JPH0524507B2 - - Google Patents

Info

Publication number
JPH0524507B2
JPH0524507B2 JP26053187A JP26053187A JPH0524507B2 JP H0524507 B2 JPH0524507 B2 JP H0524507B2 JP 26053187 A JP26053187 A JP 26053187A JP 26053187 A JP26053187 A JP 26053187A JP H0524507 B2 JPH0524507 B2 JP H0524507B2
Authority
JP
Japan
Prior art keywords
photoreceptor
charge
layer
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26053187A
Other languages
Japanese (ja)
Other versions
JPH01102469A (en
Inventor
Masami Kuroda
Yoichi Nakamura
Noboru Kosho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP26053187A priority Critical patent/JPH01102469A/en
Priority to US07/257,260 priority patent/US4957837A/en
Priority to DE3835108A priority patent/DE3835108C2/en
Publication of JPH01102469A publication Critical patent/JPH01102469A/en
Publication of JPH0524507B2 publication Critical patent/JPH0524507B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0622Heterocyclic compounds
    • G03G5/0624Heterocyclic compounds containing one hetero ring
    • G03G5/0627Heterocyclic compounds containing one hetero ring being five-membered
    • G03G5/0629Heterocyclic compounds containing one hetero ring being five-membered containing one hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/14Radicals substituted by singly bound hetero atoms other than halogen
    • C07D333/20Radicals substituted by singly bound hetero atoms other than halogen by nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/26Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D333/28Halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/26Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D333/42Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms with nitro or nitroso radicals directly attached to ring carbon atoms
    • C07D333/44Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms with nitro or nitroso radicals directly attached to ring carbon atoms attached in position 5
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0622Heterocyclic compounds
    • G03G5/0644Heterocyclic compounds containing two or more hetero rings
    • G03G5/0661Heterocyclic compounds containing two or more hetero rings in different ring systems, each system containing at least one hetero ring
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0666Dyes containing a methine or polymethine group
    • G03G5/0668Dyes containing a methine or polymethine group containing only one methine or polymethine group
    • G03G5/067Dyes containing a methine or polymethine group containing only one methine or polymethine group containing hetero rings

