JP3694399B2 - Membrane deaerator that uses chemical deaeration depending on the feed water temperature - Google Patents

Membrane deaerator that uses chemical deaeration depending on the feed water temperature Download PDF

Info

Publication number
JP3694399B2
JP3694399B2 JP34060997A JP34060997A JP3694399B2 JP 3694399 B2 JP3694399 B2 JP 3694399B2 JP 34060997 A JP34060997 A JP 34060997A JP 34060997 A JP34060997 A JP 34060997A JP 3694399 B2 JP3694399 B2 JP 3694399B2
Authority
JP
Japan
Prior art keywords
feed water
membrane
water
chemical injection
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34060997A
Other languages
Japanese (ja)
Other versions
JPH11156342A (en
Inventor
茂 黒木
直樹 小畑
信行 小林
Original Assignee
株式会社サムソン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サムソン filed Critical 株式会社サムソン
Priority to JP34060997A priority Critical patent/JP3694399B2/en
Publication of JPH11156342A publication Critical patent/JPH11156342A/en
Application granted granted Critical
Publication of JP3694399B2 publication Critical patent/JP3694399B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、給水温度によって薬品による脱気を併用する膜脱気装置に関するものである。
【0002】
【従来の技術】
水中の溶存酸素を除去する装置として膜脱気装置が知られている。この装置は、微小な孔の開いた気液分離膜を内蔵した膜モジュールに真空発生装置を接続しておき、モジュール内の膜の一方側を減圧し他方側に通水することにより、水中の溶存酸素を減圧側に移動させて脱気を行うものである。
【0003】
膜脱気装置を用いて溶存酸素の除去を行う場合、処理される水の水温によって処理後に残留する溶存酸素濃度が変動し、溶存酸素濃度は水温が高いと低く、水温が低いと高くなる。給水を加熱していないシステムの場合、冬季と夏季で水温が異なり、冬季の水温で膜脱気装置に必要な能力を定めると夏季には必要以上の能力を持つこととなり、夏季の水温で膜脱気装置に必要な能力を定めると冬季には能力が不足する。また、ボイラの給水ラインに膜脱気装置を設けている場合、ボイラで発生させた蒸気によって給水の加熱を行うことで、給水温度の季節変化を無くすことが可能となるが、その場合であってもボイラ起動時には蒸気にて加熱することができず、蒸気以外の加熱手段はコスト高となるために一般的には採用されていないことより、常時給水を加熱することは行えず、水温の変化を無くすことはできない。そのため膜脱気装置の能力は状況によって過剰となるか不足となる場合があった。
【0004】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、膜脱気装置の能力を過剰に高くすることなく、給水中の溶存酸素濃度を常に低い値に保つことにある。
【0005】
【課題を解決するための手段】
ボイラへ給水するための給水ラインの途中に膜脱気装置を設け、ボイラで発生させた蒸気の一部を用いて膜脱気装置へ送られる給水を加熱する給水加熱装置、加熱後の給水の温度を検出する温度検出装置、膜脱気装置より下流の給水ラインへ脱酸素剤を注入する薬注装置、給水加熱装置への蒸気導入を制御する蒸気導入制御弁を設けておき、温度検出装置と薬注装置に信号線で接続され、温度検出装置にて検出された給水温度に基づいて薬注装置の作動を制御する薬注制御装置、温度検出装置と蒸気導入制御弁に信号線で接続され、温度検出装置にて検出された給水温度に基づいて蒸気導入制御弁の作動を制御する給水加熱制御装置を設ける。
【0006】
【発明の実施の形態】
