JPH04252813A - Steam turbine arrangement - Google Patents

Steam turbine arrangement

Info

Publication number
JPH04252813A
JPH04252813A JP940591A JP940591A JPH04252813A JP H04252813 A JPH04252813 A JP H04252813A JP 940591 A JP940591 A JP 940591A JP 940591 A JP940591 A JP 940591A JP H04252813 A JPH04252813 A JP H04252813A
Authority
JP
Japan
Prior art keywords
steam
pressure
water
water supply
extracted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP940591A
Other languages
Japanese (ja)
Other versions
JP2692056B2 (en
Inventor
Shoji Nishijima
西島 捷二
Yukio Ueno
幸男 上野
Hiroshi Murakami
村上 広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP940591A priority Critical patent/JP2692056B2/en
Publication of JPH04252813A publication Critical patent/JPH04252813A/en
Application granted granted Critical
Publication of JP2692056B2 publication Critical patent/JP2692056B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Physical Water Treatments (AREA)

Abstract

PURPOSE:To provide a steam turbine system capable of storing all the heat of surplus steam by supplying the surplus steam extracted from a boiler separately to a high pressure deaerator and a low pressure deaerator and controlling the amount of the extracted steam. CONSTITUTION:Steam is extracted from a steam turbine 2, controlled with a high pressure control valve 10, and supplied to a high pressure deaerator 11 to heat and deaerate water fed from a feed water tank 15 through a high pressure feed water line 18. The extracted steam is also controlled to a low pressure with a low pressure control valve 12 to heat and deaerate water supplied through a low pressure feed water line 20. The deaerated water is stored in a deaerated water tank 25 and fed to a boiler 1. When surplus extracted steam is detected with a pressure detector 14, high pressure and low pressure feed water valves 19 and 21 are controlled so that the amount of deaerated water becomes expected deaerated water amount fed to the boiler 1 during the operation period in which steam is not extracted in excess. Deaerated water in the deaerated water tank 25 is supplied through a deaerated water return line 33 to the high pressure deaerator 11.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、蒸気タービンからの抽
気蒸気によりボイラに供給する給水を加熱脱気する脱気
器とこの脱気器からの脱気水を貯留する脱気水タンクを
備え、特に余剰の抽気蒸気により給水を加熱脱気して余
剰の抽気蒸気の蓄熱を行なう蒸気タービン設備に関する
[Industrial Application Field] The present invention includes a deaerator that heats and deaerates feed water supplied to a boiler using extracted steam from a steam turbine, and a deaerated water tank that stores deaerated water from the deaerator. In particular, the present invention relates to steam turbine equipment that heats and deaerates feed water using surplus extracted steam and stores heat of the surplus extracted steam.

【0002】0002

【従来の技術】供給された給水を蒸発させて蒸気を発生
するボイラと、このボイラからの蒸気により駆動される
蒸気タービンとを備え、蒸気タービンの駆動により生じ
た動力を蒸気タービンに接続された発電機により電力に
変換して負荷に供給するとともに、タービンから取出し
た抽気蒸気を抽気蒸気系を経てプロセスに供給する蒸気
タービン設備が知られている。
[Prior Art] A boiler is equipped with a boiler that evaporates supplied water to generate steam, and a steam turbine that is driven by the steam from the boiler. 2. Description of the Related Art Steam turbine equipment is known in which electric power is converted into electric power by a generator and supplied to a load, and extracted steam extracted from a turbine is supplied to a process via an extracted steam system.

【0003】このような蒸気タービン設備において、ボ
イラに供給される給水はボイラやタービン等の機器の腐
食を起こす原因となる給水中に溶存されている酸素や炭
酸ガス等を脱気する必要があり、このため蒸気タービン
から抽気蒸気系を経て供給される抽気蒸気により給水を
加熱脱気する脱気器と、この脱気器にて脱気された脱気
水を貯留する脱気水タンクを備えている。
[0003] In such steam turbine equipment, the feed water supplied to the boiler needs to be degassed to remove oxygen, carbon dioxide, etc. dissolved in the feed water, which can cause corrosion of equipment such as the boiler and turbine. For this purpose, the system is equipped with a deaerator that heats and deaerates the feed water using extracted steam supplied from the steam turbine via the extraction steam system, and a deaerated water tank that stores the deaerated water deaerated by the deaerator. ing.

【0004】したがって蒸気タービン設備の運転では給
水タンクからの給水を脱気器に送って脱気し、この脱気
された脱気水は脱気水タンクに貯留される。そして貯留
された脱気水はボイラに供給されて蒸気になり、この蒸
気により蒸気タービンは駆動される。
[0004] Therefore, in operation of steam turbine equipment, water supplied from a water supply tank is sent to a deaerator to be deaerated, and this deaerated water is stored in a deaerated water tank. The stored degassed water is then supplied to the boiler and turned into steam, which drives the steam turbine.