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は電子写真用感光体に関し、詳しくは導
電性基体上に形成せしめた感光層の中に、新規な
ヒドラゾン化合物を含有することを特徴とする電
子写真用感光体に関する。 〔従来の技術〕 従来より電子写真用感光体(以下感光体とも称
する)の感光材料としてはセレンまたはセレン合
金などの無機光導電性物質、酸化亜鉛あるいは硫
化カドミウムなどの無機光導電性物質を樹脂結着
剤中に分散させたもの、ポリ−N−ビニルカルバ
ゾールまたはポリビニルアントラセンなどの有機
光導電性物質、フタロシアニン化合物あるいはビ
スアゾ化合物などの有機光導電性物質、またはこ
れら有機光導電性物質を樹脂結着剤中に分散させ
たものなどが利用されている。 また感光体には暗所で表面電荷を保持する機
能、光を受容して電荷を発生する機能、同じく光
を受容して電荷を輸送する機能とが必要である
が、一つの層でこれらの機能をあわせもつたいわ
ゆる単層型感光体と、主として電荷発生に寄与す
る層と暗所での表面電荷の保持と光受容時の電荷
輸送に寄与する層とに機能分離した層を積層した
いわゆる積層型感光体がある。これらの感光体を
用いた電子写真法による画像形成には、例えばカ
ールソン方式が適用される。この方式での画像形
成は暗所での感光体へのコロナ放電による帯電、
帯電された感光体表面上への露光による原稿の文
字や絵などの静電潜像の形成、形成された静電潜
像のトナーによる現像、現像されたトナー像の紙
などの支持体への転写、定着により行われ、トナ
ー像転写後の感光体は除電、残留トナーの除去、
光除電などを行つた後、再使用に供される。 近年、可とう性、熱安定性、膜形成性などの利
点により、有機材料を用いた電子写真用感光体が
実用化されてきている。例えば、ポリ−N−ビニ
ルカルバゾールと2,4,7−トリニトロフルオ
レン−9−オンとからなる感光体(米国特許第
3484237号明細書に記載)、有機顔料を主成分とす
る感光体(特開昭47−37543号公報に記載)、染料
と樹脂とからなる共晶錯体を主成分とする感光体
(特開昭47−10735号公報に記載)などである。さ
らに、新規ヒドラゾン化合物も数多く実用化され
ている。 〔発明が解決しようとする問題点〕 上述のように、有機材料は無機材料にない多く
の長所を持つが、しかしながら、電子写真用感光
体に要求されるすべての特性を充分満足するもの
がまだ得られていないのが現状であり、特に光感
度および繰り返し連続使用時の特性に問題があつ
た。 本発明は、上述の点に鑑みてなされたものであ
つて、感光層に電荷輸送性物質として今まで用い
られたことのない新しい有機材料を用いることに
より、高感度で繰り返し特性の優れた複写機用お
よびプリンタ用の電子写真用感光体を提供するこ
とを目的とする。 〔問題点を解決するための手段〕 上記目的を達成するために、本発明によれば、
下記一般式()で示されるヒドラゾン化合物の
うちの少なくとも一種類を含む感光層を有する電
子写真用感光体とする。 〔式()中、R1は置換基を有してもよいア
リール基を表し、R2,R3,R4,R5およびR6はそ
れぞれ水素原子、ハロゲン原子、アルキル基、ア
ルコキシ基、ヒドロキシ基、ニトロ基、アリル
基、置換基を有してもよいアリール基、アラルキ
ル基を表し、nは0または1を表す。〕 〔作用〕 前記一般式()で示されるヒドラゾン化合物
を感光層に用いた例は知られていない。本発明者
らは、前記目的を達成するために各種有機材料に
ついて鋭意検討を進めるなかで、これらヒドラゾ
ン化合物について数多くの実験を行つた結果、そ
の技術的解明はまだ充分なされてはいないが、こ
のような前記一般式()で示される特定のヒド
ラゾン化合物を電荷輸送性物質として使用するこ
とが、電子写真特性の向上に極めて有効であるこ
とを見出し、高感度で繰り返し特性の優れた感光
体を得るに至つたのである。 〔実施例〕 本発明に用いられる前記一般式()のヒドラ
ゾン化合物は、通常の方法により合成することが
できる。すなわち、必要に応じて縮合剤として少
量の酸を用い、アルコールなどの適当な有機溶媒
中でアルデヒド類またはカルボニル化合物とヒド
ラジン類を縮合させることにより得られる。 こうして得られる一般式()で表されるヒド
ラゾン化合物の具体例を例示すると次の通りであ
る。 本発明の感光体は前述のようなヒドラゾン化合
物を感光層中に含有させたものであるが、これら
ヒドラゾン化合物の応用の仕方によつて、第1
図、第2図、あるいは第3図に示したごとくに用
いることができる。 第1図、第2図および第3図は本発明の感光体
のそれぞれ異なる実施例の概念的断面図で、1は
導電性基体、20,21,22は感光層、3は電
荷発生物質、4は電荷発生層、5は電荷輸送性物
質、6は電荷輸送層、7は被覆層である。 第1図は、導電性基体1上に電荷発生物質3と
電荷輸送性物質5であるヒドラゾン化合物を樹脂
バインダー(結着剤)中に分散した感光層20
(通常単層型感光体と称せられる構成)が設けら
れたものである。 第2図は、導電性基体1上に電荷発生物質3を
主体とする電荷発生層4と、電荷輸送性物質5で
あるヒドラゾン化合物を含有する電荷輸送層6と
の積層からなる感光層21(通常積層型感光体と
称せられる構成)が設けられたものである。この
構成の感光体は通常負帯電方式で用いられる。 第3図は、第2図の逆の層構成のものであり、
通常正帯電方式で用いられる。この場合には、電
荷発生層4を保護するためにさらに被覆層7を設
けるのが一般的である。 このように、積層型感光体として二種類の層構
成をとる理由としては、第2図の層構成の感光体
を正帯電方式で用いようとしても、これに適合す
る電荷輸送性物質は現在まだ見つかつていないた
めである。現段階では、積層型感光体で正帯電方
式を適用する場合には、第3図に示した層構成の
感光体とすることが必要なのである。 第1図の感光体は、電荷発生物質を電荷輸送性
物質および樹脂バインダーを溶解した溶液中に分
散せしめ、この分散液を導電性基体上に塗布する
ことによつて作製できる。 第2図の感光体は、導電性基体上に電荷発生物
質を真空蒸着するか、あるいは電荷発生物質の粒
子を溶剤または樹脂バインダー中に分散して得た
分散液を塗布、乾燥し、その上に電荷輸送性物質
および樹脂バインダーを溶解した溶液を塗布、乾
燥することにより作製できる。 第3図の感光体は、電荷輸送性物質および樹脂
バインダーを溶解した溶液を導電性基体上に塗
布、乾燥し、その上に電荷発生物質を真空蒸着す
るか、あるいは電荷発生物質の粒子を溶剤または
樹脂バインダー中に分散して得た分散液を塗布、
乾燥し、さらに被覆層を形成することにより作製
できる。 導電性基体1は感光体の電極としての役目と同
時に他の各層の支持体となつており、円筒状、板
状、フイルム状のいずれでも良く、材質的にはア
ルミニウム、ステンレス鋼、ニツケルなどの金
属、あるいはガラス、樹脂などの上に導電処理を
ほどこしたものでも良い。 電荷発生層4は、前記したように電荷発生物質
3の粒子を樹脂バインダー中に分散させた材料を
塗布するか、あるいは、真空蒸着などの方法によ
り形成され、光を受容して電荷を発生する。ま
た、その電荷発生効率が高いことと同時に発生し
た電荷の電荷輸送層6および被覆層7への注入性
が重要で、電場依存性が少なく低電場でも注入の
良いことが望ましい。電荷発生物質としては、無
金属フタロシアニン、チタニルフタロシアニンな
どのフタロシアニン化合物、各種アゾ、キノン、
インジゴ顔料あるいは、シアニン、スクアリリウ
ム、アズレニウム、ピリリウム化合物などの染料
や、セレンまたはセレン化合物などが用いられ、
画像形成に使用される露光光源の光波長領域に応
じて好適な物質を選ぶことができる。電荷発生層
は電荷発生機能を有すればよいので、その膜厚は
電荷発生物質の光吸収係数より決まり一般的には
5μm以下であり、好適には1μm以下である。電荷
発生層は電荷発生物質を主体としてこれに電荷輸
送性物質などを添加して使用することも可能であ
る。樹脂バインダーとしては、ポリカーボネー
ト、ポリエステル、ポリアミド、ポリウレタン、
エポキシ、シリコン樹脂、メタクリル酸エステル
の重合体および共重合体などを適宜組み合わせて
使用することが可能である。 電荷輸送層6は樹脂バインダー中に有機電荷輸
送性物質として前記一般式()で示されるヒド
ラゾン化合物を分散させた塗膜であり、暗所では
絶縁体層として感光体の電荷を保持し、光受容時
には電荷発生層から注入される電荷を輸送する機
能を発揮する。樹脂バインダーとしては、ポリカ
ーボネート、ポリエステル、ポリアミド、ポリウ
レタン、エポキシ、シリコン樹脂、メタクリル酸
エステルの重合体および共重合体などを用いるこ
とができる。 被覆層7は暗所ではコロナ放電の電荷を受容し
て保持する機能を有しており、かつ電荷発生層が
感応する光を透過する性能を有し、露光時に光を
透過し、電荷発生層に到達させ、発生した電荷の
注入を受けて表面電荷を中和消滅させることが必
要である。被覆材料としては、ポリエステル、ポ
リアミドなどの有機絶縁性皮膜形成材料が適用で
きる。また、これら有機材料とガラス樹脂、
SiO2などの無機材料さらには金属、金属酸化物
などの電気抵抗を低減せしめる材料とを混合して
用いることもできる。被覆材料としては有機絶縁
性皮膜形成材料に限定されることはなくSiO2
どの無機材料さらには金属、金属酸化物などを蒸
着、スパツタリングなどの方法により形成するこ
とも可能である。被覆材料は前述の通り電荷発生
物質の光の吸収極大の波長領域においてできるだ
け透明であることが望ましい。 被覆層自体の膜厚は被覆層の配合組成にも依存
するが、繰り返し連続使用したとき残留電位が増
大するなどの悪影響が出ない範囲で任意に設定で
きる。 以下、本発明の具体的な実施例について説明す
る。 実施例 1 ボールミルで150時間粉砕した無金属フタロシ
アニン(東京化成製)50重量部と前記化合物No.1
で示されるヒドラゾン化合物100重量部をポリエ
ステル樹脂(商品名バイロン200:東洋紡製)100
重量部とテトラヒドロフラン(THF)溶剤とと
もに3時間混合機により混練して塗布液を調整
し、導電性基体であるアルミ蒸着ポリエステルフ
イルム(Al−PET)上に、ワイヤーバー法にて
塗布して、乾燥後の膜厚が15μmになるように感
光層を形成して、第1図に示した構成の感光体を
作製した。 実施例 2 まず、α型無金属フタロシアニンを出発原料と
し、二つのリニアモーターを対向して配置した間
にα型無金属フタロシアニンと作用小片としてテ
フロンピースを内蔵した非磁性罐体をおいて粉砕
するLIMMAC(Linear Induction Motor
Mixing and Crashing: 富士電機製)処理を
20分間行い微粉末化した。この微粉末化された試
料1重量部とDMF(N,N−ジメチルホルムアミ
ド)溶剤50重量部とを超音波分散処理を行つた。
その後、試料とDMFとを分離濾過し、乾燥して
無金属フタロシアニンの処理を行つた。 次に、前記化合物No.2で示されるヒドラゾン化
合物100重量部をテトラヒドロフラン(THF)
700重量部に溶かした液とポリメタクリル酸メチ
ルポリマー(PMMA:東京化成製)100重量部を
トルエン700重量部に溶かした液とを混合してで
きた塗液をアルミ蒸着ポリエステルフイルム基体
上にワイヤーバー法にて塗布し、乾燥後の膜厚が
15μmになるように電荷輸送層を形成した。この
ようにして得られた電荷輸送層上に上記の処理を
された無金属フタロシアニン50重量部、ポリエス
テル樹脂(商品名バイロン200:東洋紡製)50重
量部、PMMA50重量部をTHF溶剤とともに3時
間混合機により混練して塗布液を調整し、ワイヤ
ーバー法にて塗布し、乾燥後の膜厚が1μmになる
ように電荷発生層を形成し、第3図に示した構成
に対応する感光体を作製した。ただし、本発明に
直接関与しない被覆層は設けなかつた。 実施例 3 実施例1の感光層の組成を、無金属フタロシア
ニン50重量部、化合物No.3で示されるヒドラゾン
化合物100重量部、ポリエステル樹脂(商品名バ
イロン200:東洋紡製)50重量部、PMMA50重量
部とに変更し、その他は実施例1と同様にして感
光層を形成し感光体を作製した。 実施例 4 実施例3において、無金属フタロシアニンに変
えて例えば特開昭47−37543に示されるようなビ
スアゾ顔料であるクロロダイアンブルーを用い、
その他は実施例1と同様にして感光層を形成し感
光体を作製した。 このようにして得られた感光体の電子写真特性
を川口電機製静電記録紙試験装置「SP−428」を
用いて測定した。 感光体の表面電位Vs(ボルト)は暗所で+
6.0kVのコロナ放電を10秒間行つて感光体表面を
正帯電せしめたときの初期の表面電位であり、続
いてコロナ放電を中止した状態で2秒間暗所保持
したときの表面電位Vd(ボルト)を測定し、さら
に続いて感光体表面に照度2ルツクスの白色光を