本発明の一実施例を図面を用いて説明する。図1は本発明の一実施例での各機器の配置を示す説明図であり、水タンク7よりボイラ3へ給水を行う給水ライン2の途中に気液分離膜を内蔵した膜モジュール6を設けている。膜モジュール6内は気液分離膜によって減圧側と通水側に分けておき、減圧側に真空発生装置8を接続しており、膜モジュール6と真空発生装置8で膜脱気装置1を構成する。膜モジュール6の設置数は膜脱気装置の処理水量に応じて異なり、通常は複数個設置されるが、図1では簡略化している。水タンク7と膜モジュール6の間の給水ライン2に温度検出装置4、膜モジュール6とボイラ3の間の給水ライン2に薬注配管10によって接続された薬注装置9を設ける。ボイラ3には主蒸気配管15を接続しており、主蒸気配管15から分岐させた蒸気導入配管12を設け、蒸気導入配管12の他端は水タンク7で給水を加熱する給水加熱装置13に接続し、蒸気導入配管12の途中には蒸気導入制御弁11を設ける。また、薬注装置9と温度検出装置4のそれぞれに信号線で接続された薬注制御装置5、蒸気導入制御弁11と温度検出装置4のそれぞれに信号線で接続された給水加熱制御装置14を設けておく。
【0007】
脱気処理を行う場合、真空発生装置8を作動することで膜モジュール6の減圧側を真空化し、原水を膜モジュール6の通水側へ送り込むと、通水側の原水に含まれている溶存酸素が気液分離膜を通して減圧側に移動する。膜脱気装置1で処理された脱気水は給水ライン2を通してボイラ3へ送られ、ボイラ3により蒸気となって主蒸気配管15を通して蒸気使用側へ送られる。
【0008】
温度検出装置4は膜脱気装置1へ送られている原水の水温を測定し、水温の情報を薬注制御装置5および給水加熱制御装置14へ出力する。
薬注制御装置5は、温度検出装置4で検出された水温が薬注用設定値未満であると薬注装置9の作動を出力し、薬注用設定値以上であれば薬注装置9の作動停止の出力を行う。薬注装置9の作動が出力されている場合、薬注装置9は薬注配管10を通して給水ライン2へ脱酸素剤の注入を行う。膜脱気装置による脱気処理では除去しきれずに溶存酸素が残留していても、薬注装置9によって注入された脱酸素剤によって更に除去され、ボイラ3へ送られる給水の溶存酸素濃度はきわめて低い値となる。
【0009】
また、給水加熱制御装置14は、温度検出装置4で検出された水温が給水加熱開始用設定値未満であると蒸気導入制御弁11を開き、給水加熱停止用設定値以上であると蒸気導入制御弁11を閉じる制御を行う。蒸気導入制御弁11を開くことで主蒸気配管15を送られている蒸気の一部を給水加熱装置13に送り、給水を加熱する。給水温度の上限値は膜モジュール6の材質によって定まり、例えば膜モジュール6の上限値が60℃であれば給水加熱停止用設定値は60℃、給水加熱開始用設定値は上限値よりも少し低い55℃という風に定める。膜モジュール6へ送られる原水の温度を膜モジュール6の上限値近くまで上昇させておくと、膜脱気装置によってより多くの溶存酸素が除去され、脱酸素剤を用いなくてもボイラ3へ送られる給水の溶存酸素濃度はきわめて低い値となる。
【0010】
膜モジュール6へ送られる水温が高い場合には膜モジュール6より取り出される水に残存する溶存酸素濃度は低い値となり、水温が低い場合には残存する溶存酸素濃度は高い値となる。水温を検出することで、膜脱気装置にて脱気処理を行った後の脱気水中に含まれる溶存酸素濃度を知ることができ、水温の低い場合のみ薬注装置9によって脱酸素剤を注入する。水温の低い場合には薬品による溶存酸素の除去を行うことで、水温が低くても溶存酸素濃度が高くなることを防ぐことができ、膜脱気装置の能力を過剰に高くしなくても溶存酸素濃度の高い水が給水されることが防止される。なお、薬品による溶存酸素の除去は、水温が低いために残留する溶存酸素濃度の高い場合にのみ行うものであり、水温が高く残留する溶存酸素濃度の低い場合には薬品の注入は不要であるため、薬品の使用量は少なくて済む。
【0011】
また、温度検出装置4にて検出される水温に応じて蒸気導入制御弁11の開閉を制御し、給水温度を膜モジュール6の上限温度近くまで上昇させておくことによって膜脱気装置では効率よく溶存酸素を除去できるため、膜脱気装置は通常の給水による場合よりも高い溶存酸素除去能力を持つことができる。
【0012】
本実施例では薬注装置9をON−OFFで制御させた例を記載したが、給水量に対する薬注量の割合である薬注率を給水温度に応じて比例的または段階的に変更させても良い。
【0013】
【発明の効果】
本発明を実施することにより、膜脱気装置の能力を過剰に高くしなくても、給水中の溶存酸素を常に低い値に保つことができる。
【図面の簡単な説明】
【図1】 本発明の一実施例での各機器の配置を示す説明図
【符号の説明】
1 膜脱気装置
2 給水ライン
3 ボイラ
4 温度検出装置
5 薬注制御装置
6 膜モジュール
7 水タンク
8 真空発生装置
9 薬注装置
10 薬注配管
11 蒸気導入制御弁
12 蒸気導入配管
13 給水加熱装置
14 給水加熱制御装置
15 主蒸気配管
[0001]
[Industrial application fields]
The present invention relates to a membrane deaeration device that uses chemical deaeration together depending on the feed water temperature.
