紙などの支持体への定着により行われ、トナー
像転写後の感光体は除電、残留トナーの除去、光除電な
どを行った後、再使用に供される。
The photoconductor is required to have a function of holding a surface charge in a dark place, a function of receiving light to generate a charge, and a function of receiving light to transport a charge, but with one layer. A so-called single-layer type photoreceptor having these functions together,
There is a so-called laminated type photoreceptor in which functionally separated layers are laminated mainly on a layer that contributes to charge generation and a layer that contributes to holding surface charges in a dark place and transporting charges when receiving light. For example, the Carlson method is applied to the image formation by the electrophotographic method using these photoconductors. Image formation by this method is performed by corona discharge to a photoconductor in a dark place, formation of an electrostatic latent image such as characters and pictures of an original on the charged photoconductor surface,
The formed electrostatic latent image is developed with toner, and the developed toner image is fixed on a support such as paper, and the photoconductor after the toner image transfer is neutralized, residual toner is removed, and optical neutralization is performed. And then reused.

【0004】近年、可とう性、熱安定性、膜形成性など
の利点により、電荷輸送能の優れた光導電性有機化合物
の感光体への応用が数多く提案されている。例えばオキ
サジアゾール化合物としては、米国特許第318944
7号明細書、ピラゾリン化合物としては特公昭59−2
023号公報、またヒドラゾン化合物としては特公昭5
5−42380号公報、特開昭57−101844号公
報、特開昭54−150128号公報などにより種々の
電荷輸送物質が知られている。
In recent years, many applications of photoconductive organic compounds having excellent charge transporting ability to photoconductors have been proposed due to advantages such as flexibility, thermal stability, and film forming property. For example, as an oxadiazole compound, US Pat.
No. 7, as a pyrazoline compound, Japanese Patent Publication No. 59-2
No. 023, and as a hydrazone compound, Japanese Patent Publication No.
Various charge transport materials are known from JP-A 5-42380, JP-A-57-101844 and JP-A-54-150128.

【0005】[0005]

【発明が解決しようとする課題】上述のように有機材料
は無機材料にない多くの長所を持つが、また同時に電子
写真用感光体に要求されるすべての特性を充分に満足す
るものが得られていないのが現状であり、特に感度およ
び繰り返し連続使用時の特性に問題があった。本発明
は、上述の点に鑑みてなされたものであってその目的は
感光層に電荷輸送物質として今まで用いられたことのな
い新しい有機材料を用いることにより、高感度で繰り返
し特性の優れた複写機用およびプリンター用電子写真用
感光体を提供することにある。
As described above, the organic material has many advantages that the inorganic material does not have, but at the same time, an organic material sufficiently satisfying all the characteristics required for the electrophotographic photoreceptor can be obtained. However, there is a problem with the sensitivity and the characteristics during repeated continuous use. The present invention has been made in view of the above points, and its object is to use a new organic material which has never been used as a charge transporting material in a photosensitive layer, and thus has high sensitivity and excellent repeating characteristics. An object is to provide an electrophotographic photoreceptor for a copying machine and a printer.

【0006】[0006]

【課題を解決するための手段】上述の目的はこの発明に
よれば感光層を有し、感光層は下記一般式(I)または
(II)で示されるベンゾチオフェン誘導体のうちの少な
くとも一つを電荷輸送物質として含むとすることにより
達成される。
According to the present invention, the above-mentioned object has a photosensitive layer, and the photosensitive layer contains at least one of benzothiophene derivatives represented by the following general formula (I) or (II). It is achieved by including as a charge transport material.

【0007】[0007]

【化3】 [Chemical 3]

【0008】〔式(I)中R1 は水素原子またはアルキ
ル基、R2 は水素原子,アルキル基またはアリール基、
Ar1 はアリール基を表す。〕
[In the formula (I), R 1 is a hydrogen atom or an alkyl group, R 2 is a hydrogen atom, an alkyl group or an aryl group,
Ar 1 represents an aryl group. ]

【0009】[0009]

【化4】 [Chemical 4]

【0010】〔式(II)中R3 ,R4 は水素原子,アル
キル基またはアリール基、Ar2 ,Ar3 はアリール基
を表す。〕一般式(I)で示されるベンゾチオフェン誘
導体の具体例が化学式(I−1)ないし化学式(I−1
0)に示される。また一般式(II)で示されるベンゾチ
オフェン誘導体の具体例が化学式(II−1)ないし化学
式(II−10)に示される。
[In the formula (II), R 3 and R 4 represent a hydrogen atom, an alkyl group or an aryl group, and Ar 2 and Ar 3 represent an aryl group. Specific examples of the benzothiophene derivative represented by the general formula (I) include chemical formulas (I-1) to (I-1).
0). Specific examples of the benzothiophene derivative represented by the general formula (II) are represented by the chemical formulas (II-1) to (II-10).