照射してVdが半分になるまでの時間(秒)を求
め半減衰露光量E1/2(ルツクス・秒)とした。ま
た、照度2ルツクスの白色光を10秒間照射したと
きの表面電位を残留電位Vr(ボルト)とした。ま
た、フタロシアニン化合物を電荷発生物質とした
場合、長波長光での高感度が期待できるので、波
長780nmの単色光を用いたときの電子写真特性も
同時に測定した。すなわち、Vdまでは同様に測
定し、次に白色光の替わりに1μWの単色光
(780nm)を照射して半減衰露光量(μJ/cm2)を
求め、また、この光を10秒間感光体表面に照射し
たときの残留電位Vr(ボルト)を測定した。測定
結果を第1表に示す。
[Industrial Application Field] The present invention relates to an electrophotographic photoreceptor, and more specifically, an electrophotographic photoreceptor characterized by containing a novel hydrazone compound in a photosensitive layer formed on a conductive substrate. Regarding. [Prior Art] Conventionally, photosensitive materials for electrophotographic photoreceptors (hereinafter also referred to as photoreceptors) have been made of inorganic photoconductive substances such as selenium or selenium alloys, or resins containing inorganic photoconductive substances such as zinc oxide or cadmium sulfide. organic photoconductive materials such as poly-N-vinylcarbazole or polyvinylanthracene, phthalocyanine compounds or bisazo compounds, or organic photoconductive materials dispersed in a binder; Dispersed in adhesives, etc. are used. In addition, a photoreceptor must have the function of retaining surface charge in the dark, the function of receiving light and generating charge, and the function of receiving light and transporting charge, but these functions can be achieved in one layer. A so-called single-layer type photoreceptor with multiple functions, and a layer with functionally separated layers: a layer that mainly contributes to charge generation, a layer that contributes to surface charge retention in the dark and charge transport during light reception, are laminated. There is a laminated type photoreceptor. For example, the Carlson method is applied to image formation by electrophotography using these photoreceptors. Image formation in this method involves charging the photoreceptor in a dark place by corona discharge,
Formation of an electrostatic latent image such as characters or pictures on a document by exposure to light on the surface of a charged photoreceptor, development of the formed electrostatic latent image with toner, and transfer of the developed toner image to a support such as paper. This is done by transferring and fixing, and after the toner image has been transferred, the photoreceptor is charged with electricity, residual toner is removed,
After photo-static neutralization, etc., it is reused. In recent years, electrophotographic photoreceptors using organic materials have been put into practical use due to their advantages such as flexibility, thermal stability, and film-forming properties. For example, a photoreceptor made of poly-N-vinylcarbazole and 2,4,7-trinitrofluoren-9-one (U.S. Pat.
3484237), a photoreceptor whose main component is an organic pigment (described in JP-A-47-37543), a photoreceptor whose main component is a eutectic complex consisting of a dye and a resin (described in JP-A-47-37543), a photoreceptor whose main component is a eutectic complex consisting of a dye and a resin 47-10735). Furthermore, many new hydrazone compounds have also been put into practical use. [Problems to be Solved by the Invention] As mentioned above, organic materials have many advantages that inorganic materials do not have, but there is still no material that fully satisfies all the characteristics required for electrophotographic photoreceptors. At present, this has not been achieved, and there have been problems in particular with respect to photosensitivity and characteristics during repeated and continuous use. The present invention has been made in view of the above points, and by using a new organic material that has never been used as a charge transporting substance in the photosensitive layer, copying with high sensitivity and excellent repeatability can be achieved. The purpose of the present invention is to provide electrophotographic photoreceptors for machines and printers. [Means for solving the problems] In order to achieve the above object, according to the present invention,
A photoreceptor for electrophotography has a photosensitive layer containing at least one type of hydrazone compound represented by the following general formula (). [In the formula (), R 1 represents an aryl group which may have a substituent, and R 2 , R 3 , R 4 , R 5 and R 6 each represent a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, It represents a hydroxy group, a nitro group, an allyl group, an aryl group which may have a substituent, or an aralkyl group, and n represents 0 or 1. ] [Function] There is no known example of using a hydrazone compound represented by the above general formula () in a photosensitive layer. In order to achieve the above objective, the present inventors conducted numerous experiments on these hydrazone compounds while conducting intensive studies on various organic materials. We have discovered that the use of a specific hydrazone compound represented by the above general formula () as a charge transporting substance is extremely effective in improving electrophotographic properties, and we have developed a photoreceptor with high sensitivity and excellent repeatability. I was able to obtain it. [Example] The hydrazone compound of the general formula () used in the present invention can be synthesized by a conventional method. That is, it can be obtained by condensing aldehydes or carbonyl compounds with hydrazines in a suitable organic solvent such as alcohol, using a small amount of acid as a condensing agent if necessary. Specific examples of the hydrazone compound represented by the general formula () thus obtained are as follows. The photoreceptor of the present invention contains the above-mentioned hydrazone compound in the photosensitive layer.