[0002]
[Prior art]
A membrane deaerator is known as an apparatus for removing dissolved oxygen in water. In this device, a vacuum generator is connected to a membrane module containing a gas / liquid separation membrane with a minute hole, and one side of the membrane in the module is depressurized and water is passed to the other side. Deaeration is performed by moving dissolved oxygen to the reduced pressure side.
[0003]
When removing dissolved oxygen using a membrane deaerator, the concentration of dissolved oxygen remaining after treatment varies depending on the water temperature of the water to be treated, and the dissolved oxygen concentration is low when the water temperature is high and high when the water temperature is low. In the case of a system that does not heat the water supply, the water temperature is different between the winter and summer, and if the capacity required for the membrane deaerator is determined by the water temperature in the winter, it will have more capacity than necessary in the summer. If the capacity required for the deaerator is determined, the capacity will be insufficient in winter. In addition, when a membrane deaeration device is installed in the boiler water supply line, it is possible to eliminate seasonal changes in the water supply temperature by heating the water supply with steam generated by the boiler. However, since it cannot be heated with steam when the boiler is started, and heating means other than steam is expensive and is not generally adopted, the water supply cannot always be heated. Change cannot be lost. Therefore, the capacity of the membrane deaerator may be excessive or insufficient depending on the situation.
[0004]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to always keep the dissolved oxygen concentration in the feed water at a low value without excessively increasing the capacity of the membrane deaerator.
[0005]
[Means for Solving the Problems]
A membrane deaerator is provided in the middle of the water supply line for supplying water to the boiler, and a feed water heater for heating the feed water sent to the membrane deaerator using a part of the steam generated in the boiler, the heated water supply A temperature detection device for detecting the temperature, a chemical injection device for injecting an oxygen scavenger into the feed water line downstream from the membrane deaeration device, and a steam introduction control valve for controlling the introduction of steam to the feed water heating device are provided. A signal line is connected to the chemical injection control device that controls the operation of the chemical injection device based on the feed water temperature detected by the temperature detection device, and the temperature detection device and the steam introduction control valve. A feed water heating control device that controls the operation of the steam introduction control valve based on the feed water temperature detected by the temperature detection device is provided.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view showing the arrangement of each device in one embodiment of the present invention, and a membrane module 6 incorporating a gas-liquid separation membrane is provided in the middle of a water supply line 2 for supplying water from a water tank 7 to a boiler 3. ing. The inside of the membrane module 6 is divided into a reduced pressure side and a water flow side by a gas-liquid separation membrane, and a vacuum generator 8 is connected to the reduced pressure side, and the membrane deaerator 1 is constituted by the membrane module 6 and the vacuum generator 8. To do. The number of membrane modules 6 varies depending on the amount of treated water in the membrane deaerator, and usually a plurality of membrane modules 6 are installed, but are simplified in FIG. A temperature detection device 4 is provided in the water supply line 2 between the water tank 7 and the membrane module 6, and a chemical injection device 9 is connected to the water supply line 2 between the membrane module 6 and the boiler 3 by a chemical injection pipe 10. A main steam pipe 15 is connected to the boiler 3, a steam introduction pipe 12 branched from the main steam pipe 15 is provided, and the other end of the steam introduction pipe 12 is connected to a feed water heater 13 that heats feed water in a water tank 7. The steam introduction control valve 11 is provided in the middle of the steam introduction pipe 12. Moreover, the chemical injection control device 5 connected to each of the chemical injection device 9 and the temperature detection device 4 by a signal line, and the feed water heating control device 14 connected to each of the steam introduction control valve 11 and the temperature detection device 4 by a signal line. Is provided.