【0011】[0011]

【化5】 [Chemical 5]

【0012】[0012]

【化6】 [Chemical 6]

【0013】[0013]

【化7】 [Chemical 7]

【0014】[0014]

【化8】 [Chemical 8]

【0015】[0015]

【作用】前記一般式(I)または(II)で示されるベン
ゾチオフェン誘導体を感光層に用いた例は知られていな
い。本発明者らは、前記目的を達成するために各種有機
材料について鋭意検討するなかで、これらベンゾチオフ
ェン誘導体について数多くの実験を行った結果、その技
術的解明はまだ充分なされてはいないが、前記一般式
(I)または(II)で示される特定の構造を有するベン
ゾチオフェン誘導体を電荷輸送物質として使用すること
が、電子写真特性の向上に極めて有効であることを見出
し、高感度で繰り返し特性の優れた感光体を得るに至っ
たのである。
There is no known example in which the benzothiophene derivative represented by the general formula (I) or (II) is used in the photosensitive layer. The present inventors have conducted various experiments on these benzothiophene derivatives while earnestly examining various organic materials in order to achieve the above-mentioned object, and as a result, the technical elucidation thereof has not been sufficiently conducted. It has been found that the use of a benzothiophene derivative having a specific structure represented by the general formula (I) or (II) as a charge transport material is extremely effective in improving electrophotographic properties, and has high sensitivity and repetitive properties. It came to obtain an excellent photoconductor.

【0016】[0016]

【実施例】本発明に用いられる化合物の合成例が以下に
示される。例えば化学式(I−1)に示されるベンゾチ
オフェン誘導体は反応式Aに示すWittig反応により、ま
た化学式(II−1)に示されるベンゾチオフェン誘導体
は反応式Bにに示すWittig反応により、合成することが
できる。
EXAMPLES Synthetic examples of the compounds used in the present invention are shown below. For example, the benzothiophene derivative represented by the chemical formula (I-1) is synthesized by the Wittig reaction represented by the reaction formula A, and the benzothiophene derivative represented by the chemical formula (II-1) is synthesized by the Wittig reaction represented by the reaction formula B. You can

【0017】[0017]

【化9】 [Chemical 9]

【0018】[0018]

【化10】 [Chemical 10]

【0019】本発明の感光体は前述のようなベンゾチオ
フェン誘導体を感光層中に含有させたものであるが、こ
れらベンゾチオフェン誘導体の応用の仕方によって、図
1、図2、あるいは図3に示したごとくに用いることが
できる。図1はこの発明の実施例に係る単層型感光体を
示す断面図である。図2はこの発明の実施例に係る負帯
電の積層型感光体を示す断面図である。
The photoconductor of the present invention contains the above-mentioned benzothiophene derivative in the photoconductive layer. Depending on how the benzothiophene derivative is applied, it is shown in FIG. 1, FIG. 2 or FIG. It can be used as an egg. FIG. 1 is a sectional view showing a single-layer type photoconductor according to an embodiment of the present invention. FIG. 2 is a sectional view showing a negatively-charged laminated type photoreceptor according to the embodiment of the present invention.

【0020】図3はこの発明の実施例に係る正帯電の積
層型感光体を示す断面図である。1は導電性基体、2
0,21,22は感光層、3は電荷発生物質、4は電荷
発生層、5は電荷輸送物質、6は電荷輸送層、7は被覆
層である。図1は、導電性基体1上に電荷発生物質3と
電荷輸送物質5であるベンゾチオフェン誘導体を樹脂バ
インダー(結着剤)中に分散した感光層20(通常単層
型感光体と称せられる構成)が設けられたものである。
FIG. 3 is a sectional view showing a positively charged layered type photoreceptor according to an embodiment of the present invention. 1 is a conductive substrate, 2
Reference numerals 0, 21, 22 are photosensitive layers, 3 is a charge generating substance, 4 is a charge generating layer, 5 is a charge transporting substance, 6 is a charge transporting layer, and 7 is a coating layer. FIG. 1 shows a photosensitive layer 20 in which a charge generating substance 3 and a benzothiophene derivative which is a charge transporting substance 5 are dispersed in a resin binder (binder) on a conductive substrate 1 (a structure usually called a single layer type photoreceptor). ) Is provided.

【0021】図2は、導電性基体1上に電荷発生物質3
を主体とする電荷発生層4と、電荷輸送物質5であるベ
ンゾチオフェン誘導体を含有する電荷輸送層6との積層
からなる感光層21(通常積層型感光体と称せられる構
成)が設けられたものである。図3は、図2の逆の層構
成のものである。この場合には、電荷発生層4を保護す
るためさらに被覆層7を設けるのが一般的である。
In FIG. 2, the charge generating substance 3 is formed on the conductive substrate 1.
And a charge generation layer 4 mainly composed of a charge transport layer 5 and a charge transport layer 6 containing a benzothiophene derivative which is a charge transport substance 5, and a photosensitive layer 21 (usually referred to as a laminated photoreceptor). Is. FIG. 3 shows a layer structure opposite to that of FIG. In this case, it is general to further provide a coating layer 7 to protect the charge generation layer 4.