【0005】ところで、前記抽気蒸気系に接続されるプ
ロセスが要求する蒸気量や発電機からの電気出力が低下
する等の蒸気負荷が減少して余剰の抽気蒸気が生じた場
合には給水タンクから脱気器に供給する給水量を増加し
て脱気のために供給されるタービンの抽気蒸気量を増加
させて脱気水を生成し、この脱気水を脱気水タンクに貯
留して蓄熱することが行なわれている。
[0005] By the way, when excess extracted steam is generated due to a decrease in the steam load such as a decrease in the amount of steam required by the process connected to the extracted steam system or a decrease in the electrical output from the generator, excess extracted steam is generated from the water supply tank. The amount of water supplied to the deaerator is increased to increase the amount of steam extracted from the turbine supplied for deaeration to generate deaeration water, and this deaeration water is stored in a deaeration water tank for heat storage. things are being done.

【0006】[0006]

【発明が解決しようとする課題】上記のように蒸気ター
ビン設備の運転時、余剰の抽気蒸気が生じた場合、脱気
器にて脱気用の抽気蒸気量を増加させて得られる脱気水
量は、余剰蒸気量に比例して決まる。したがってこの脱
気水量は、余剰の抽気蒸気が生じない蒸気タービン設備
の運転期間と余剰の抽気蒸気が生じる運転期間とでは差
異が生じる。このため余剰の抽気蒸気が生じてもその一
部を大気放出しており、このため蓄熱が十分に行なわれ
ないという問題があった。
[Problem to be solved by the invention] As mentioned above, when surplus extracted steam is generated during operation of steam turbine equipment, the amount of deaerated water obtained by increasing the amount of extracted steam for deaeration in the deaerator. is determined in proportion to the amount of excess steam. Therefore, the amount of deaerated water differs between the operating period of the steam turbine equipment in which excess extracted steam is not produced and the operating period in which excess extracted steam is produced. For this reason, even if surplus extracted steam is generated, a portion of it is released into the atmosphere, which poses a problem in that heat storage is not sufficient.

【0007】本発明の目的は、余剰蒸気をすべて蓄熱す
ることのできる蒸気タービン設備を提供することである
[0007] An object of the present invention is to provide steam turbine equipment that can store all of the excess steam.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明によればボイラと、ボイラからの蒸気により
駆動される蒸気タービンと、ボイラに供給する水を貯留
する給水タンクと、蒸気タービンから抽出される抽気蒸
気を第1の圧力制御弁により圧力制御した第1の蒸気に
より給水タンクから第1の給水系を経て供給される水を
加熱脱気する高圧脱気器と、抽気蒸気を第2の圧力制御
弁により第1の蒸気の圧力より低い圧力に制御された第
2の蒸気により給水タンクから第2の給水系を経て供給
される水を加熱脱気する低圧脱気器と、第1の給水系に
設けられ、供給される水の流量を制御する第1の給水制
御弁と、第2の給水系に設けられ、供給する水の流量を
制御する第2の給水制御弁と、高圧及び低圧脱気器で脱
気された脱気水を貯留してボイラに供給する脱気水タン
クと、蒸気負荷が低減して余剰の抽気蒸気発生による抽
気蒸気圧力上昇を検出する圧力検出器と、余剰の抽気蒸
気発生時余剰の抽気蒸気が生じない運転期間のボイラに
供給する予想脱気水量になるように第1と第2の給水制
御弁により制御して高圧及び低圧脱気器にそれぞれ給水
タンクから供給する水の流量比を計画値に制御する制御
部とを備えるものとする。
[Means for Solving the Problems] In order to solve the above problems, the present invention includes a boiler, a steam turbine driven by steam from the boiler, a water supply tank for storing water to be supplied to the boiler, and a steam turbine. A high-pressure deaerator that heats and deaerates water supplied from a water supply tank through a first water supply system using first steam whose pressure is controlled by a first pressure control valve on extracted steam extracted from a turbine; a low-pressure deaerator that heats and deaerates water supplied from a water supply tank through a second water supply system using a second steam whose pressure is controlled to be lower than the pressure of the first steam by a second pressure control valve; , a first water supply control valve provided in the first water supply system to control the flow rate of water to be supplied, and a second water supply control valve provided in the second water supply system to control the flow rate of water to be supplied. , a deaerated water tank that stores the deaerated water deaerated by the high-pressure and low-pressure deaerators and supplies it to the boiler, and a pressure sensor that detects the increase in bleed steam pressure due to the generation of excess bleed steam when the steam load is reduced. High-pressure and low-pressure deaeration is controlled by the detector and the first and second water supply control valves so that the amount of deaeration water supplied to the boiler during the operating period in which no excess bleed steam is generated is controlled by the first and second water supply control valves. The system shall be equipped with a control unit that controls the flow rate ratio of water supplied from the water supply tank to each of the water tanks to a planned value.

【0009】また、脱気水タンク内の脱気水を高圧脱気
器に供給し、この脱気水の流量を制御する脱気水流量制
御弁を備えた脱気水戻り系を設けるものとする。
[0009] Furthermore, a degassed water return system is provided which is equipped with a degassed water flow rate control valve that supplies the degassed water in the degassed water tank to the high-pressure deaerator and controls the flow rate of this degassed water. do.

