JPH0756364A - Electrophotographic photoreceptor - Google Patents

Electrophotographic photoreceptor

Info

Publication number
JPH0756364A
JPH0756364A JP20382493A JP20382493A JPH0756364A JP H0756364 A JPH0756364 A JP H0756364A JP 20382493 A JP20382493 A JP 20382493A JP 20382493 A JP20382493 A JP 20382493A JP H0756364 A JPH0756364 A JP H0756364A
Authority
JP
Japan
Prior art keywords
charge
charge transport
layer
chemical formula
compound represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20382493A
Other languages
Japanese (ja)
Inventor
Kenji Kawate
健司 川手
Osamu Nabeta
修 鍋田
Noboru Kosho
昇 古庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP20382493A priority Critical patent/JPH0756364A/en
Publication of JPH0756364A publication Critical patent/JPH0756364A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve sensitivity without decreasing mobility when two or more kinds of charge transfer materials are mixed and used by controlling the ionizing potential to a specified value. CONSTITUTION:A hydrazone compd. expressed by chemical formula I (with 5.05eV ionizing potential) and a diamine compd. expressed by formula II (with 5.10eV ionizing potential) as charge transfer materials in total 5 pts.wt. and 5 pts.wt. of polycarbonate resin are dissolved in dichloromethane to prepare a coating liquid for transfer of charges. Then a charge transfer layer is formed on a polyester terephthalate film on which aluminum is vapor deposited. In this process, when the difference of ionizing potentials between charge transfer materials is less than 0.1eV, the number of hole traps in the photosensitive layer decreases and sensitivity can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子写真方式のプリンタ
ー,複写機などに用いられる電子写真用感光体に係り、
特に感光層の電荷輸送物質に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophotographic photoconductor used in electrophotographic printers, copying machines, and the like.
In particular it relates to a charge transport material for the photosensitive layer.

【0002】[0002]

【従来の技術】従来より電子写真用感光体(以下感光体
とも称する)の感光材料としてはセレンまたはセレン合
金などの無機光導電性物質、酸化亜鉛あるいは硫化カド
ミウムなどの無機光導電性物質を樹脂結着剤中に分散さ
せたもの、ポリ−N−ビニールカルバゾールまたはポリ
ビニールアントラセンなどの有機光導電性物質、フタロ
シアニン化合物あるいはビスアゾ化合物などの有機光導
電性物質を樹脂結着剤中に分散させたものや真空蒸着さ
せたものなどが利用されている。
2. Description of the Related Art Conventionally, as a photosensitive material for an electrophotographic photoreceptor (hereinafter also referred to as a photoreceptor), an inorganic photoconductive substance such as selenium or a selenium alloy, or an inorganic photoconductive substance such as zinc oxide or cadmium sulfide is used as a resin. An organic photoconductive substance such as poly-N-vinylcarbazole or polyvinylanthracene dispersed in a binder, or an organic photoconductive substance such as a phthalocyanine compound or a bisazo compound is dispersed in a resin binder. The thing and the thing vapor-deposited by vacuum are used.

【0003】有機光導電性物質は無機光導電性物質に比
較して可とう性,熱安定性,膜形成性,透明性,価格等
の利点を有するが暗抵抗,光感度等の点で劣っている。
そこで膜形成性の利点を生かして感光層を主として電荷
発生に寄与する層と暗所での表面電荷と光受容時の電荷
輸送に寄与する層とに機能分離した積層とし、各層の機
能に適した材料の選択により電子写真特性の向上を図
り、実用化を進めている。
Organic photoconductive materials have advantages such as flexibility, thermal stability, film forming property, transparency, and cost as compared with inorganic photoconductive materials, but they are inferior in terms of dark resistance and photosensitivity. ing.
Therefore, by taking advantage of the film-forming property, the photosensitive layer is formed into a layer in which the layer mainly contributing to the charge generation and the layer contributing to the surface charge in the dark place and the layer contributing to the charge transport at the time of light reception are separated, and suitable for the function of each layer. We are working to improve the electrophotographic characteristics by selecting different materials and put them into practical use.

【0004】この種の積層型感光体は有機電荷発生物質
を含む電荷発生層と有機電荷輸送物質を含む電荷輸送層
を形成した構造がとられる。電荷発生層はレーザービー
ムプリンタ用には赤外光領域に吸収ピークを有するフタ
ロシアニン系化合物を、複写機用には可視光領域に吸収
ピークを有するアゾ系化合物を電荷発生物質とし、ポリ
エステル,アクリル等の結着剤物質バインダ中に分散さ
せた塗液により塗布形成される。
This type of laminated photoreceptor has a structure in which a charge generating layer containing an organic charge generating substance and a charge transporting layer containing an organic charge transporting substance are formed. The charge generation layer is made of a phthalocyanine compound having an absorption peak in the infrared light region for a laser beam printer, and an azo compound having an absorption peak in the visible light region for a copying machine as a charge generation substance. It is formed by coating with a coating liquid dispersed in a binder substance binder.

【0005】これらの感光体を用いた電子写真法による
画像形成には、例えばカールソン方式が適用される。こ
の方式での画像形成は暗所での感光体へのコロナ放電に
よる帯電、帯電された感光体表面上への原稿の文字や絵
などの静電潜像の形成、形成された静電潜像のトナーに
よる現像、現像されたトナー像の紙などの支持体への定
着により行われ、トナー像転写後の感光体は除電、残留
トナーの除去、光除電などを行った後、再使用に供され
る。
For example, the Carlson method is applied to the image formation by the electrophotographic method using these photoconductors. Image formation by this method is performed by corona discharge to a photoconductor in a dark place, formation of an electrostatic latent image such as characters and pictures of an original on the surface of the charged photoconductor, and electrostatic latent image formed. Of the toner image, the developed toner image is fixed on a support such as paper, and the photoconductor after the toner image transfer is neutralized, residual toner is removed, and light is neutralized before reuse. To be done.