It can be used as shown in FIG. 2 or 3. 1, 2, and 3 are conceptual cross-sectional views of different embodiments of the photoreceptor of the present invention, in which 1 is a conductive substrate, 20, 21, and 22 are photosensitive layers, 3 is a charge-generating material, 4 is a charge generation layer, 5 is a charge transport material, 6 is a charge transport layer, and 7 is a coating layer. FIG. 1 shows a photosensitive layer 20 on a conductive substrate 1 in which a charge generating substance 3 and a hydrazone compound as a charge transporting substance 5 are dispersed in a resin binder.
(a configuration commonly referred to as a single-layer photoreceptor). FIG. 2 shows a photosensitive layer 21( The structure is usually referred to as a laminated photoreceptor). A photoreceptor having this configuration is normally used in a negative charging system. FIG. 3 shows the reverse layer structure of FIG. 2,
Usually used with positive charging method. In this case, it is common to further provide a coating layer 7 to protect the charge generation layer 4. The reason why the laminated photoreceptor has two types of layer configurations is that even if a photoreceptor with the layer configuration shown in Figure 2 is used in a positive charging system, there is currently no charge transporting material that is compatible with this. This is because it has not been found. At present, when applying a positive charging method to a laminated type photoreceptor, it is necessary to use a photoreceptor having the layer structure shown in FIG. The photoreceptor shown in FIG. 1 can be produced by dispersing a charge generating substance in a solution containing a charge transporting substance and a resin binder, and applying this dispersion onto a conductive substrate. The photoreceptor shown in Figure 2 is produced by vacuum-depositing a charge-generating substance on a conductive substrate, or by coating and drying a dispersion obtained by dispersing particles of a charge-generating substance in a solvent or resin binder, and then It can be produced by applying a solution containing a charge transporting substance and a resin binder to a substrate and drying the solution. The photoreceptor shown in Figure 3 is produced by coating a conductive substrate with a solution containing a charge-transporting substance and a resin binder and drying it, and then vacuum-depositing a charge-generating substance thereon, or by depositing particles of the charge-generating substance in a solvent. Or apply a dispersion obtained by dispersing it in a resin binder,
It can be produced by drying and further forming a covering layer. The conductive substrate 1 serves as an electrode for the photoreceptor and at the same time serves as a support for other layers, and may be cylindrical, plate-shaped, or film-shaped, and may be made of aluminum, stainless steel, nickel, etc. It may also be made of metal, glass, resin, or the like, which has been subjected to conductive treatment. The charge generation layer 4 is formed by applying a material in which particles of the charge generation substance 3 are dispersed in a resin binder as described above, or by a method such as vacuum deposition, and generates charges by receiving light. . In addition to the high charge generation efficiency, the ability to inject the generated charges into the charge transport layer 6 and the coating layer 7 is also important, and it is desirable that the charge is less dependent on the electric field and can be easily injected even in a low electric field. Examples of charge generating substances include phthalocyanine compounds such as metal-free phthalocyanine and titanyl phthalocyanine, various azos, quinones,
Indigo pigments, dyes such as cyanine, squarylium, azulenium, and pyrylium compounds, and selenium or selenium compounds are used.
A suitable material can be selected depending on the light wavelength range of the exposure light source used for image formation. Since the charge generation layer only needs to have a charge generation function, its thickness is determined by the light absorption coefficient of the charge generation substance.
It is 5 μm or less, preferably 1 μm or less. The charge generation layer is mainly composed of a charge generation substance, and it is also possible to use a charge transporting substance added thereto. As a resin binder, polycarbonate, polyester, polyamide, polyurethane,
Epoxy, silicone resin, polymers and copolymers of methacrylic acid esters, etc. can be used in appropriate combinations. The charge transport layer 6 is a coating film in which a hydrazone compound represented by the general formula () as an organic charge transport substance is dispersed in a resin binder, and serves as an insulating layer in the dark to retain the charge on the photoreceptor and prevent light During reception, it functions to transport charges injected from the charge generation layer. As the resin binder, polycarbonate, polyester, polyamide, polyurethane, epoxy, silicone resin, polymers and copolymers of methacrylic acid ester, etc. can be used. The coating layer 7 has the function of receiving and retaining the charge of corona discharge in a dark place, and has the ability to transmit the light to which the charge generation layer is sensitive, and transmits the light upon exposure, and the charge generation layer It is necessary to neutralize and eliminate the surface charges by injecting the generated charges. As the coating material, organic insulating film-forming materials such as polyester and polyamide can be used. In addition, these organic materials and glass resin,