【0010】0010

【作用】ボイラからの蒸気により駆動される蒸気タービ
ンの負荷や蒸気タービンから抽出される抽気蒸気の負荷
、例えばプロセスの蒸気負荷が低減した場合には抽気蒸
気に余剰の蒸気が生じる。この余剰の抽気蒸気を第1の
圧力制御弁により制御した蒸気(以下高圧蒸気という)
と第2の圧力制御弁により制御した前記高圧蒸気により
低い圧力の低圧蒸気にする。そして給水タンクから第1
の給水系を経て供給される水を高圧脱気器にて前記高圧
蒸気により加熱脱気し、一方第2の給水系を経て供給さ
れる水を低圧脱気器にて前記低圧蒸気により加熱脱気す
る。
[Operation] When the load of a steam turbine driven by steam from a boiler or the load of extracted steam extracted from the steam turbine, for example, the steam load of a process, is reduced, surplus steam is generated in the extracted steam. This surplus extracted steam is controlled by the first pressure control valve (hereinafter referred to as high pressure steam)
and the high pressure steam controlled by the second pressure control valve to produce low pressure steam at a lower pressure. and the first one from the water tank.
The water supplied through the second water supply system is heated and degassed by the high pressure steam in the high pressure deaerator, while the water supplied through the second water supply system is heated and degassed by the low pressure steam in the low pressure deaerator. I care.

【0011】ところで高圧蒸気により高圧脱気器で加熱
脱気された脱気水の飽和温度は低圧蒸気により低圧脱気
器で加熱脱気された脱気水の飽和温度より高いので、高
圧脱気器の脱気水の熱エネルギーは低圧脱気器の脱気水
の熱エネルギーより大きく、蓄熱に有利であるが、反面
加熱脱気する同一蒸気量に対して得られる脱気水量は低
圧脱気器によるものが高圧脱気器によるものより大きい
By the way, the saturation temperature of degassed water heated and degassed in a high-pressure deaerator with high-pressure steam is higher than the saturation temperature of degassed water heated and degassed in a low-pressure deaerator with low-pressure steam. The thermal energy of the degassed water in the degasser is larger than that of the degassed water in the low-pressure deaerator, which is advantageous for heat storage. The amount caused by the deaerator is larger than that caused by the high pressure deaerator.

【0012】この特性を利用して蒸気タービンの蒸気負
荷が低減して余剰の抽気蒸気発生時、余剰の抽気蒸気が
生じない運転期間のボイラに供給する予想脱気水量にな
るように給水タンクから高圧脱気器と低圧脱気器とに供
給される水の流量比を第1の給水制御弁と第2の給水制
御弁により予め演算された計画値に制御することにより
、前記流量比に対応する脱気水を高圧脱気器と低圧脱気
器とに生じさせる。なお、高圧及び低圧脱気器での加熱
脱気は余剰の抽気蒸気が生じている運転期間行なわれる
Utilizing this characteristic, when the steam load of the steam turbine is reduced and surplus extracted steam is generated, the amount of deaerated water is adjusted from the water supply tank to the expected amount of deaerated water to be supplied to the boiler during the operation period when no surplus extracted steam is generated. By controlling the flow rate ratio of water supplied to the high-pressure deaerator and the low-pressure deaerator to a planned value calculated in advance by the first water supply control valve and the second water supply control valve, it corresponds to the flow rate ratio. degassed water is produced in a high pressure deaerator and a low pressure deaerator. Note that heating deaeration in the high-pressure and low-pressure deaerators is carried out during the operating period when excess extracted steam is generated.

【0013】高圧脱気器と低圧脱気器とで脱気された脱
気水は混合されて脱気水タンクに貯留される。この場合
脱気水タンクに貯留される脱気水量は高圧脱気器と低圧
脱気器に供給する給水タンクからの水の前記流量比の計
画値により、余剰の抽気の抽気蒸気が生じない運転期間
に必要な脱気水量となる。
[0013] Degassed water degassed by the high pressure deaerator and the low pressure deaerator are mixed and stored in a degassed water tank. In this case, the amount of deaerated water stored in the deaerated water tank is determined by the planned flow rate ratio of the water from the water supply tank that supplies the high-pressure deaerator and the low-pressure deaerator to an operation that does not generate excess bleed steam. This is the amount of deaerated water required for the period.

【0014】なお、余剰の抽気蒸気が可成り多い場合に
は第1の給水制御弁を制御し、第2の給水制御弁を閉に
し、すなわち流量比を1:0にして高圧脱気器のみにて
給水タンクからの水を加熱脱気することにより、前記余
剰の抽気蒸気が生じない運転期間に必要な熱エネルギー
の高い脱気水量が得られる。
Note that if there is a considerable amount of surplus extracted steam, the first water supply control valve is controlled and the second water supply control valve is closed, that is, the flow rate ratio is set to 1:0, and only the high-pressure deaerator is operated. By heating and deaerating the water from the water supply tank at , an amount of deaerated water with high thermal energy required during the operating period in which the surplus bleed steam is not generated can be obtained.

【0015】一方、余剰蒸気が少ない場合には第1の給
水制御弁を閉にし、第2の給水制御弁を制御し、すなわ
ち流量比を0:1にして低圧脱気器のみにて給水タンク
からの水を加熱脱気することにより、前記より熱エネル
ギーが低いが余剰の抽気蒸気を生じない運転期間に必要
な脱気水量が得られる。
On the other hand, when there is little surplus steam, the first water supply control valve is closed and the second water supply control valve is controlled, that is, the flow rate ratio is set to 0:1 and the water supply tank is closed using only the low pressure deaerator. By heating and deaerating the water from the reactor, the amount of deaerated water required for an operating period with lower thermal energy but without producing excess bleed steam can be obtained.