【0022】図2および図3に示す2種類の層構成とす
る理由は、負帯電方式として通常用いられる図2の層構
成で正帯電方式で用いようとしても、これに適合する電
荷輸送物質がまだ見つかっておらず、従って正帯電方式
の感光体として現段階では図3に示した層構成とするこ
とが必要なためである。図1の感光体は、電荷発生物質
を電荷輸送物質及び樹脂バインダーを溶解した溶液中に
分散せしめ、この分散液を導電性基体上に塗布すること
によって作成できる。
The reason why the two types of layer structures shown in FIGS. 2 and 3 are used is that even if the layer structure shown in FIG. 2 which is usually used as a negative charging system is used in the positive charging system, a charge transport material suitable for this is used. This is because the layer structure shown in FIG. 3 is required at the present stage as a positive charging type photosensitive member. The photoreceptor of FIG. 1 can be prepared by dispersing a charge generating substance in a solution in which a charge transporting substance and a resin binder are dissolved, and applying this dispersion liquid onto a conductive substrate.

【0023】図2の感光体は、導電性基体上に電荷発生
物質を真空蒸着するか、あるいは電荷発生物質の粒子を
溶剤または樹脂バインダー中に分散して得た分散液を塗
布、乾燥し、その上に電荷輸送物質および樹脂バインダ
ーを溶解した溶液を塗布、乾燥することにより作成でき
る。図3の感光体は、電荷輸送物質および樹脂バインダ
ーを溶解した溶液を導電性基体上に塗布、乾燥し、その
上に電荷発生物質を真空蒸着するか、あるいは電荷発生
物質の粒子および樹脂を溶剤中に分散して得た分散液を
塗布、乾燥し、さらに被覆層を形成することにより作成
できる。
The photosensitive member of FIG. 2 is obtained by vacuum-depositing a charge-generating substance on a conductive substrate, or by applying a dispersion obtained by dispersing particles of the charge-generating substance in a solvent or a resin binder, and drying. It can be prepared by applying a solution in which a charge transport substance and a resin binder are dissolved thereon and drying it. In the photoreceptor of FIG. 3, a solution in which a charge transporting substance and a resin binder are dissolved is applied onto a conductive substrate and dried, and then the charge generating substance is vacuum-deposited thereon, or particles of the charge generating substance and the resin are dissolved in a solvent. It can be prepared by coating a dispersion liquid obtained by dispersing the dispersion liquid inside, drying it, and further forming a coating layer.

【0024】導電性基体1は感光体の電極としての役目
と同時に他の各層の支持体となっており、円筒状、板
状、フィルム状のいずれでも良く、材質的にはアルミニ
ウム、ステンレス鋼、ニッケルなどの金属、あるいはガ
ラス、樹脂などの上に導電処理をほどこしたものを用い
ることができる。電荷発生層4は、前記したように電荷
発生物質3の粒子を樹脂バインダー中に分散させた材料
を塗布するか、あるいは、真空蒸着などの方法により形
成され、光を受容して電荷を発生する。また、その電荷
発生効率が高いことと同時に発生した電荷の電荷輸送層
6および被覆層7への注入性が重要で、電場依存性が少
なく低電場でも注入の良いことが望ましい。電荷発生物
質としては、無金属フタロシアニン,チタニルフタロシ
アニンなどのフタロシアニン化合物、各種アゾ,キノ
ン,インジゴ顔料あるいはシアニン,スクアリリウム,
アズレニウム,ピリリウム化合物などの染料や、セレン
またはセレン化合物などが用いられ、画像形成に使用さ
れる露光光源の光波長領域に応じて好適な物質を選ぶこ
とができる。電荷発生層は電荷発生機能を有すればよい
ので、その膜厚は電荷発生物質の光吸収係数より決まり
一般的には5μm以下であり、好適には1μm以下であ
る。電荷発生層は電荷発生物質を主体としてこれに電荷
輸送性物質などを添加して使用することも可能である。
樹脂バインダーとしては、ポリカーボネート,ポリエス
テル,ポリアミド,ポリウレタン,塩化ビニル,フェノ
キシ樹脂,ポリビニルブチラール,ジアリルフタレ−ト
樹脂,メタクリル酸エステルの重合体および共重合体な
どを適宜組合せて使用することが可能である。
The conductive substrate 1 serves not only as an electrode of the photoconductor but also as a support for each of the other layers, and may be cylindrical, plate-shaped or film-shaped, and made of aluminum, stainless steel, A metal such as nickel, glass, resin, or the like that has been subjected to a conductive treatment can be used. The charge generation layer 4 is formed by coating a material in which particles of the charge generation substance 3 are dispersed in a resin binder as described above, or by a method such as vacuum deposition, and receives light to generate charges. . In addition, it is important that the charge generation efficiency is high, and at the same time, the generated charge is injectable into the charge transport layer 6 and the coating layer 7, and the electric field dependence is small and it is desirable that the injection is good even in a low electric field. As the charge generating substance, phthalocyanine compounds such as metal-free phthalocyanine and titanyl phthalocyanine, various azo, quinone, indigo pigment or cyanine, squarylium,
A dye such as an azurenium or pyrylium compound or selenium or a selenium compound is used, and a suitable substance can be selected according to the light wavelength region of the exposure light source used for image formation. Since the charge generating layer has only to have a charge generating function, its thickness is determined by the light absorption coefficient of the charge generating substance and is generally 5 μm or less, preferably 1 μm or less. The charge generation layer may be mainly composed of a charge generation substance and a charge transporting substance or the like may be added thereto.
As the resin binder, polycarbonate, polyester, polyamide, polyurethane, vinyl chloride, phenoxy resin, polyvinyl butyral, diallyl phthalate resin, methacrylic acid ester polymers and copolymers, and the like can be appropriately combined and used.