【0006】近年、可とう性,熱安定性,膜形成性等の
有利性から有機材料を用いた電子写真用感光体が実用化
されている。例えばポリ−N−ビニルカルバゾールと
2,4,7−トリニトロフルオレン−9−オンとからな
る感光体(米国特許第3484237号明細書に記
載)、有機顔料を主成分とする感光体(特開昭47−3
7543号公報に記載)、染料と樹脂からなる共昌錯体
を主成分とする感光体(特開昭47−10735号公報
に記載)等がある。
In recent years, electrophotographic photoreceptors using organic materials have been put into practical use because of their advantages such as flexibility, thermal stability and film-forming property. For example, a photoreceptor composed of poly-N-vinylcarbazole and 2,4,7-trinitrofluoren-9-one (described in US Pat. No. 3,484,237), a photoreceptor containing an organic pigment as a main component (JP 47-3
No. 7543), a photoconductor containing a Kyosho complex composed of a dye and a resin as a main component (described in JP-A-47-10735), and the like.

【0007】[0007]

【発明が解決しようとする課題】有機感光体は上記のよ
うに多くの利点を持つが感光体として要求される特性で
ある帯電特性,暗減衰特性,光減衰特性,繰り返し特
性,光疲労特性,分光特性,応答特性等の全ての特性を
満足するものはまだ得られていないのが現状である。
Although the organic photoreceptor has many advantages as described above, the characteristics required for the photoreceptor are charging characteristics, dark decay characteristics, light decay characteristics, repetitive characteristics, light fatigue characteristics, At present, there is no one that satisfies all characteristics such as spectral characteristics and response characteristics.

【0008】特性を改善するために電荷輸送物質の開発
が一つの方策として用いられる。電荷輸送物質には長所
と短所があり、一種類の電荷輸送物質では十分な特性を
得ることができないために複数の電荷輸送物質を混合し
て特性の改善が図ることが行われる。例えば暗中電荷保
持率の悪い電荷輸送物質に暗中電荷保持率の良い電荷輸
送物質を混合して暗中電荷保持率を良くする場合や溶解
度の悪い電荷輸送物質の場合に他の電荷輸送物質を混合
して塗布溶液の作製を容易にする場合などである。しか
しながら二つの電荷輸送物質を混合すると移動度が低下
するという問題があった。
The development of charge transport materials has been used as one strategy to improve properties. The charge transport material has advantages and disadvantages, and since one type of charge transport material cannot obtain sufficient characteristics, a plurality of charge transport materials are mixed to improve the characteristics. For example, when a charge transport material having a poor charge retention rate in the dark is mixed with a charge transport material having a good charge retention rate in the dark to improve the charge retention rate in the dark or a charge transport material having a poor solubility, another charge transport material is mixed. In order to facilitate the preparation of the coating solution. However, there is a problem that the mobility decreases when the two charge transport materials are mixed.

【0009】この発明は上述の点に鑑みてなされその目
的は電荷輸送物質の混合時に移動度の大幅な低下が起こ
らないようにして特性に優れる電子写真用感光体を提供
することにある。
The present invention has been made in view of the above points, and an object thereof is to provide an electrophotographic photosensitive member having excellent characteristics by preventing a large decrease in mobility during mixing of a charge transporting substance.

【0010】[0010]

【課題を解決するための手段】本発明者等は電荷輸送物
質の混合と特性の関係につき鋭意研究した結果、イオン
化ポテンシァルが移動度と感度に関係を有することを見
いだしこの知見に基づいて本発明をなすに至った。上述
の目的は第一の発明によれば導電性基体上に感光層を有
し、感光層は複数の電荷輸送物質を含み電荷輸送物質の
持つイオン化ポテンシァルはその差が相互に0.1eV
以下であるとすることにより達成される。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies on the relationship between the mixture of charge transport materials and their properties, and have found that the ionization potential has a relationship with mobility and sensitivity. Came to make. According to the first aspect of the present invention, a photosensitive layer is provided on a conductive substrate, and the photosensitive layer contains a plurality of charge transporting substances, and the ionization potentials of the charge transporting substances are different from each other by 0.1 eV.
This is achieved by:

【0011】また第二発明によれば導電性基体上に感光
層を有し、感光層は二つの電荷輸送物質を含み電荷輸送
物質の持つイオン化ポテンシァルはその差が0.1eV
を越えるものであり、イオン化ポテンシァルの小さい電
荷輸送物質はイオン化ポテンシァルの大きい電荷輸送物
質に比し含有割合が大きいとすることにより達成され
る。
According to the second invention, the photosensitive layer is provided on the conductive substrate, and the photosensitive layer contains two charge transporting substances, and the difference in ionization potential of the charge transporting substance is 0.1 eV.
It is achieved by making the content ratio of the charge transport material having a small ionization potential higher than that of the charge transport material having a large ionization potential.