【0016】なお、脱気水タンク内に貯留された脱気水
量の増量が必要ないとき、余剰の抽気蒸気がある場合に
はこの脱気水を脱気水戻り系を経て脱気水流量制御弁に
より流量制御して高圧脱気器に供給することにより、こ
の脱気水は供給される余剰の抽気蒸気により加熱昇温さ
れ、高圧脱気器内の高温の脱気水と混合して脱気水タン
クに戻される。この結果脱気水タンク内の脱気水の温度
は昇温して余剰の抽気蒸気の蓄熱をさらに行なうことが
できる。
Note that when there is no need to increase the amount of deaerated water stored in the deaerated water tank and there is excess extracted steam, this deaerated water is passed through the deaerated water return system and the deaerated water flow rate is controlled. By controlling the flow rate with a valve and supplying it to the high-pressure deaerator, this degassed water is heated and heated by the supplied surplus bleed steam, and is mixed with the high-temperature degassed water in the high-pressure deaerator to be degassed. The air is returned to the water tank. As a result, the temperature of the degassed water in the degassed water tank rises, making it possible to further store heat of excess extracted steam.

【0017】[0017]

【実施例】以下図面に基づいて本発明の実施例について
説明する。図1は本発明の実施例による蒸気タービン設
備の系統図である。図1において1はボイラ、2は蒸気
供給系3を経る蒸気により駆動される蒸気タービン、4
は増速機5を介して蒸気タービン3に接続される発電機
である。なお6は蒸気タービン2の排気蒸気を図示しな
い復水器に供給する排出系である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below based on the drawings. FIG. 1 is a system diagram of a steam turbine facility according to an embodiment of the present invention. In FIG. 1, 1 is a boiler, 2 is a steam turbine driven by steam passing through a steam supply system 3, and 4 is a steam turbine driven by steam passing through a steam supply system 3.
is a generator connected to the steam turbine 3 via a speed increaser 5. Note that 6 is an exhaust system that supplies exhaust steam from the steam turbine 2 to a condenser (not shown).

【0018】抽気蒸気系8は蒸気タービン2の途中の段
落とプロセス9,高圧脱気器11,低圧脱気器13とに
接続して設けられている。なお、高圧圧力制御弁10,
低圧圧力制御弁12はそれぞれ高圧,低圧脱気器11,
13に供給する抽気蒸気の圧力を制御する。ここで、高
圧脱気器11に供給され、高圧圧力制御弁10で制御さ
れる抽気蒸気の圧力は、低圧脱気器13に供給され、低
圧圧力制御弁12で制御される抽気蒸気の圧力より高い
。なお14は抽気蒸気系8を流れる抽気蒸気の圧力を検
出する圧力検出器である。
The extraction steam system 8 is connected to an intermediate stage of the steam turbine 2, a process 9, a high pressure deaerator 11, and a low pressure deaerator 13. In addition, the high pressure pressure control valve 10,
The low pressure pressure control valve 12 is connected to the high pressure, low pressure deaerator 11,
The pressure of the extracted steam supplied to 13 is controlled. Here, the pressure of the extracted steam supplied to the high-pressure deaerator 11 and controlled by the high-pressure pressure control valve 10 is lower than the pressure of the extracted steam supplied to the low-pressure deaerator 13 and controlled by the low-pressure pressure control valve 12. expensive. Note that 14 is a pressure detector that detects the pressure of the extracted steam flowing through the extracted steam system 8.

【0019】給水タンク15は図示しない復水器からの
復水と補給水を貯留する。
The water supply tank 15 stores condensate and make-up water from a condenser (not shown).

【0020】給水系16は供給ポンプ17を備え、下流
で高圧脱気器11に接続する高圧給水制御弁19を備え
る高圧給水系18と低圧脱気器13に接続する低圧給水
制御弁21を備える低圧給水系20とに分岐しており、
給水タンク15内の復水と補給水とからなる水を供給ポ
ンプ17により高圧,低圧脱気器11,13にそれぞれ
供給する。
The water supply system 16 includes a supply pump 17, a high pressure water supply system 18 with a high pressure water supply control valve 19 connected downstream to the high pressure deaerator 11, and a low pressure water supply control valve 21 connected to the low pressure deaerator 13. It is branched into a low pressure water supply system 20,
Water consisting of condensate and make-up water in the water supply tank 15 is supplied by a supply pump 17 to the high pressure and low pressure deaerators 11 and 13, respectively.

【0021】脱気水タンク25はポンプ26により高圧
脱気水供給系27を経て送水される高圧脱気器11内の
脱気水とポンプ28により低圧脱気水供給系29を経て
送水される低圧脱気器13内の脱気水とを混合して貯留
する。
The degassed water tank 25 contains degassed water in the high pressure deaerator 11 which is fed by a pump 26 through a high pressure degassed water supply system 27 and water is fed by a pump 28 through a low pressure degassed water supply system 29. It is mixed with deaerated water in the low pressure deaerator 13 and stored.