【0025】電荷輸送層6は樹脂バインダー中に有機電
荷輸送物質として前記一般式(I)または(II)で示さ
れるベンゾチオフェン誘導体のうち少なくとも一つを分
散させた塗膜であり、暗所では絶縁体層として感光体の
電荷を保持し、光受容時には電荷発生層から注入される
電荷を輸送する機能を発揮する。樹脂バインダーとして
は、ポリカーボネート,ポリエステル,ポリスチレン,
メタクリル酸エステルの重合体および共重合体などを用
いることができる。
The charge transport layer 6 is a coating film in which at least one of the benzothiophene derivatives represented by the general formula (I) or (II) is dispersed as an organic charge transport material in a resin binder, and in a dark place. As an insulating layer, it holds the charge of the photoconductor and exhibits the function of transporting the charge injected from the charge generation layer when receiving light. Resin binders include polycarbonate, polyester, polystyrene,
Polymers and copolymers of methacrylic acid ester can be used.

【0026】被覆層7は暗所ではコロナ放電の電荷を受
容して保持する機能を有しており、かつ電荷発生層が感
応する光を透過する性能を有し、露光時に光を透過し、
電荷発生層に到達させ、発生した電荷の注入を受けて表
面電荷を中和消滅させることが必要である。被覆材料と
しては、ポリエステル、ポリアミドなどの有機絶縁性皮
膜形成材料が適用できる。また、これら有機材料とガラ
ス樹脂、SiO2 などの無機材料さらには金属、金属酸
化物などの電気抵抗を低減せしめる材料とを混合して用
いることができる。被覆材料は前述の通り電荷発生物質
の光の吸収極大の波長領域においてできるだけ透明であ
ることが望ましい。
The coating layer 7 has a function of receiving and holding a charge of corona discharge in a dark place, and also has a property of transmitting a light to which the charge generation layer is sensitive, and transmits a light at the time of exposure,
It is necessary to reach the charge generation layer and receive the injection of the generated charges to neutralize and eliminate the surface charges. As the coating material, an organic insulating film forming material such as polyester or polyamide can be applied. Further, these organic materials may be mixed and used with a glass resin, an inorganic material such as SiO 2, or a material such as a metal or a metal oxide that reduces electric resistance. As described above, it is desirable that the coating material be as transparent as possible in the wavelength region of the maximum light absorption of the charge generating substance.

【0027】被覆層自体の膜厚は被覆層の配合組成にも
依存するが、繰り返し連続使用したとき残留電位が増大
するなどの悪影響が出ない範囲で任意に設定できる。 実施例1 x型無金属フタロシアニン(H2 Pc)50重量部と前
記化学式I−1で示されるベンゾチオフェン誘導体10
0重量部をポリエステル樹脂(商品名バイロン200:
東洋紡製)100重量部とテトラヒドロフラン(TH
F)溶剤とともに3h混合機により混練して塗布液を調
製し、導電性基体であるアルミ蒸着ポリエステルフィル
ム(Al−PET)上に、ワイヤ−バ−法にて塗布し
て、乾燥後の膜厚が20μmになるように感光体を作成
した。 実施例2 前記化学式I−2で示されるベンゾチオフェン誘導体8
0重量部とポリカ−ボネ−ト樹脂(商品名パンライトL
−1225:帝人化成製)100重量部を塩化メチレン
に溶解してできた塗液をアルミ蒸着ポリエステルフィル
ム基体上にワイヤーバーにて塗布し、乾燥後の膜厚が2
0μmになるように電荷輸送層を形成した。このように
して得られた電荷輸送層上に、ボールミルにより150
h粉砕処理したチタニルフタロシアニン(TiOPc)
50重量部、ポリエステル樹脂(商品名バイロン20
0:東洋紡製)50重量部をTHF溶剤とともに3h混
合機により混練して塗布液を調製し、ワイヤーバーにて
塗布し、乾燥後の膜厚が1μmになるように電荷発生層
を形成した。
The film thickness of the coating layer itself depends on the compounding composition of the coating layer, but can be arbitrarily set within a range such that the residual potential does not increase when repeatedly used continuously. Example 1 50 parts by weight of x-type metal-free phthalocyanine (H 2 Pc) and the benzothiophene derivative 10 represented by the above chemical formula I-1.
0 parts by weight of polyester resin (trade name: Byron 200:
100 parts by weight of Toyobo and tetrahydrofuran (TH
F) Kneading with a solvent for 3 hours with a mixer to prepare a coating solution, which is applied onto an aluminum vapor-deposited polyester film (Al-PET) which is a conductive substrate by a wire-bar method, and a film thickness after drying. Was prepared to have a thickness of 20 μm. Example 2 Benzothiophene derivative 8 represented by the chemical formula I-2
0 parts by weight and polycarbonate resin (trade name: Panlite L
-1225: Teijin Chemicals Co., Ltd.) A coating solution prepared by dissolving 100 parts by weight of methylene chloride in a methylene chloride is applied onto a substrate of aluminum vapor-deposited polyester film with a wire bar, and the film thickness after drying is 2
The charge transport layer was formed to have a thickness of 0 μm. On the charge transport layer thus obtained, 150 by a ball mill.
h Grinded titanyl phthalocyanine (TiOPc)
50 parts by weight, polyester resin (trade name Byron 20
(0: manufactured by Toyobo Co., Ltd.) 50 parts by weight was kneaded with a THF solvent by a mixer for 3 h to prepare a coating solution, which was coated with a wire bar and formed into a charge generation layer so that the film thickness after drying was 1 μm.