It is also possible to use a mixture of inorganic materials such as SiO 2 and materials that reduce electrical resistance such as metals and metal oxides. The coating material is not limited to organic insulating film forming materials, and may also be formed using inorganic materials such as SiO 2 or metals, metal oxides, etc. by methods such as vapor deposition and sputtering. As mentioned above, it is desirable that the coating material be as transparent as possible in the wavelength region where the charge generating substance absorbs maximum light. The thickness of the coating layer itself depends on the composition of the coating layer, but it can be set arbitrarily within a range that does not cause adverse effects such as an increase in residual potential when used repeatedly and continuously. Hereinafter, specific examples of the present invention will be described. Example 1 50 parts by weight of metal-free phthalocyanine (manufactured by Tokyo Kasei) ground for 150 hours in a ball mill and the above compound No. 1
Add 100 parts by weight of the hydrazone compound shown by 100 parts by weight to polyester resin (trade name Byron 200: manufactured by Toyobo).
A coating solution was prepared by kneading the parts by weight and a tetrahydrofuran (THF) solvent in a mixer for 3 hours, and the coating solution was applied onto an aluminum-deposited polyester film (Al-PET), which is a conductive substrate, using a wire bar method, and then dried. A photoreceptor having the structure shown in FIG. 1 was prepared by forming a photoreceptor layer so as to have a subsequent thickness of 15 μm. Example 2 First, α-type metal-free phthalocyanine is used as a starting material, and a non-magnetic case containing α-type metal-free phthalocyanine and a Teflon piece as a working piece is placed between two linear motors placed opposite each other to crush it. LIMMAC (Linear Induction Motor)
Mixing and Crashing: Processing (manufactured by Fuji Electric)
This was carried out for 20 minutes to form a fine powder. 1 part by weight of this finely powdered sample and 50 parts by weight of DMF (N,N-dimethylformamide) solvent were subjected to ultrasonic dispersion treatment.
Thereafter, the sample and DMF were separated and filtered, dried, and processed for metal-free phthalocyanine. Next, 100 parts by weight of the hydrazone compound represented by Compound No. 2 was added to tetrahydrofuran (THF).
A coating liquid made by mixing 700 parts by weight of a liquid dissolved in 100 parts by weight of polymethyl methacrylate polymer (PMMA: manufactured by Tokyo Kasei) in 700 parts by weight of toluene was applied to a wire on an aluminum vapor-deposited polyester film substrate. Applied using the bar method, the film thickness after drying is
A charge transport layer was formed to have a thickness of 15 μm. On the thus obtained charge transport layer, 50 parts by weight of the above-treated metal-free phthalocyanine, 50 parts by weight of polyester resin (trade name: Vylon 200, manufactured by Toyobo Co., Ltd.), and 50 parts by weight of PMMA were mixed together with THF solvent for 3 hours. A photoreceptor corresponding to the structure shown in Fig. 3 was prepared by kneading it with a machine to prepare a coating solution, and applying it using a wire bar method to form a charge generation layer with a film thickness of 1 μm after drying. Created. However, no coating layer not directly related to the present invention was provided. Example 3 The composition of the photosensitive layer of Example 1 was as follows: 50 parts by weight of metal-free phthalocyanine, 100 parts by weight of a hydrazone compound represented by Compound No. 3, 50 parts by weight of polyester resin (trade name: Vylon 200, manufactured by Toyobo), and 50 parts by weight of PMMA. A photoreceptor was produced by forming a photosensitive layer in the same manner as in Example 1, except that the following parts were changed. Example 4 In Example 3, chlorodiane blue, which is a bisazo pigment as shown in JP-A-47-37543, was used instead of the metal-free phthalocyanine,
Otherwise, a photosensitive layer was formed in the same manner as in Example 1 to produce a photoreceptor. The electrophotographic properties of the photoreceptor thus obtained were measured using an electrostatic recording paper tester "SP-428" manufactured by Kawaguchi Electric. The surface potential V s (volts) of the photoreceptor is + in the dark.
This is the initial surface potential when a 6.0 kV corona discharge is performed for 10 seconds to positively charge the surface of the photoreceptor, and the surface potential V d (volt ), then irradiate the surface of the photoconductor with white light with an illuminance of 2 lux, find the time (seconds) until V d is halved, and find the half-attenuation exposure amount E 1/2 (lux seconds). did. Further, the surface potential when white light with an illuminance of 2 lux was irradiated for 10 seconds was defined as the residual potential V r (volt). In addition, when a phthalocyanine compound is used as a charge-generating substance, high sensitivity with long wavelength light can be expected, so the electrophotographic characteristics when using monochromatic light with a wavelength of 780 nm were also measured at the same time. That is, measure up to V d in the same way, then irradiate with 1 μW monochromatic light (780 nm) instead of white light to find the half-attenuation exposure (μJ/cm 2 ), and expose this light for 10 seconds. The residual potential V r (volts) when the body surface was irradiated was measured. The measurement results are shown in Table 1.