【0022】ボイラ給水系30は脱気水タンク25とボ
イラ1とに接続されて設けられ、ボイラ給水ポンプ31
により脱気水タンク25内の脱気水をボイラ1に供給す
る。
The boiler water supply system 30 is connected to the deaerated water tank 25 and the boiler 1, and includes a boiler water supply pump 31.
The degassed water in the degassed water tank 25 is supplied to the boiler 1.

【0023】脱気水戻り系33は脱気水タンク25と高
圧脱気器11とに脱気水流量制御弁34,ポンプ35を
備えて接続されて設けられ、ポンプ35により脱気水タ
ンク25内の脱気水を高圧脱気器11に戻す。
The deaerated water return system 33 is connected to the deaerated water tank 25 and the high-pressure deaerator 11 with a deaerated water flow rate control valve 34 and a pump 35. The degassed water inside is returned to the high pressure deaerator 11.

【0024】制御部40は抽気蒸気系8を流れる余剰の
抽気蒸気による蒸気圧力上昇を圧力検出器14で検出し
、この検出した圧力上昇の信号により高圧,低圧給水制
御弁19,21の開度をそれぞれ制御して高圧給水系1
8と低圧給水系20とに流れる給水タンク15からの水
の流量比を前述の計画値にするように高圧給水制御弁1
9と低圧給水制御弁21とを制御する流量比制御装置を
備えている。
The control unit 40 uses the pressure detector 14 to detect a rise in steam pressure due to excess extracted steam flowing through the extracted steam system 8, and uses a signal of this detected pressure increase to adjust the opening degrees of the high pressure and low pressure water supply control valves 19 and 21. High pressure water supply system 1
The high pressure water supply control valve 1 is set so that the flow rate ratio of water from the water supply tank 15 flowing into the water supply system 8 and the low pressure water supply system 20 is set to the above-mentioned planned value.
9 and a low pressure water supply control valve 21.

【0025】このような構成により、発電機5からの電
力を受電する電力負荷やプロセス9の蒸気負荷が低減し
て余剰の抽気蒸気が生じる場合、この余剰の抽気蒸気に
よりボイラ1に供給する水の脱気が行なわれる。以下こ
の脱気方法について説明する。
With this configuration, when the power load receiving power from the generator 5 and the steam load of the process 9 are reduced and surplus extracted steam is generated, this surplus extracted steam is used to reduce the water supply to the boiler 1. Deaeration is performed. This deaeration method will be explained below.

【0026】上記のように余剰の抽気蒸気が生じれば、
抽気蒸気系8に流れる抽気蒸気の圧力は上昇する。この
圧力上昇は圧力検出器14により検出され、検出圧力上
昇の信号は制御部40に入力される。
[0026] If surplus bleed steam is generated as described above,
The pressure of the extracted steam flowing into the extracted steam system 8 increases. This pressure increase is detected by the pressure detector 14, and a signal of the detected pressure increase is input to the control section 40.

【0027】制御部40においては余剰蒸気量による検
出圧力上昇の信号により流量比制御装置が作動し、ここ
からの出力信号により高圧給水制御弁19と低圧給水制
御弁21とを余剰の抽気蒸気が生じない運転期間のボイ
ラに供給する予想脱気水量になるように高圧,低圧給水
制御弁19,21の開度をそれぞれ制御して給水タンク
15からの水を高圧給水系18,低圧給水系20を流れ
る水の流量比を計画値に制御して高圧,低圧脱気器11
,13にそれぞれ流入させる。
In the control section 40, a flow rate ratio control device is activated by a signal indicating a detected pressure increase due to the amount of surplus steam, and an output signal from this device controls the high pressure water supply control valve 19 and the low pressure water supply control valve 21 to control the excess extracted steam. The opening degrees of the high-pressure and low-pressure water supply control valves 19 and 21 are controlled respectively to supply water from the water tank 15 to the high-pressure water supply system 18 and the low-pressure water supply system 20 so that the expected amount of deaerated water is supplied to the boiler during the operation period in which no deaeration occurs. The high-pressure and low-pressure deaerator 11 is controlled by controlling the flow rate ratio of water flowing through the
, 13 respectively.

【0028】このようにして高圧脱気器11,低圧脱気
器13に流入した水は、高圧圧力制御弁10,低圧圧力
制御弁12の作動により抽気蒸気系8を流れてそれぞれ
高圧脱気器11,低圧脱気器13に流入する高圧及び低
圧の余剰の抽気蒸気により加熱脱気される。そして脱気
された脱気水はそれぞれ高圧脱気器11からポンプ26
により脱気水供給系27を経て、また低圧脱気器13か
らポンプ28により脱気水供給系29を経て脱気水タン
ク25に送られて貯留される。
The water that has flowed into the high-pressure deaerator 11 and the low-pressure deaerator 13 in this way flows through the extraction steam system 8 by the operation of the high-pressure pressure control valve 10 and the low-pressure pressure control valve 12, and then flows through the high-pressure deaerator 11 and the low-pressure deaerator 13, respectively. 11. The high-pressure and low-pressure excess extraction steam flowing into the low-pressure deaerator 13 heats and degasses. The degassed water is then pumped from the high pressure deaerator 11 to the pump 26.
The degassed water is then sent from the low-pressure deaerator 13 to the degassed water supply system 29 by the pump 28 to the degassed water tank 25, where it is stored.