【0012】[0012]

【作用】電荷輸送物質の持つイオン化ポテンシァルの差
が相互に0.1eV以下の場合は感光層におけるホール
トラップの数が減少して感度が向上する。イオン化ポテ
ンシァルの差が相互に0.1eV以上であってもイオン
化ポテンシァルの小さい電荷輸送物質の含有割合がイオ
ン化ポテンシァルの大きい電荷輸送物質に比し大きいと
感光層におけるホールトラップの数が減少して感度が向
上する。
When the difference between the ionization potentials of the charge transport materials is 0.1 eV or less, the number of hole traps in the photosensitive layer is reduced and the sensitivity is improved. Even if the difference in ionization potential is 0.1 eV or more, if the content ratio of the charge transport material having a small ionization potential is larger than that of the charge transport material having a large ionization potential, the number of hole traps in the photosensitive layer decreases and the sensitivity is decreased. Is improved.

【0013】[0013]

【実施例】以下、本発明の実施例について、図面を参照
しながら説明する。図3は本発明の一実施例に係る負帯
電の電子写真用感光体を示す断面図である。図4は本発
明の一実施例に係る正帯電の電子写真用感光体を示す断
面図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 3 is a sectional view showing a negatively charged electrophotographic photosensitive member according to an embodiment of the present invention. FIG. 4 is a sectional view showing a positively charged electrophotographic photosensitive member according to an embodiment of the present invention.

【0014】負帯電積層型感光体では導電性基体11上
に電荷発生層12、電荷輸送層13を順次積層する。1
4は感光層であり、電荷発生層と電荷輸送層とに分離し
た機能分離型である。正帯電積層型感光体では導電性基
体11上に電荷輸送層13、電荷発生層12、表面被覆
層15を順次積層する。14は感光層である。
In the negative charging laminated type photoreceptor, the charge generation layer 12 and the charge transport layer 13 are sequentially laminated on the conductive substrate 11. 1
Reference numeral 4 denotes a photosensitive layer, which is a function separation type in which a charge generation layer and a charge transport layer are separated. In the positive charging laminated type photoreceptor, the charge transport layer 13, the charge generation layer 12, and the surface coating layer 15 are sequentially laminated on the conductive substrate 11. 14 is a photosensitive layer.

【0015】導電性基体11は感光体の電極としての役
目と同時に他の各層の支持体となっており、円筒状,板
状,フィルム状のいずれでも良く、材質的にはアルミニ
ウム,ステンレス鋼,ニッケルなどの金属、あるいはガ
ラス,樹脂などの上に導電処理を施したものでも良い。
電荷発生層12は、電荷発生物質の粒子を樹脂バインダ
ー中に分散させた材料を塗布するかあるいは真空蒸着な
どの方法により形成され、光を受容して電荷を発生す
る。またその電荷発生効率が高いことと同時に発生した
電荷の電荷輸送層13または表面被覆層15への注入性
が重要で、電場依存性が少なく低電場でも注入の良いこ
とが望ましい。電荷発生物質としては、無金属フタロシ
アニン,チタニルフタロシアニンなどのフタロシアニン
化合物、各種アゾ,キノン,インジゴ顔料あるいはシア
ニン,スクアリリウム,アズレニウム,ピリリウム化合
物などの染料や、セレンまたはセレン化合物などが用い
られ、画像形成に使用される露光光源の光波長領域に応
じて好適な物質を選ぶことができる。電荷発生層12は
電荷発生機能を有すればよいので、その膜厚は電荷発生
物質の光吸収係数より決まり一般的には5μm以下であ
り、好適には1μm以下である。電荷発生層は電荷発生
物質を主体としてこれに電荷輸送性物質などを添加して
使用することも可能である。樹脂バインダーとしては、
ポリカーボネート,ポリエステル,ポリアミド,ポリウ
レタン,塩化ビニル,フェノキシ樹脂,ポリビニルブチ
ラール,ジアリルフタレ−ト樹脂,メタクリル酸エステ
ルの重合体および共重合体などを適宜組合せて使用する
ことが可能である。
The conductive substrate 11 serves not only as an electrode of the photoconductor but also as a support for each of the other layers, which may be cylindrical, plate-shaped or film-shaped, and is made of aluminum, stainless steel, A metal such as nickel, glass, resin, or the like that has been subjected to a conductive treatment may be used.
The charge generation layer 12 is formed by applying a material in which particles of a charge generation substance are dispersed in a resin binder or by a method such as vacuum deposition, and receives light to generate charges. Further, it is important that the charge generation efficiency is high, and at the same time that the generated charge is injectable into the charge transport layer 13 or the surface coating layer 15, and the electric field dependency is small and the injection is good even in a low electric field. As the charge generating substance, phthalocyanine compounds such as metal-free phthalocyanine and titanyl phthalocyanine, dyes such as various azo, quinone, indigo pigments or cyanine, squarylium, azurenium and pyrylium compounds, selenium or selenium compounds, etc. are used for image formation. A suitable substance can be selected according to the light wavelength region of the exposure light source used. Since the charge generation layer 12 only needs to have a charge generation function, its thickness is determined by the light absorption coefficient of the charge generation substance and is generally 5 μm or less, preferably 1 μm or less. The charge generation layer may be mainly composed of a charge generation substance and a charge transporting substance or the like may be added thereto. As a resin binder,
Polycarbonate, polyester, polyamide, polyurethane, vinyl chloride, phenoxy resin, polyvinyl butyral, diallyl phthalate resin, methacrylic acid ester polymers and copolymers and the like can be appropriately combined and used.