【表】 第1表に見られるように、実施例1,2,3,
4の感光体は半減衰露光量、残留電位ともに差異
はなく、表面電位でも良好な特性を示している。
また、780nmの長波長光に対しても、フタロシア
ニン化合物を電荷発生物質とした実施例1,2,
3の感光体は優れた電子写真特性を示している。 実施例 5 厚さ500μmのアルミニウム板上に、セレンを厚
さ1.5μmに真空蒸着し電荷発生層を形成し、次
に、化合物No.4で示されるヒドラゾン化合物100
重量部をテトラヒドロフラン(THF)700重量部
に溶かした液とポリメタクリル酸メチルポリマー
(PMMA:東京化成製)100重量部をトルエン700
重量部に溶かした液とを混合してできた塗液をワ
イヤーバー法にて塗布し、乾燥後の膜厚が20μm
になるように電荷輸送層を形成し、第2図に示し
た構成の感光体を作製した。この感光体に−
6.0kVのコロナ帯電を0.2秒間行い電子写真特性を
測定したところ、Vs=−700V、Vr=−60V、
E1/2=4.2ルツクス・秒と良好な結果が得られた。 実施例 6 実施例1で処理された無金属フタロシアニン50
重量部、ポリエステル樹脂(商品名バイロン
200:東洋紡製)50重量部、PMMA50重量部を
THF溶剤とともに3時間混合機により混練して
塗布液を調整し、アルミニウム支持体上に約1μm
になるように塗布し、電荷発生層を形成した。次
に、化合物No.5で示されるヒドラゾン化合物100
重量部、ポリカーボネート樹脂(パンライトL−
1250)100重量部、シリコンオイル0.1重量部を
THF700重量部とトルエン700重量部で混合し、
電荷発生層の上に約15μmとなるように塗布し、
電荷輸送層を形成した。 このようにして得られた感光体を実施例5と同
様にして、−6.0kVのコロナ帯電を0.2秒間行い電
子写真特性を測定したところ、Vs=−760V、
E1/2=4.6ルツクス・秒と良好な結果が得られた。 実施例 7 化合物No.6〜No.32それぞれについて実施例4と
同様にして感光層を形成して感光体とし、「SP−
428」を用いて半減衰露光量を測定した結果を第
2表に示す。 暗所で+6.0kVのコロナ放電を10秒間行い正帯
電せしめ、照度2ルツクスの白色光を照射した場
合の半減衰露光量E1/2(ルツクス・秒)を示した。
[Table] As seen in Table 1, Examples 1, 2, 3,
Photoreceptor No. 4 has no difference in half-attenuation exposure or residual potential, and exhibits good characteristics in terms of surface potential.
In addition, for long wavelength light of 780 nm, Examples 1 and 2 in which a phthalocyanine compound was used as a charge generating substance,
Photoreceptor No. 3 shows excellent electrophotographic properties. Example 5 On an aluminum plate with a thickness of 500 μm, selenium was vacuum-deposited to a thickness of 1.5 μm to form a charge generation layer, and then a hydrazone compound 100 represented by Compound No. 4 was deposited.
700 parts by weight of tetrahydrofuran (THF) and 100 parts by weight of polymethyl methacrylate polymer (PMMA: manufactured by Tokyo Kasei) were dissolved in 700 parts by weight of toluene.
A coating liquid made by mixing parts by weight with a dissolved liquid is applied using the wire bar method, and the film thickness after drying is 20 μm.
A charge transport layer was formed in such a manner that a photoreceptor having the structure shown in FIG. 2 was produced. To this photoreceptor-
When electrophotographic characteristics were measured using 6.0kV corona charging for 0.2 seconds, Vs = -700V, Vr = -60V,
A good result was obtained with E 1/2 = 4.2 Lux·sec. Example 6 Metal-free phthalocyanine 50 treated in Example 1
Weight parts, polyester resin (product name: Vylon)
200: Toyobo) 50 parts by weight, PMMA 50 parts by weight
The coating solution was prepared by kneading with THF solvent for 3 hours using a mixer, and then coated on an aluminum support with a thickness of about 1 μm.
A charge generation layer was formed. Next, hydrazone compound 100 shown as compound No. 5
Part by weight, polycarbonate resin (Panlite L-
1250) 100 parts by weight, 0.1 parts by weight of silicone oil
Mix 700 parts by weight of THF and 700 parts by weight of toluene,
Coat it on the charge generation layer to a thickness of about 15μm,
A charge transport layer was formed. The thus obtained photoreceptor was subjected to corona charging of -6.0 kV for 0.2 seconds in the same manner as in Example 5, and its electrophotographic characteristics were measured. As a result, Vs = -760V,
A good result was obtained with E 1/2 = 4.6 Lux·sec. Example 7 A photosensitive layer was formed for each of Compounds No. 6 to No. 32 in the same manner as in Example 4, and a photoreceptor was prepared.
Table 2 shows the results of measuring the half-attenuation exposure using ``428''. A corona discharge of +6.0 kV was performed for 10 seconds in a dark place to positively charge the material, and the half-attenuation exposure amount E 1/2 (lux seconds) was shown when white light with an illuminance of 2 lux was irradiated.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明によれば、導電性基体上に電荷輸送性物
質として前記一般式()で示されるヒドラゾン
化合物を用いることとしたため、正帯電および負
帯電においても高感度でしかも繰り返し特性の優
れた感光体を得ることができる。また、電荷発生
物質は露光光源の種類に対応して好適な物質を選
ぶことができ、一例をあげるとフタロシアニン化
合物およびある種のビスアゾ化合物を用いれば半
導体レーザプリンタに使用可能な感光体を得るこ
とができる。さらに、必要に応じて表面に被覆層
を設置して耐久性を向上することが可能である。
According to the present invention, since a hydrazone compound represented by the general formula () is used as a charge transporting substance on a conductive substrate, a photoreceptor with high sensitivity and excellent repeatability even in positive and negative charging can be obtained. can be obtained. In addition, suitable charge-generating substances can be selected depending on the type of exposure light source. For example, by using phthalocyanine compounds and certain bisazo compounds, it is possible to obtain photoreceptors that can be used in semiconductor laser printers. I can do it. Furthermore, if necessary, it is possible to provide a coating layer on the surface to improve durability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図および第3図は本発明の感光体
のそれぞれ異なる実施例を示す概念的断面図であ
る。 1……導電性基体、3……電荷発生物質、4…
…電荷発生層、5……電荷輸送性物質、6……電
荷輸送層、7……被覆層、20,21,22……
感光層。
FIGS. 1, 2, and 3 are conceptual sectional views showing different embodiments of the photoreceptor of the present invention. 1... Conductive substrate, 3... Charge generating substance, 4...
...Charge generation layer, 5...Charge transport material, 6...Charge transport layer, 7...Coating layer, 20, 21, 22...
photosensitive layer.