【0029】脱気水タンク25には余剰の抽気蒸気が生
じる運転期間高圧脱気器11,低圧脱気器13にて脱気
された脱気水が貯留される。なお、この運転期間に脱気
水タンク25に貯留される脱気水量は余剰の抽気蒸気が
生じない運転期間のボイラに供給する脱気水量となる。 電気負荷や蒸気負荷が元に戻って余剰の抽気蒸気が生じ
なくなれば、抽気蒸気系8の蒸気圧力は元の値に戻るの
で、圧力復帰を圧力検出器14で検出し、この検出信号
により制御部40の流量比制御装置により高圧,低圧給
水制御弁19,21を閉にすることにより、高圧,低圧
圧力制御弁10,12は閉となり、脱気作用は停止する
The degassed water tank 25 stores degassed water that has been degassed in the high pressure deaerator 11 and the low pressure deaerator 13 during the operation period in which excess extracted steam is generated. Note that the amount of deaerated water stored in the deaerated water tank 25 during this operating period is the amount of deaerated water that is supplied to the boiler during the operating period in which no surplus bleed steam is generated. When the electric load and steam load are restored to their original values and excess extracted steam is no longer generated, the steam pressure in the extracted steam system 8 will return to its original value, so the pressure return is detected by the pressure detector 14, and control is performed based on this detection signal. By closing the high-pressure and low-pressure water supply control valves 19 and 21 by the flow rate ratio control device of the section 40, the high-pressure and low-pressure pressure control valves 10 and 12 are closed, and the degassing operation is stopped.

【0030】このようにして余剰の抽気蒸気が生じてい
る運転期間高圧,低圧脱気器11,13から脱気水タン
ク25に貯留される脱気水は余剰の抽気蒸気が生じない
運転期間にボイラ給水ポンプ31によりボイラ給水系3
0を経てボイラ1に供給される。そしてボイラ1にて余
剰の抽気蒸気が生じない電力負荷やプロセスの蒸気負荷
に対応する蒸気量を生成して蒸気タービン2に蒸気供給
系3を経て供給する。この際抽気蒸気系8を流れる蒸気
はすべてプロセス9に供給される。
[0030] In this way, during the operation period when surplus extracted steam is generated, the degassed water stored in the deaerated water tank 25 from the high-pressure and low-pressure deaerators 11 and 13 is used during the operation period when surplus extracted steam is not generated. Boiler water supply system 3 by boiler water supply pump 31
It is supplied to the boiler 1 through 0. Then, the boiler 1 generates an amount of steam that corresponds to the power load and process steam load that do not generate surplus extracted steam, and supplies it to the steam turbine 2 via the steam supply system 3. At this time, all the steam flowing through the extraction steam system 8 is supplied to the process 9.

【0031】ところで、余剰蒸気量が可成り多い場合に
は、制御部40の流量制御装置により高圧給水制御弁1
9を制御し、低圧給水制御弁21を閉,すなわち流量比
を1:0にして給水タンク15からの水を高圧脱気器1
1のみに流量制御して送り、高圧圧力制御弁10で制御
される高圧の余剰の抽気蒸気により高圧脱気器11にて
加熱脱気する。この場合においても高圧脱気器11から
脱気水タンク25に送られて貯留される脱気水量は前述
のように余剰の抽気蒸気が生じない運転期間に必要な量
となる。
By the way, when the amount of surplus steam is considerably large, the flow rate control device of the control section 40 controls the high pressure water supply control valve 1.
9, close the low-pressure water supply control valve 21, that is, set the flow rate ratio to 1:0, and transfer water from the water supply tank 15 to the high-pressure deaerator 1.
1, and is heated and degassed in a high-pressure deaerator 11 using high-pressure surplus bleed steam controlled by a high-pressure pressure control valve 10. In this case as well, the amount of degassed water sent from the high-pressure deaerator 11 to the degassed water tank 25 and stored therein will be the amount required during the operating period in which no surplus bleed steam is generated, as described above.

【0032】また、余剰蒸気量が少ない場合には制御部
40の流量比制御装置により高圧給水制御弁19を閉に
し、低圧給水制御弁21を制御し、すなわち流量比0:
1にして給水タンク15からの水を低圧脱気器13のみ
に流量制御して送り、低圧圧力制御弁12で制御される
低圧の余剰の抽気蒸気により低圧脱気器13にて加熱脱
気する。この場合においても、前述のように同一余剰蒸
気量に対して低圧脱気器13で脱気する量は高圧脱気器
11のそれより多いので、低圧脱気器13から脱気水タ
ンク25に貯留される脱気水量は、前述のように余剰の
抽気蒸気が生じない運転期間に必要な量になる。
Further, when the amount of surplus steam is small, the flow rate ratio control device of the control section 40 closes the high pressure water supply control valve 19 and controls the low pressure water supply control valve 21, that is, the flow rate ratio is 0:
1, the water from the water supply tank 15 is sent only to the low-pressure deaerator 13 with flow rate control, and is heated and degassed in the low-pressure deaerator 13 using low-pressure surplus extraction steam controlled by the low-pressure pressure control valve 12. . In this case as well, as mentioned above, the amount deaerated in the low pressure deaerator 13 is greater than that in the high pressure deaerator 11 for the same amount of surplus steam, so The amount of degassed water stored is the amount required during the operating period when no surplus bleed steam is generated, as described above.