【0028】さらに金属アルコキシド(商品名アトロン
NSi−310:日本曹達)200重量部、変成ポリア
ミド(商品名CM−8000:東レ)10重量部、ポリ
ウレタン樹脂(商品名ニッポラン:日本ポリウレタン工
業)10重量部をエタノール90重量部とともに1h乾
燥後ポリイソシアネート樹脂(商品名タケネートD16
5N90CX:武田薬品工業)2重量部を添加して混合
により30分混練して被覆層塗布液を調製し電荷発生層
上にディップ法にて乾燥膜厚が1μmとなるようにして
被覆層を形成した。 実施例3 実施例2において、TiOPcに替えて下記構造式(II
I)で示されるスクアリリウム化合物を用い、電荷輸送物
質を前記化学式I−3で示されるベンゾチオフェン誘導
体に替えて実施例2と同様に感光体を作製した。
Further, 200 parts by weight of metal alkoxide (trade name Atron NSi-310: Nippon Soda), 10 parts by weight of modified polyamide (trade name CM-8000: Toray), and 10 parts by weight of polyurethane resin (trade name Nipporan: Nippon Polyurethane Industry). Was dried with 90 parts by weight of ethanol for 1 h and then polyisocyanate resin (trade name Takenate D16
5N90CX: Takeda Pharmaceutical Co., Ltd.) 2 parts by weight are added and kneaded for 30 minutes by mixing to prepare a coating solution for the coating layer, and the coating layer is formed on the charge generation layer by a dip method so that the dry film thickness is 1 μm. did. Example 3 In Example 2, the following structural formula (II
A photoreceptor was prepared in the same manner as in Example 2 except that the squarylium compound represented by I) was used and the charge transport material was replaced by the benzothiophene derivative represented by the chemical formula I-3.

【0029】[0029]

【化11】 [Chemical 11]

【0030】実施例4 実施例2において、TiOPcに替えて例えばビスアゾ
顔料であるクロロダイアンブル−を用い、電荷輸送物質
を前記化学式II−1で示されるベンゾチオフェン誘導体
に替えて実施例2と同様に感光体を作製した。このよう
にして得られた感光体の電子写真特性を川口電機製静電
記録紙試験装置「SP−428」を用いて測定した。
Example 4 In Example 2, the same as Example 2 except that TiOPc was replaced with, for example, a bisazo pigment, chlorodiamble, and the charge transporting material was replaced with the benzothiophene derivative represented by the chemical formula II-1. A photoconductor was prepared. The electrophotographic characteristics of the photoconductor thus obtained were measured by using an electrostatic recording paper test device “SP-428” manufactured by Kawaguchi Electric.

【0031】感光体の表面電位VS (V)は暗所で+
6.0kVのコロナ放電により感光体表面を正帯電せし
めたときの初期の表面電位であり、続いて感光体表面に
照度2lxの白色光を照射して表面電位が半分になるま
での時間(s)を求め半減衰露光量E1/2 (lx・s)と
した。また、照度2 lxの白色光を10s間照射した
ときの表面電位を残留電位Vr (V)とした。また実施
例1〜3については、長波長光での高感度が期待できる
ので、波長780nmの単色光を用いたときの電子写真
特性も同時に測定した。すなわち、Vd までは同様に測
定し、次に白色光の替わりに1μWの単色光(780n
m)を照射して半減衰露光量(μJ/cm 2 )を求め、
またこの光を10s間感光体表面に照射したときの残留
電位Vr (V)を測定した。測定結果を表1に示す。
Surface potential V of photoconductorS(V) is in the dark +
The surface of the photoconductor is positively charged by a corona discharge of 6.0 kV.
It is the initial surface potential when
Irradiate white light with an illuminance of 2 lx until the surface potential becomes half.
Time (s) at1/2(Lx ・ s)
did. Also, white light with an illuminance of 2 lx was irradiated for 10 s.
The surface potential at this time is the residual potential Vr(V). Also implemented
For Examples 1 to 3, high sensitivity in long-wavelength light can be expected.
Therefore, electrophotography using monochromatic light with a wavelength of 780 nm
The characteristics were also measured at the same time. That is, the same measurement is performed up to Vd.
Then, instead of white light, 1 μW monochromatic light (780 n
m) to irradiate half-attenuated exposure (μJ / cm 2),
In addition, when the surface of the photoconductor is irradiated with this light for 10 s, the residual
Potential Vr(V) was measured. The measurement results are shown in Table 1.