Claims (1)

【特許請求の範囲】 1 下記一般式()で示されるヒドラゾン化合
物のうちの少なくとも一種類を含む感光層を有す
ることを特徴とする電子写真用感光体。 〔式()中、R1は置換基を有してもよいア
リール基を表し、R2,R3,R4,R5およびR6はそ
れぞれ水素原子、ハロゲン原子、アルキル基、ア
ルコキシ基、ヒドロキシ基、ニトロ基、アリル
基、置換基を有してもよいアリール基、アラルキ
ル基を表し、nは0または1を表す。〕
[Scope of Claims] 1. An electrophotographic photoreceptor characterized by having a photosensitive layer containing at least one type of hydrazone compound represented by the following general formula (). [In the formula (), R 1 represents an aryl group which may have a substituent, and R 2 , R 3 , R 4 , R 5 and R 6 each represent a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, It represents a hydroxy group, a nitro group, an allyl group, an aryl group which may have a substituent, or an aralkyl group, and n represents 0 or 1. ]
JP26053187A 1987-10-15 1987-10-15 Electrophotographic sensitive body Granted JPH01102469A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP26053187A JPH01102469A (en) 1987-10-15 1987-10-15 Electrophotographic sensitive body
US07/257,260 US4957837A (en) 1987-10-15 1988-10-13 Photosensitive member for electrophotography containing hydrazone in charge transport layer
DE3835108A DE3835108C2 (en) 1987-10-15 1988-10-14 Electrophotographic recording material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26053187A JPH01102469A (en) 1987-10-15 1987-10-15 Electrophotographic sensitive body