【0033】なお、脱気水タンク25に貯留された脱気
水量を増量する必要がないときに余剰の抽気蒸気がある
場合には、ポンプ35により脱気水戻り系33を経て脱
気水流量制御弁36によりその流量を制御して高圧脱気
器11に送ることにより、この送られた脱気水は高圧脱
気器11に加熱脱気のために送られる余剰の抽気蒸気に
より昇温され、再び脱気水タンク25に戻るので、余剰
蒸気の蓄熱をさらに行なうことができる。
Note that if there is surplus extracted steam when there is no need to increase the amount of deaerated water stored in the deaerated water tank 25, the deaerated water flow rate is increased by the pump 35 via the deaerated water return system 33. By controlling the flow rate with the control valve 36 and sending it to the high-pressure deaerator 11, the temperature of the sent deaerated water is raised by the surplus extracted steam sent to the high-pressure deaerator 11 for heating and deaeration. Since the steam is returned to the deaerated water tank 25 again, the excess steam can be further stored as heat.

【0034】[0034]

【発明の効果】以上の説明から明らかなように、本発明
によれば蒸気タービン設備の運転時生じる余剰の抽気蒸
気を圧力制御弁により高圧蒸気と低圧蒸気にしてそれぞ
れ高圧脱気器,低圧脱気器に供給し、一方給水タンクか
らの水を高圧給水制御弁と低圧給水制御弁とを制御して
高圧脱気器と低圧脱気器とに供給する流量比を余剰の抽
気蒸気が生じない運転期間のボイラに供給する脱気水量
になるようにする流量比に制御して、前記高圧蒸気と低
圧蒸気とによりそれぞれ加熱脱気し、この脱気水を脱気
水タンクに蓄積することにより、余剰の抽気蒸気が生じ
ない運転期間のボイラに供給する脱気水量となるので、
余剰の抽気蒸気をすべて有効に蓄熱できる。
As is clear from the above description, according to the present invention, surplus extracted steam generated during operation of steam turbine equipment is converted into high-pressure steam and low-pressure steam by a pressure control valve, and is then used in a high-pressure deaerator and a low-pressure deaerator, respectively. The water from the water supply tank is supplied to the high-pressure deaerator and the low-pressure deaerator by controlling the high-pressure water supply control valve and the low-pressure water supply control valve to control the flow rate ratio so that no excess bleed steam is generated. By controlling the flow rate ratio such that the amount of deaerated water supplied to the boiler during the operation period is heated and deaerated by the high pressure steam and the low pressure steam, and this deaerated water is accumulated in the deaerated water tank. , since this is the amount of deaerated water supplied to the boiler during the operating period when no excess extracted steam is generated.
All excess extracted steam can be effectively stored as heat.