【0032】[0032]

【表1】 表1に見られるように、実施例1、2、3、4は半減衰
露光量、残留電位ともに遜色はなく、また表面電位も良
好な特性を示している。また、実施例1〜3においては
波長780nmの長波長光でも高感度を示し、半導体レ
−ザプリンタ用として充分使用可能であることがわか
る。 実施例5 厚さ500μmのアルミニウム板の上にセレンを1.5
μm厚さに真空蒸着し電荷発生層を形成し、化学式(I
−1)で示されるベンゾチオフェン誘導体100重量部
とポリカーボネート樹脂(PCZ200:三菱ガス化
学)100重量部を塩化メチレンに溶解してできた塗布
液をワイヤバー法にて塗布し、乾燥後の膜厚が20μm
になるように電荷輸送層を形成した。この感光体に対し
て−6.0kVのコロナ放電10s間行ったところ白色
光のもとでVs=−750V.Vr=−20V,E1/2
は1.2 lx ・s と良好な結果が得られた。 実施例6 x型無金属フタロシアニン50重量部、塩化ビニル共重
合体(商品名MR−110:日本ゼオン製)50重量部
を塩化メチレンとともに3h混合機により混練して塗布
液を調製し、アルミニウム支持体上に約1μmになるよ
うに塗布し、電荷発生層を形成した。次に、化学式II−
2で示されるベンゾチオフェン誘導体100重量部、ポ
リカーボネート樹脂(パンライトL−1250)100
重量部、シリコンオイル0.1重量部を塩化メチレンと
混合し、電荷発生層の上に約20μmとなるように塗布
し、電荷輸送層を形成した。
[Table 1] As can be seen from Table 1, Examples 1, 2, 3, and 4 show comparable characteristics with respect to the half-attenuation exposure amount and the residual potential, and the surface potential shows good characteristics. In addition, in Examples 1 to 3, high sensitivity is exhibited even with long-wavelength light having a wavelength of 780 nm, and it can be seen that the present invention can be sufficiently used for semiconductor laser printers. Example 5 1.5 parts of selenium was placed on an aluminum plate having a thickness of 500 μm.
Vacuum deposition is performed to a thickness of μm to form a charge generation layer.
-1) 100 parts by weight of a benzothiophene derivative and 100 parts by weight of a polycarbonate resin (PCZ200: Mitsubishi Gas Chemical Co., Ltd.) are dissolved in methylene chloride to apply a coating solution by a wire bar method, and a film thickness after drying is obtained. 20 μm
Was formed on the charge transport layer. When the corona discharge of −6.0 kV was performed on this photosensitive member for 10 s, Vs = −750 V.V. Vr = -20V, E 1/2
Was 1.2 lx.s, which was a good result. Example 6 50 parts by weight of x-type metal-free phthalocyanine and 50 parts by weight of vinyl chloride copolymer (trade name MR-110: manufactured by Nippon Zeon Co., Ltd.) were kneaded with methylene chloride in a mixer for 3 hours to prepare a coating solution, which was supported on aluminum. The charge generation layer was formed by applying the solution on the body to a thickness of about 1 μm. Next, the chemical formula II-
100 parts by weight of a benzothiophene derivative represented by 2 and 100 of a polycarbonate resin (Panlite L-1250)
By weight, 0.1 part by weight of silicone oil was mixed with methylene chloride and coated on the charge generation layer so as to have a thickness of about 20 μm to form a charge transport layer.

【0033】このようにして得られた感光体に対して−
6.0kVのコロナ放電を10s間行ったところVs=
ー745V, E1/2 =0.9 lx・sと良好な結果が得
られた。 実施例7 実施例6において、無金属フタロシアニンに替えて下記
構造式(IV)で示されるビスアゾ顔料を用い、また電荷
輸送物質を化学式II−3で示されるベンゾチオフェン誘
導体に替えて実施例6と同様に感光体を作成した。
With respect to the photoreceptor thus obtained,
When corona discharge of 6.0 kV was performed for 10 s, Vs =
Good results of −745 V and E 1/2 = 0.9 lx · s were obtained. Example 7 In Example 6, the metal-free phthalocyanine was replaced with a bisazo pigment represented by the following structural formula (IV), and the charge transport material was replaced with the benzothiophene derivative represented by the chemical formula II-3. Similarly, a photoconductor was prepared.