Publications (2)

Publication Number Publication Date
JPH01102469A JPH01102469A (en) 1989-04-20
JPH0524507B2 true JPH0524507B2 (en) 1993-04-08

Family

ID=17349260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26053187A Granted JPH01102469A (en) 1987-10-15 1987-10-15 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH01102469A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2707795B2 (en) * 1990-03-08 1998-02-04 富士電機株式会社 Electrophotographic photoreceptor
JP2707826B2 (en) * 1990-03-12 1998-02-04 富士電機株式会社 Electrophotographic photoreceptor
US7056959B2 (en) 2002-11-08 2006-06-06 Fuji Photo Film Co., Ltd. Dye-containing curable composition and color filter using the same
JP4303560B2 (en) 2003-10-31 2009-07-29 富士フイルム株式会社 Dye-containing curable composition, and color filter and method for producing the same
JP4518862B2 (en) 2003-12-03 2010-08-04 富士フイルム株式会社 Colored curable composition, color filter and method for producing the same
KR101157873B1 (en) 2004-01-29 2012-06-22 후지필름 가부시키가이샤 Azo dye, colored curable composition color filter and method of manufacturing thesame
JP4480472B2 (en) 2004-06-01 2010-06-16 ダイハツ工業株式会社 Intake device for internal combustion engine
EP1780598A4 (en) 2004-08-02 2012-11-28 Fujifilm Corp Colored curable compositions, color filters and process for production thereof
KR101259491B1 (en) 2005-04-28 2013-05-06 후지필름 가부시키가이샤 Colorant-containing curable composition, color filter and method of producing the same
JP4926552B2 (en) 2006-02-16 2012-05-09 富士フイルム株式会社 Dye-containing photosensitive composition, color filter using the same, and method for producing the same
JP4624943B2 (en) 2006-03-07 2011-02-02 富士フイルム株式会社 Dye-containing negative photosensitive composition, color filter and method for producing the same

Also Published As

Publication number Publication date
JPH01102469A (en) 1989-04-20

Similar Documents

Publication Publication Date Title
JPH0279855A (en) Electrophotographic sensitive body
JPH0524507B2 (en)
JPH01237555A (en) Electrophotographic sensitive body
JPS63158560A (en) Electrophotographic sensitive body
JPH04119360A (en) Electrophotographic sensitive body
JPH032760A (en) Electrophotographic sensitive body
JPH0194349A (en) Electrophotographic sensitive body
JPH05204175A (en) Electrophotographic sensitive body
JPH0524505B2 (en)
JPH01273049A (en) Electrophotographic sensitive body
JPH01107262A (en) Electrophotographic sensitive body
JPS63157159A (en) Electrophotographic sensitive body
JPH01107261A (en) Electrophotographic sensitive body
JPH01172965A (en) Electrophotographic sensitive body
JPH01172967A (en) Electrophotographic sensitive body
JPH01107263A (en) Electrophotographic sensitive body
JPH01152463A (en) Electrophotographic sensitive body
JPS63157160A (en) Electrophotographic sensitive body
JPH0394263A (en) Electrophotographic sensitive body
JPH01107265A (en) Electrophotographic sensitive body
JPH01159658A (en) Electrophotographic sensitive body
JPH01164952A (en) Electrophotographic sensitive body
JPH01164951A (en) Electrophotographic sensitive body
JPH01152466A (en) Electrophotographic sensitive body
JPS63158555A (en) Electrophotographic sensitive body

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20080408