【0035】また、脱気水タンク内の脱気水を高圧脱気
器に送るようにしたことにより、送水された脱気水は高
圧脱気器に流入する余剰の抽気蒸気により加熱昇温され
るので、余剰の抽気蒸気の蓄熱をさらに行なうことがで
きる。
[0035] Furthermore, by sending the degassed water in the degassed water tank to the high-pressure deaerator, the degassed water is heated and heated by excess extracted steam flowing into the high-pressure deaerator. Therefore, the surplus extracted steam can be further stored as heat.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例による蒸気タービン設備の系統
FIG. 1: System diagram of steam turbine equipment according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1    ボイラ 2    蒸気タービン 8    抽気蒸気系 10    高圧圧力制御弁 11    高圧脱気器 12    低圧圧力制御弁 13    低圧脱気器 15    給水タンク 18    高圧給水系 19    高圧給水制御弁 20    低圧給水系 21    低圧給水制御弁 25    脱気水タンク 33    脱気水戻り系 34    脱気水流量制御弁 1 Boiler 2 Steam turbine 8. Extraction steam system 10 High pressure pressure control valve 11 High pressure deaerator 12 Low pressure pressure control valve 13 Low pressure deaerator 15 Water tank 18 High pressure water supply system 19 High pressure water supply control valve 20 Low pressure water supply system 21 Low pressure water supply control valve 25 Deaerated water tank 33 Degassed water return system 34 Deaerated water flow control valve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ボイラと、ボイラからの蒸気により駆動さ
れる蒸気タービンと、ボイラに供給する水を供給する給
水タンクと、蒸気タービンから抽出される抽気蒸気を第
1の圧力制御弁により圧力制御した第1の蒸気により給
水タンクから第1の給水系を経て供給される水を加熱脱
気する高圧脱気器と、抽気蒸気を第2の圧力制御弁によ
り第1の蒸気の圧力より低い圧力に制御された第2の蒸
気により給水タンクから第2の給水系を経て供給される
水を加熱脱気する低圧脱気器と、第1の給水系に設けら
れた供給水量を制御する第1の給水制御弁と、第2の給
水系に設けられた供給水量を制御する第2の給水制御弁
と、高圧及び低圧脱気器で脱気された脱気水を貯留して
ボイラに供給する脱気水タンクと、蒸気負荷が低減して
余剰の抽気蒸気発生による抽気蒸気圧力上昇を検出する
圧力検出器と、余剰の抽気蒸気発生時余剰の抽気蒸気が
生じない運転期間のボイラに供給する予想脱気水量にな
るように第1と第2の給水制御弁により制御して高圧及
び低圧脱気器にそれぞれ給水タンクから供給する水の流
量比を計画値に制御する制御部とを備えたことを特徴と
する蒸気タービン設備。
Claim 1: A boiler, a steam turbine driven by steam from the boiler, a water supply tank that supplies water to the boiler, and a first pressure control valve that controls the pressure of extracted steam extracted from the steam turbine. a high-pressure deaerator that heats and deaerates the water supplied from the water supply tank through the first water supply system using the first steam, and a second pressure control valve that controls the extracted steam at a pressure lower than the pressure of the first steam. a low-pressure deaerator that heats and deaerates the water supplied from the water supply tank through the second water supply system using second steam controlled by the water supply system; a second water supply control valve provided in the second water supply system that controls the amount of water supplied; and a second water supply control valve that controls the amount of water supplied to the second water supply system, and stores the degassed water degassed by the high-pressure and low-pressure deaerators and supplies it to the boiler. A deaerated water tank, a pressure detector that detects an increase in extracted steam pressure due to the generation of surplus extracted steam when the steam load is reduced, and a pressure detector that detects the increase in extracted steam pressure due to the generation of excess extracted steam, and supplies it to the boiler during the operating period when excess extracted steam is not generated. and a control unit that controls the flow rate ratio of water supplied from the water supply tank to the high-pressure and low-pressure deaerators, respectively, to a planned value by controlling the first and second water supply control valves so that the expected amount of deaerated water is achieved. Steam turbine equipment characterized by:
【請求項2】請求項1記載の蒸気タービン設備において
、脱気水タンク内の脱気水を高圧脱気器に供給し、この
脱気水の流量を制御する脱気水流量制御弁を備えた脱気
水戻り系を設けたことを特徴とする蒸気タービン設備。
2. The steam turbine equipment according to claim 1, further comprising a deaerated water flow rate control valve that supplies deaerated water in the deaerated water tank to the high-pressure deaerator and controls the flow rate of the deaerated water. Steam turbine equipment characterized by being equipped with a deaerated water return system.
JP940591A 1991-01-30 1991-01-30 Steam turbine equipment Expired - Lifetime JP2692056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP940591A JP2692056B2 (en) 1991-01-30 1991-01-30 Steam turbine equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP940591A JP2692056B2 (en) 1991-01-30 1991-01-30 Steam turbine equipment

Publications (2)

Publication Number Publication Date
JPH04252813A true JPH04252813A (en) 1992-09-08
JP2692056B2 JP2692056B2 (en) 1997-12-17

Family

ID=11719509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP940591A Expired - Lifetime JP2692056B2 (en) 1991-01-30 1991-01-30 Steam turbine equipment

Country Status (1)

Country Link
JP (1) JP2692056B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103195521A (en) * 2013-04-23 2013-07-10 上海汽轮机厂有限公司 Double-turbine steam thermodynamic system with regenerative steam extraction function

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103195521A (en) * 2013-04-23 2013-07-10 上海汽轮机厂有限公司 Double-turbine steam thermodynamic system with regenerative steam extraction function

Also Published As

Publication number Publication date
JP2692056B2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
JP4578354B2 (en) Waste heat utilization equipment for steam turbine plant
JP4901782B2 (en) Power generation complex plant and plant control method
JP4633493B2 (en) Method for preventing water hammer of deaerator and boiler water supply device
JPH04252813A (en) Steam turbine arrangement
JP2006349314A (en) Vacuum controller for condenser, method therefor, and steam turbine plant
JP3694399B2 (en) Membrane deaerator that uses chemical deaeration depending on the feed water temperature
JP2006063886A (en) Thermal power plant
JP4354074B2 (en) Deaerator seal steam system equipment
JPH10131716A (en) Method and device for controlling steam cooling system of gas turbine
JP2000054808A (en) Combined power generation system
JP2573530B2 (en) How to start and stop the waste heat recovery boiler
JPH0223929Y2 (en)
JPH0694208A (en) Water level controller for deaerator
JP2650477B2 (en) Water hammer prevention method for deaerator water supply piping and piping equipment therefor
JPH04252807A (en) Steam turbine power generation plant
JPH08135411A (en) Control device of exhaust heat using power plant
JP2014114709A (en) Steam turbine plant and its control method
JPS5993103A (en) Nuclear power generating plant
JPS611902A (en) Steam generator
JP2564655Y2 (en) Water supply system for small once-through boiler
JP3056880B2 (en) Feedwater heater controller
JPH11166701A (en) Gland steam generating apparatus
JPH11166403A (en) Turbine bypass steam supply device
JPH0611104A (en) Drain controller for feed water heater
JPS63148006A (en) Boiler water quality regulator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970804