【0034】このようにして得られた感光体に対して−
6.0kVのコロナ放電を10s間行ったところVs=
ー760V, E1/2 =1.2 lx・sと良好な結果が得
られた。
With respect to the photoconductor thus obtained,
When corona discharge of 6.0 kV was performed for 10 s, Vs =
Good results were obtained at −760 V, E 1/2 = 1.2 lx · s.

【0035】[0035]

【化12】 [Chemical 12]

【0036】実施例8 実施例4におけるベンゾチオフェン誘導体を化学式(I
−4)ないし化学式(I−10)に示されるベンゾチオ
フェン誘導体、または化学式(II−4)ないし化学式
(II−10)に示されるベンゾチオフェン誘導体に替え
て感光体を作製し川口電機製静電記録紙試験装置「SP
−428」を用いて測定した。
Example 8 The benzothiophene derivative of Example 4 was prepared according to the chemical formula (I
-4) to the benzothiophene derivative represented by the chemical formula (I-10) or the benzothiophene derivative represented by the chemical formula (II-4) to the chemical formula (II-10) to prepare a photoconductor and produce an electrostatic product manufactured by Kawaguchi Electric Co., Ltd. Recording paper testing device "SP
-428 ".

【0037】+6.0kVのコロナ放電を10s行って
感光体表面を正帯電せしめ続いて感光体表面に照度2
lxの白色光を照射して表面電位が半分になるまでの時間
(s)を求め半減衰露光量E1/2 (lx・s )とした。結
果が表2に示される。
A +6.0 kV corona discharge is performed for 10 s to positively charge the surface of the photoconductor, and then an illuminance of 2 is applied to the surface of the photoconductor.
The time (s) until the surface potential was halved by irradiating lx white light was obtained and defined as the half-attenuation exposure amount E 1/2 (lx · s). The results are shown in Table 2.

【0038】[0038]

【表2】 表2に見られるように化学式(I−4)ないし化学式
(I−10)に示されるベンゾチオフェン誘導体、また
は化学式(II−4)ないし化学式(II−10)に示され
るベンゾチオフェン誘導体を用いた感光体についても半
減衰露光量E1/2は良好であった。
[Table 2] As shown in Table 2, the benzothiophene derivative represented by the chemical formula (I-4) to the chemical formula (I-10) or the benzothiophene derivative represented by the chemical formula (II-4) to the chemical formula (II-10) was used. The half-attenuated exposure amount E 1/2 was also good for the photoconductor.

【0039】[0039]

【発明の効果】本発明によれば、感光層を有し、感光層
は下記一般式(I)または(II)で示されるベンゾチオ
フェン誘導体のうちの少なくとも一つを電荷輸送物質と
して含むとするので、正帯電および負帯電においても高
感度でしかも繰り返し特性の優れた感光体が得られる。
また電荷発生物質は露光光源の種類に対応して好適な物
質を選ぶことができ、一例をあげるとフタロシアニン化
合物、スクアリリウム化合物およびある種のビスアゾ化
合物などを用いれば半導体レーザプリンターとして使用
可能な感光体を得ることができる。さらに、必要に応じ
て表面に被覆層を設置して耐久性を向上することができ
る。
According to the present invention, a photosensitive layer is provided, and the photosensitive layer contains at least one of the benzothiophene derivatives represented by the following general formula (I) or (II) as a charge transporting substance. Therefore, it is possible to obtain a photoconductor having high sensitivity even in positive charging and negative charging and excellent in repeating characteristics.
Further, as the charge generating substance, a suitable substance can be selected according to the type of the exposure light source. For example, a phthalocyanine compound, a squarylium compound and a certain bisazo compound can be used as a photoconductor which can be used as a semiconductor laser printer. Can be obtained. Further, if necessary, a coating layer may be provided on the surface to improve durability.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例に係る単層型感光体を示す断
面図
FIG. 1 is a cross-sectional view showing a single-layer type photoconductor according to an embodiment of the present invention.

【図2】この発明の実施例に係る負帯電の積層型感光体
を示す断面図
FIG. 2 is a cross-sectional view showing a negatively charged layered photoconductor according to an embodiment of the present invention.

【図3】この発明の実施例に係る正帯電の積層型感光体
を示す断面図
FIG. 3 is a cross-sectional view showing a positively charged laminated type photoreceptor according to an embodiment of the present invention.