【0016】電荷輸送層13は樹脂バインダー中に電荷
輸送物質を分散させた塗膜であり、暗所では絶縁体層と
して感光体の電荷を保持し、光受容時には電荷発生層か
ら注入される電荷を輸送する機能を発揮する。樹脂バイ
ンダーとしては、ポリカーボネート,ポリエステル,ポ
リスチレン,メタクリル酸エステルの重合体および共重
合体などを用いることができるが機械的,化学的,電気
的安定性や密着性等の他に電荷輸送物質との相溶性が重
要である。
The charge-transporting layer 13 is a coating film in which a charge-transporting substance is dispersed in a resin binder. The charge-transporting layer 13 holds an electric charge of the photoconductor as an insulating layer in a dark place, and the charge injected from the charge-generating layer when receiving light. Exert the function of transporting. As the resin binder, polymers and copolymers of polycarbonate, polyester, polystyrene, methacrylic acid ester, etc. can be used, but in addition to mechanical, chemical and electrical stability and adhesiveness, charge transfer substances Compatibility is important.

【0017】電荷輸送層の膜厚は実用的に有効な表面電
位を維持するために3ないし50μmの範囲が好ましく
より好適には10ないし40μmである。電荷輸送物質
の一例が化学式(I−1)ないし化学式(I−6)に示
される。これらの化合物のイオン化ポテンシァルはそれ
ぞれ以下のとうりである。イオン化ポテンシァルは大気
中光電子放出装置(AC−1 理研計器製)を用いて測
定した。5.05eV、 5.10eV、 5.25e
V、 5.30eV、 5.10eV、5.10eV
The thickness of the charge transport layer is preferably in the range of 3 to 50 μm, and more preferably 10 to 40 μm in order to maintain a practically effective surface potential. Examples of the charge transport material are represented by chemical formulas (I-1) to (I-6). The ionization potentials of these compounds are as follows. The ionization potential was measured using an atmospheric photoelectron emission device (AC-1 manufactured by Riken Keiki Co., Ltd.). 5.05eV, 5.10eV, 5.25e
V, 5.30 eV, 5.10 eV, 5.10 eV

【0018】[0018]

【化1】 [Chemical 1]

【0019】表面被覆層15は機械的ストレスに対する
耐久性に優れ、さらに化学的に安定な物質で構成され、
暗所ではコロナ放電の電荷を受容して保持する機能を有
しており、かつ電荷発生層が感応する光を透過する性能
を有し、露光時に光を透過し、電荷発生層に到達させ、
発生した電荷の注入を受けて表面電荷を中和消滅させる
ことが必要である。また、被覆材料は前述の通り電荷発
生物質の光の吸収極大の波長領域においてできるだけ透
明であることが望ましい。
The surface coating layer 15 has excellent durability against mechanical stress and is made of a chemically stable substance.
In a dark place, it has the function of receiving and holding the electric charge of corona discharge, and also has the ability to transmit the light to which the charge generation layer is sensitive, and transmits the light during exposure to reach the charge generation layer,
It is necessary to neutralize and eliminate the surface charges by receiving the injection of the generated charges. Further, as described above, it is desirable that the coating material is as transparent as possible in the wavelength region where the light absorption maximum of the charge generating substance is maximum.

【0020】表面被覆層の被覆材料としては変成シリコ
ン樹脂として、アクリル変成シリコン樹脂,エポキシ変
成シリコン樹脂,アルキッド変成シリコン樹脂,ポリエ
ステル変成シリコン樹脂,ウレタン変成シリコン樹脂
等、またハ−ドコ−ト剤としてのシリコン樹脂などが適
用できる。これら変成シリコン樹脂は単独で使用可能で
あるが、より耐久性を向上させる目的でSiO2 ,Ti
2 ,In2 3 ,ZrO2 を主成分とする被膜を形成
できる金属アルコキシ化合物の縮合物との混合材料が好
適である。
As a coating material for the surface coating layer, a modified silicone resin such as an acrylic modified silicone resin, an epoxy modified silicone resin, an alkyd modified silicone resin, a polyester modified silicone resin, a urethane modified silicone resin, or the like, or a hard coating agent is used. Silicon resin, etc. can be applied. These modified silicone resins can be used alone, but SiO 2 and Ti are used for the purpose of improving durability.
A mixed material with a condensate of a metal alkoxy compound capable of forming a film containing O 2 , In 2 O 3 and ZrO 2 as a main component is preferable.

【0021】被覆層自体の膜厚は被覆層の配合組成にも
依存するが、繰り返し連続使用したとき残留電位が増大
するなどの悪影響が出ない範囲で任意に設定できる。 実施例1 電荷発生物質として化学式(II)に示されるビスアゾ化
合物1重量部、結着剤樹脂としてジアリルフタレート樹
脂(商品名 ダップK、大阪ソーダ製)1重量部をメチ
ルエチルケトン150重量部と混合し、3h混練を行い
電荷発生層用の塗布液を作製した。
The film thickness of the coating layer itself depends on the composition of the coating layer, but can be arbitrarily set within a range such that the residual potential does not increase when repeatedly used continuously. Example 1 1 part by weight of a bisazo compound represented by the chemical formula (II) as a charge generating substance and 1 part by weight of a diallyl phthalate resin (trade name DAP K, manufactured by Osaka Soda) as a binder resin were mixed with 150 parts by weight of methyl ethyl ketone. Kneading was performed for 3 hours to prepare a coating liquid for the charge generation layer.

【0022】電荷輸送物質として化学式(I−1)で示
されるヒドラゾン化合物5重量部と、化学式(I−2)
で示されるジアミン化合物5重量部と、ポリカーボネー
ト樹脂(商品名 パンライトL−1225 帝人化成
製)10重量部とをジクロロメタンに溶解し、電荷輸送
層用の塗布液を作製した。次にアルミニウムを蒸着した
ポリエステルテレフタレートフィルム上に電荷発生層
(1μm)、電荷輸送層(20μm)の順に成膜し負帯
電用の感光体を作製した。
5 parts by weight of a hydrazone compound represented by the chemical formula (I-1) as a charge transport material, and a chemical formula (I-2)
5 parts by weight of the diamine compound represented by and 10 parts by weight of a polycarbonate resin (trade name: Panlite L-1225 manufactured by Teijin Chemicals) were dissolved in dichloromethane to prepare a coating solution for the charge transport layer. Next, a charge generating layer (1 μm) and a charge transporting layer (20 μm) were formed in this order on a polyester terephthalate film on which aluminum was vapor deposited to prepare a negative charging photoreceptor.

【0023】[0023]

【化2】 [Chemical 2]

【0024】このようにして得られた感光体の電子写真
特性を川口電機製静電記録紙試験装置「SP−428」
を用いて測定した。感光体の表面電位VS (V)は暗所
で−6.0kVのコロナ放電により感光体表面を負帯電
せしめたときの初期の表面電位であり、続いてコロナ放
電を中止した状態で2s間暗所に保持したときの表面電
位Vd(ボルト)を測定しさらに続いて感光体表面に照
度2 lxの白色光を照射して表面電位Vd(ボルト)
が半分になるまでの時間(s)を求め半減衰露光量E
1/2 (lx・s)とした。また、照度2 lxの白色光
を10s間照射したときの表面電位を残留電位Vr(ボ
ルト)とした。測定結果が表1に示される。
The electrophotographic characteristics of the photoconductor thus obtained were measured by the electrostatic recording paper testing apparatus "SP-428" manufactured by Kawaguchi Electric Co., Ltd.
Was measured using. The surface potential V S (V) of the photoconductor is the initial surface potential when the surface of the photoconductor is negatively charged by the corona discharge of −6.0 kV in the dark, and then for 2 s after the corona discharge is stopped. The surface potential Vd (volt) when kept in a dark place was measured, and then the surface potential Vd (volt) was measured by irradiating the photoreceptor surface with white light with an illuminance of 2 lx.
Half decay exposure amount E
It was set to 1/2 (lx · s). The surface potential when white light with an illuminance of 2 lx was irradiated for 10 s was defined as the residual potential Vr (volt). The measurement results are shown in Table 1.

【0025】次に電荷輸送物質として化学式(I−1)
で示されるヒドラゾン化合物と、化学式(I−2)で示
されるジアミン化合物を合量で5重量部と、ポリカーボ
ネート樹脂(商品名 パンライトL−1225 帝人化
成製)5重量部とをジクロロメタンに溶解し、電荷輸送
層用の塗布液を作製した。次にアルミニウムを蒸着した
ポリエステルテレフタレートフィルム上に電荷輸送層
(20μm)を塗布しこの試料の上に半透明の金電極を
蒸着しサンプルとした。通常の飛行時間法でこのサンプ
ルの移動度を測定した。電界は3×10V6 /cmであ
る。
Next, as a charge transport substance, the chemical formula (I-1)
5 parts by weight of the hydrazone compound represented by and the diamine compound represented by the chemical formula (I-2) in total, and 5 parts by weight of a polycarbonate resin (trade name Panlite L-1225 manufactured by Teijin Kasei) are dissolved in dichloromethane. A coating solution for the charge transport layer was prepared. Next, a charge transport layer (20 μm) was applied on a polyester terephthalate film on which aluminum was vapor deposited, and a semitransparent gold electrode was vapor deposited on this sample to obtain a sample. The mobility of this sample was measured by the usual time-of-flight method. The electric field is 3 × 10 V 6 / cm.

【0026】図1は移動度の化学式(I−1)で示され
るヒドラゾン化合物の組成依存性を示す線図である。化
学式(I−1)で示されるヒドラゾン化合物のイオン化
ポテンシァルは5.05eV,移動度は1.0×10-5
cm2 /V・s、化学式(I−2)で示されるジアミン
化合物のイオン化ポテンシァルは5.10eV,移動度
は1.5×10-5cm2 /V・sである。移動度はいか
なる混合比率においても両者の中間の値を示す。 実施例2 電荷輸送物質を化学式(I−3)で示されるスチリル化
合物5重量部と、化学式(I−4)で示されるスチリル
化合物5重量部に替える以外は実施例1と同様にして感
光体を作製した。 実施例3 電荷輸送物質を化学式(I−5)で示されるジアミン化
合物5重量部と、化学式(I−6)で示されるヒドラゾ
ン化合物5重量部に替える以外は実施例1と同様にして
感光体を作製した。 比較例1 電荷輸送物質として化学式(I−1)で示されるヒドラ
ゾン化合物10重量部を用いる以外は実施例1と同様に
して感光体を作製した。 比較例2 電荷輸送物質として化学式(I−3)で示されるスチリ
ル化合物10重量部を用いる以外は実施例1と同様にし
て感光体を作製した。 比較例3 電荷輸送物質として化学式(I−5)で示されるジアミ
ン化合物10重量部用いる以外は実施例1と同様にして
感光体を作製した。 実施例4 電荷輸送物質を化学式(I−1)で示されるヒドラゾン
化合物8重量部と、化学式(I−3)で示されるスチリ
ル化合物2重量部に替える以外は実施例1と同様にして
感光体を作製した。
FIG. 1 is a diagram showing the composition dependence of the mobility of the hydrazone compound represented by the chemical formula (I-1). The hydrazone compound represented by the chemical formula (I-1) has an ionization potential of 5.05 eV and a mobility of 1.0 × 10 −5.
cm 2 / V · s, the ionization potential of the diamine compound represented by the chemical formula (I-2) is 5.10 eV, and the mobility is 1.5 × 10 −5 cm 2 / V · s. The mobility shows an intermediate value between the two in any mixing ratio. Example 2 A photoreceptor in the same manner as in Example 1 except that 5 parts by weight of the styryl compound represented by the chemical formula (I-3) and 5 parts by weight of the styryl compound represented by the chemical formula (I-4) are used as the charge transport material. Was produced. Example 3 A photoconductor was carried out in the same manner as in Example 1 except that 5 parts by weight of the diamine compound represented by the chemical formula (I-5) and 5 parts by weight of the hydrazone compound represented by the chemical formula (I-6) were used as the charge transport material. Was produced. Comparative Example 1 A photoconductor was prepared in the same manner as in Example 1 except that 10 parts by weight of the hydrazone compound represented by the chemical formula (I-1) was used as the charge transport material. Comparative Example 2 A photoconductor was prepared in the same manner as in Example 1 except that 10 parts by weight of the styryl compound represented by the chemical formula (I-3) was used as the charge transport material. Comparative Example 3 A photoconductor was prepared in the same manner as in Example 1 except that 10 parts by weight of the diamine compound represented by the chemical formula (I-5) was used as the charge transport material. Example 4 A photoreceptor as in Example 1 except that the charge transporting material is replaced by 8 parts by weight of the hydrazone compound represented by the chemical formula (I-1) and 2 parts by weight of the styryl compound represented by the chemical formula (I-3). Was produced.