【符号の簡単な説明】[Simple explanation of symbols]

1 導電性基体 3 電荷発生物質 4 電荷発生層 5 電荷輸送物質 6 電荷輸送層 7 被覆層 20 感光層 21 感光層 22 感光層 1 Conductive Substrate 3 Charge Generating Material 4 Charge Generating Layer 5 Charge Transporting Material 6 Charge Transporting Layer 7 Covering Layer 20 Photosensitive Layer 21 Photosensitive Layer 22 Photosensitive Layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】感光層を有し、感光層は下記一般式(I)
または(II)で示されるベンゾチオフェン誘導体のうち
の少なくとも一つを電荷輸送物質として含むことを特徴
とする電子写真用感光体。 【化1】 〔式(I)中R1 は水素原子またはアルキル基、R2
水素原子,アルキル基またはアリール基、Ar1 はアリ
ール基を表す。〕 【化2】 〔式(II)中R3 ,R4 は水素原子,アルキル基または
アリール基、Ar2 ,Ar3 はアリール基を表す。〕
1. A photosensitive layer, which has the following general formula (I):
Alternatively, an electrophotographic photoreceptor containing at least one of the benzothiophene derivatives represented by (II) as a charge transport material. [Chemical 1] [In the formula (I), R 1 represents a hydrogen atom or an alkyl group, R 2 represents a hydrogen atom, an alkyl group or an aryl group, and Ar 1 represents an aryl group. ] [Chemical 2] [In the formula (II), R 3 and R 4 represent a hydrogen atom, an alkyl group or an aryl group, and Ar 2 and Ar 3 represent an aryl group. ]
【請求項2】請求項1に記載の電子写真用感光体におい
て、感光層は電荷発生層と電荷輸送層の積層されたもの
であることを特徴とする電子写真用感光体。
2. The electrophotographic photoreceptor according to claim 1, wherein the photosensitive layer is a laminate of a charge generation layer and a charge transport layer.
【請求項3】請求項1記載の電子写真用感光体におい
て、ベンゾチオフェン誘導体はR1 とR2 が水素原子、
Ar1 が4−(N−フェニル−N−パラトリル)アミノ
−1−フェニル基であることを特徴とする電子写真用感
光体。
3. The electrophotographic photoreceptor according to claim 1, wherein the benzothiophene derivative has hydrogen atoms as R 1 and R 2 .
Ar 1 is a 4- (N-phenyl-N-paratolyl) amino-1-phenyl group, which is a photoreceptor for electrophotography.
【請求項4】請求項1記載の電子写真用感光体におい
て、ベンゾチオフェン誘導体はR3 とR4 が水素原子、
Ar2 とAr3 が4−(N−フェニル−N−パラトリ
ル)アミノ−1−フェニル基であることを特徴とする電
子写真用感光体。
4. The electrophotographic photoreceptor according to claim 1, wherein R 3 and R 4 are hydrogen atoms in the benzothiophene derivative,
A photoreceptor for electrophotography, wherein Ar 2 and Ar 3 are 4- (N-phenyl-N-paratolyl) amino-1-phenyl group.
JP22933693A 1993-09-16 1993-09-16 Electrophotographic photoreceptor Pending JPH0784385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22933693A JPH0784385A (en) 1993-09-16 1993-09-16 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22933693A JPH0784385A (en) 1993-09-16 1993-09-16 Electrophotographic photoreceptor

Publications (1)

Publication Number Publication Date
JPH0784385A true JPH0784385A (en) 1995-03-31

Family

ID=16890566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22933693A Pending JPH0784385A (en) 1993-09-16 1993-09-16 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JPH0784385A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004075673A (en) * 2002-06-19 2004-03-11 Mitsubishi Chemicals Corp Compound and organic electroluminescent element using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004075673A (en) * 2002-06-19 2004-03-11 Mitsubishi Chemicals Corp Compound and organic electroluminescent element using the same

Similar Documents

Publication Publication Date Title
US4910110A (en) Photoconductor including hydrazone compound in a photoconductive layer
US5134049A (en) Photoconductor for electrophotography
JPH0524507B2 (en)
JPH05204175A (en) Electrophotographic sensitive body
JP3114394B2 (en) Electrophotographic photoreceptor
US5213925A (en) Photoconductor for electrophotography
JP3006329B2 (en) Electrophotographic photoreceptor
JPH0784385A (en) Electrophotographic photoreceptor
JP3240765B2 (en) Electrophotographic photoreceptor
JP3522436B2 (en) Electrophotographic photoreceptor
US5252416A (en) Photoconductor for electrophotography
JP3173298B2 (en) Electrophotographic photoreceptor
JPH07140684A (en) Electrophotographic photoreceptor
JPH04304465A (en) Electrophotographic sensitive body
JP3346411B2 (en) Electrophotographic photoreceptor
JPH0683084A (en) Electrophotographic sensitive body
JPH03255453A (en) Electrophotographic sensitive body
JPS63292137A (en) Electrophotographic sensitive body
JPH0756370A (en) Electrophotographic photoreceptor
JPH09134021A (en) Electrophotographic photoreceptor
JP2817807B2 (en) Electrophotographic photoreceptor
JPH0756364A (en) Electrophotographic photoreceptor
JPH05158260A (en) Electrophotographic sensitive body
JPH0756367A (en) Electrophotographic photoreceptor
JPS6258503B2 (en)