【0027】このようにして得られた感光体の電子写真
特性を川口電機製静電記録紙試験装置「SP−428」
を用いて測定した。感光体の表面電位VS (V)は暗所
で−6.0kVのコロナ放電により感光体表面を負帯電
せしめたときの初期の表面電位であり、続いてコロナ放
電を中止した状態で2s間暗所に保持したときの表面電
位Vd(ボルト)を測定しさらに続いて感光体表面に照
度2 lxの白色光を照射して表面電位Vd(ボルト)
が半分になるまでの時間(s)を求め半減衰露光量E
1/2 (lx・s)とした。また、照度2 lxの白色光
を10s間照射したときの表面電位を残留電位Vr(ボ
ルト)とした。測定結果が表1に示される。
The electrophotographic characteristics of the photoconductor thus obtained were measured by the electrostatic recording paper testing apparatus "SP-428" manufactured by Kawaguchi Denki Co., Ltd.
Was measured using. The surface potential V S (V) of the photoconductor is the initial surface potential when the surface of the photoconductor is negatively charged by the corona discharge of −6.0 kV in the dark, and then for 2 s after the corona discharge is stopped. The surface potential Vd (volt) when kept in a dark place was measured, and then the surface potential Vd (volt) was measured by irradiating the photoreceptor surface with white light with an illuminance of 2 lx.
Half decay exposure amount E
It was set to 1/2 (lx · s). The surface potential when white light with an illuminance of 2 lx was irradiated for 10 s was defined as the residual potential Vr (volt). The measurement results are shown in Table 1.

【0028】次に電荷輸送物質として化学式(I−1)
で示されるヒドラゾン化合物と、化学式(I−3)で示
されるスチリル化合物を合量で5重量部と、ポリカーボ
ネート樹脂(商品名 パンライトL−1225 帝人化
成製)5重量部とをジクロロメタンに溶解し、電荷輸送
層用の塗布液を作製した。次にアルミニウムを蒸着した
ポリエステルテレフタレートフィルム上に電荷輸送層
(20μm)を塗布しこの試料の上に半透明の金電極を
蒸着しサンプルとした。通常の飛行時間法でこのサンプ
ルの移動度を測定した。電界は3×106 V/cmであ
る。
Next, as the charge transport material, the chemical formula (I-1) is used.
5 parts by weight of the hydrazone compound represented by and the styryl compound represented by the chemical formula (I-3) in total, and 5 parts by weight of a polycarbonate resin (trade name: Panlite L-1225 manufactured by Teijin Kasei) are dissolved in dichloromethane. A coating solution for the charge transport layer was prepared. Next, a charge transport layer (20 μm) was applied on a polyester terephthalate film on which aluminum was vapor deposited, and a semitransparent gold electrode was vapor deposited on this sample to obtain a sample. The mobility of this sample was measured by the usual time-of-flight method. The electric field is 3 × 10 6 V / cm.

【0029】図2は移動度の化学式(I−1)で示され
るヒドラゾン化合物の組成依存性を示す線図である。化
学式(I−1)で示されるヒドラゾン化合物のイオン化
ポテンシァルは5.05eV,移動度は1.0×10-5
cm2 /V・s、化学式(I−3)で示されるスチリル
化合物のイオン化ポテンシァルは5.25eV,移動度
は2.0×10-5cm2 /V・sである。組成により移
動度が大きく変化する。イオン化ポテンシァルの小さい
電荷輸送物質の含有割合がイオン化ポテンシァルの大き
い電荷輸送物質に比して大きくなるに伴い移動度が増大
する。 実施例5 電荷輸送物質を化学式(I−2)で示されるジアミン化
合物8重量部と、化学式(I−4)で示されるスチリル
化合物2重量部に替える以外は実施例1と同様にして感
光体を作製した。 実施例6 電荷輸送物質を化学式(I−6)で示されるヒドラゾン
化合物8重量部と、化学式(I−3)で示されるスチリ
ル化合物2重量部に替える以外は実施例1と同様にして
感光体を作製した。 比較例4 電荷輸送物質として化学式(I−1)で示されるヒドラ
ゾン化合物2重量部と化学式(I−3)で示されるスチ
リル化合物8重量部を用いる以外は実施例1と同様にし
て感光体を作製した。 比較例5 電荷輸送物質として化学式(I−2)で示されるジアミ
ン化合物2重量部と化学式(I−4)で示されるスチリ
ル化合物8重量部を用いる以外は実施例1と同様にして
感光体を作製した。 比較例6 電荷輸送物質として化学式(I−6)で示されるヒドラ
ゾン化合物2重量部と化学式(I−3)で示されるスチ
リル化合物8重量部を用いる以外は実施例1と同様にし
て感光体を作製した。
FIG. 2 is a diagram showing the composition dependence of the mobility of the hydrazone compound represented by the chemical formula (I-1). The hydrazone compound represented by the chemical formula (I-1) has an ionization potential of 5.05 eV and a mobility of 1.0 × 10 −5.
cm 2 / V · s, the ionization potential of the styryl compound represented by the chemical formula (I-3) is 5.25 eV, and the mobility is 2.0 × 10 −5 cm 2 / V · s. The mobility changes greatly depending on the composition. The mobility increases as the content ratio of the charge transporting material having a low ionization potential is higher than that of the charge transporting material having a high ionization potential. Example 5 Photoreceptor similar to Example 1 except that the charge transport material was changed to 8 parts by weight of the diamine compound represented by the chemical formula (I-2) and 2 parts by weight of the styryl compound represented by the chemical formula (I-4). Was produced. Example 6 A photoreceptor was prepared in the same manner as in Example 1 except that the charge transport material was replaced by 8 parts by weight of the hydrazone compound represented by the chemical formula (I-6) and 2 parts by weight of the styryl compound represented by the chemical formula (I-3). Was produced. Comparative Example 4 A photoreceptor was prepared in the same manner as in Example 1 except that 2 parts by weight of the hydrazone compound represented by the chemical formula (I-1) and 8 parts by weight of the styryl compound represented by the chemical formula (I-3) were used as the charge transport material. It was made. Comparative Example 5 A photoreceptor was prepared in the same manner as in Example 1 except that 2 parts by weight of the diamine compound represented by the chemical formula (I-2) and 8 parts by weight of the styryl compound represented by the chemical formula (I-4) were used as the charge transport material. It was made. Comparative Example 6 A photoreceptor was prepared in the same manner as in Example 1 except that 2 parts by weight of the hydrazone compound represented by the chemical formula (I-6) and 8 parts by weight of the styryl compound represented by the chemical formula (I-3) were used as the charge transport material. It was made.

【0030】[0030]

【表1】 [Table 1]

【0031】表1に見られるように実施例1ないし6は
Vsが−600Vより負で大きな値、Vrは−25Vよ
り負で小さな値、感度E1/2 は1.4 lx・s以下の
値を同時に満足する。これに対し比較例では前記の数字
を同時に満足するものはなく本発明に係る電子写真用感
光体の優位性は明らかである。
As can be seen from Table 1, in Examples 1 to 6, Vs is a negative value larger than -600V, Vr is a negative value smaller than -25V, and sensitivity E 1/2 is 1.4 lx · s or less. Satisfy the values at the same time. On the other hand, in the comparative examples, none of the above-mentioned numbers are satisfied at the same time, and the superiority of the electrophotographic photoreceptor according to the present invention is clear.

【0032】[0032]

【発明の効果】第一の発明によれば導電性基体上に感光
層を有し、感光層は複数の電荷輸送物質を含み電荷輸送
物質の持つイオン化ポテンシァルはその差が相互に0.
1eV以下であるとし、また第二発明によれば導電性基
体上に感光層を有し、感光層は二つの電荷輸送物質を含
み電荷輸送物質の持つイオン化ポテンシァルはその差が
0.1eVを越えるものであり、イオン化ポテンシァル
の小さい電荷輸送物質はイオン化ポテンシァルの大きい
電荷輸送物質に比し含有割合が大きいとするので、電荷
輸送物質の持つイオン化ポテンシァルの差が相互に0.
1eV以下の場合は感光層におけるホールトラップの数
が減少しその結果感度に優れる電子写真用感光体が得ら
れる。
According to the first aspect of the present invention, a photosensitive layer is provided on a conductive substrate, and the photosensitive layer contains a plurality of charge transporting substances, and the ionization potentials of the charge transporting substances have a difference of 0.
According to the second invention, the photosensitive layer is provided on the conductive substrate, and the photosensitive layer contains two charge transporting substances, and the difference between the ionization potentials of the charge transporting substances exceeds 0.1 eV. Since the charge transport material having a small ionization potential has a larger content ratio than the charge transport material having a large ionization potential, the difference in the ionization potentials of the charge transport material is 0.
When it is 1 eV or less, the number of hole traps in the photosensitive layer decreases, and as a result, an electrophotographic photoreceptor having excellent sensitivity can be obtained.

【0033】イオン化ポテンシァルの差が0.1eVを
越える場合であってもイオン化ポテンシァルの小さい電
荷輸送物質の含有割合がイオン化ポテンシァルの大きい
電荷輸送物質に比し大きいと感光層におけるホールトラ
ップの数が減少して感度に優れる電子写真用感光体が得
られる。
Even when the difference in ionization potential exceeds 0.1 eV, the number of hole traps in the photosensitive layer decreases if the content ratio of the charge transport material having a small ionization potential is larger than that of the charge transport material having a large ionization potential. Thus, an electrophotographic photoreceptor having excellent sensitivity can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】移動度の化学式(I−1)で示されるヒドラゾ
ン化合物の組成依存性を示す線図
FIG. 1 is a diagram showing the composition dependence of the mobility of a hydrazone compound represented by the chemical formula (I-1).

【図2】移動度の化学式(I−1)で示されるヒドラゾ
ン化合物の組成依存性を示す線図
FIG. 2 is a diagram showing the composition dependence of the mobility of a hydrazone compound represented by the chemical formula (I-1).

【図3】本発明の一実施例に係る負帯電の電子写真用感
光体を示す断面図
FIG. 3 is a sectional view showing a negatively charged electrophotographic photoreceptor according to an embodiment of the present invention.

【図4】本発明の一実施例に係る正帯電の電子写真用感
光体を示す断面図
FIG. 4 is a sectional view showing a positively charged electrophotographic photosensitive member according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11 導電性基体 12 電荷発生層 13 電荷輸送層 14 感光層 15 表面被覆層 11 Conductive Substrate 12 Charge Generation Layer 13 Charge Transport Layer 14 Photosensitive Layer 15 Surface Coating Layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】導電性基体上に感光層を有し、 感光層は複数の電荷輸送物質を含み電荷輸送物質の持つ
イオン化ポテンシァルはその差が相互に0.1eV以下
であることを特徴とする電子写真用感光体。
1. A photosensitive layer is provided on a conductive substrate, wherein the photosensitive layer contains a plurality of charge transporting substances, and the ionization potentials of the charge transporting substances are different from each other by 0.1 eV or less. Electrophotographic photoreceptor.
【請求項2】導電性基体上に感光層を有し、 感光層は二つの電荷輸送物質を含み電荷輸送物質の持つ
イオン化ポテンシァルはその差が0.1eVを越えるも
のであり、イオン化ポテンシァルの小さい電荷輸送物質
はイオン化ポテンシァルの大きい電荷輸送物質に比し含
有割合が大きいことを特徴とする電子写真用感光体。
2. A photosensitive layer is provided on a conductive substrate, and the photosensitive layer contains two charge-transporting substances, and the difference in ionization potential of the charge-transporting substances is more than 0.1 eV, and the ionization potential is small. A photoreceptor for electrophotography, characterized in that the content of the charge transport material is larger than that of the charge transport material having a large ionization potential.
【請求項3】請求項1または2記載の電子写真用感光体
において、感光層は電荷発生層と電荷輸送層の積層され
たものであることを特徴とする電子写真用感光体。
3. The electrophotographic photoreceptor according to claim 1, wherein the photosensitive layer is a laminate of a charge generation layer and a charge transport layer.
JP20382493A 1993-08-18 1993-08-18 Electrophotographic photoreceptor Pending JPH0756364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20382493A JPH0756364A (en) 1993-08-18 1993-08-18 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20382493A JPH0756364A (en) 1993-08-18 1993-08-18 Electrophotographic photoreceptor

Publications (1)

Publication Number Publication Date
JPH0756364A true JPH0756364A (en) 1995-03-03

Family

ID=16480324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20382493A Pending JPH0756364A (en) 1993-08-18 1993-08-18 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JPH0756364A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5806313A (en) * 1995-11-30 1998-09-15 Caterpillar Inc. Conduit arrangement for a construction machine
JP2006259155A (en) * 2005-03-16 2006-09-28 Fuji Xerox Co Ltd Image forming apparatus
CN100421030C (en) * 2003-01-30 2008-09-24 夏普公司 Electrofax photoreceptor and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5806313A (en) * 1995-11-30 1998-09-15 Caterpillar Inc. Conduit arrangement for a construction machine
CN100421030C (en) * 2003-01-30 2008-09-24 夏普公司 Electrofax photoreceptor and preparation method thereof
JP2006259155A (en) * 2005-03-16 2006-09-28 Fuji Xerox Co Ltd Image forming apparatus

Similar Documents

Publication Publication Date Title
JPH04119360A (en) Electrophotographic sensitive body
JPH02228673A (en) Xerographic image forming member
JP2770539B2 (en) Electrophotographic photoreceptor
JP2949971B2 (en) Electrophotographic photoreceptor
JPH0756364A (en) Electrophotographic photoreceptor
JP2814739B2 (en) Electrophotographic photoreceptor
JP3114394B2 (en) Electrophotographic photoreceptor
JPH05204175A (en) Electrophotographic sensitive body
JP3006329B2 (en) Electrophotographic photoreceptor
JP2671544B2 (en) Electrophotographic photoreceptor
JP2868838B2 (en) Electrophotographic photoreceptor
JP2833192B2 (en) Electrophotographic photoreceptor
JP3173298B2 (en) Electrophotographic photoreceptor
JP2674305B2 (en) Electrophotographic photoreceptor
JP3346411B2 (en) Electrophotographic photoreceptor
JP2817807B2 (en) Electrophotographic photoreceptor
JP3094603B2 (en) Electrophotographic photoreceptor
JPH0756368A (en) Electrophotographic photoreceptor
JPH0756367A (en) Electrophotographic photoreceptor
JPH05134434A (en) Electrophotographic sensitivity body
JPH0756370A (en) Electrophotographic photoreceptor
JPH09134021A (en) Electrophotographic photoreceptor
JPH01307759A (en) Electrophotographic sensitive body
JPH07140684A (en) Electrophotographic photoreceptor
JPH06202355A (en) Electrophotographic sensitive body