[0007]
When deaeration treatment is performed, the decompression side of the membrane module 6 is evacuated by operating the vacuum generator 8 and the raw water is sent to the water flow side of the membrane module 6 so that the dissolved water contained in the water on the water flow side is dissolved. Oxygen moves to the decompression side through the gas-liquid separation membrane. The deaerated water treated by the membrane deaerator 1 is sent to the boiler 3 through the feed water line 2, and is converted into steam by the boiler 3 and sent to the steam use side through the main steam pipe 15.
[0008]
The temperature detection device 4 measures the water temperature of the raw water sent to the membrane deaeration device 1 and outputs water temperature information to the chemical injection control device 5 and the feed water heating control device 14.
The chemical injection control device 5 outputs the operation of the chemical injection device 9 when the water temperature detected by the temperature detection device 4 is lower than the chemical injection setting value. Outputs the operation stop. When the operation of the chemical injection device 9 is output, the chemical injection device 9 injects the oxygen scavenger into the water supply line 2 through the chemical injection pipe 10. Even if the deaeration process using the membrane deaerator cannot completely remove dissolved oxygen, it is further removed by the oxygen scavenger injected by the chemical injection device 9 and the dissolved oxygen concentration of the feed water sent to the boiler 3 is extremely high. Low value.
[0009]
Further, the feed water heating control device 14 opens the steam introduction control valve 11 when the water temperature detected by the temperature detection device 4 is less than the set value for starting feed water heating, and controls the steam introduction control when it is equal to or more than the set value for stopping feed water heating. Control to close the valve 11 is performed. A part of the steam sent through the main steam pipe 15 is sent to the feed water heating device 13 by opening the steam introduction control valve 11 to heat the feed water. The upper limit value of the feed water temperature is determined by the material of the membrane module 6. For example, if the upper limit value of the membrane module 6 is 60 ° C., the set value for stopping feed water heating is 60 ° C., and the set value for starting feed water heating is slightly lower than the upper limit value. The wind is set to 55 ° C. If the temperature of the raw water sent to the membrane module 6 is raised to near the upper limit value of the membrane module 6, more dissolved oxygen is removed by the membrane degassing device, and it is sent to the boiler 3 without using a deoxidizer. The dissolved oxygen concentration of the supplied water is extremely low.
[0010]
When the water temperature sent to the membrane module 6 is high, the dissolved oxygen concentration remaining in the water taken out from the membrane module 6 has a low value, and when the water temperature is low, the remaining dissolved oxygen concentration has a high value. By detecting the water temperature, it is possible to know the concentration of dissolved oxygen contained in the deaerated water after the deaeration process is performed by the membrane deaerator. inject. When the water temperature is low, removal of dissolved oxygen by chemicals can prevent the dissolved oxygen concentration from increasing even if the water temperature is low, and it can be dissolved without excessively increasing the capacity of the membrane deaerator. Water with high oxygen concentration is prevented from being supplied. The removal of dissolved oxygen by chemicals is performed only when the remaining dissolved oxygen concentration is high because the water temperature is low, and injection of chemicals is not required when the water temperature is high and the residual dissolved oxygen concentration is low. Therefore, the amount of chemicals used is small.
[0011]
Further, the membrane deaerator efficiently operates by controlling the opening and closing of the steam introduction control valve 11 according to the water temperature detected by the temperature detector 4 and raising the feed water temperature to near the upper limit temperature of the membrane module 6. Since the dissolved oxygen can be removed, the membrane deaerator can have a higher dissolved oxygen removal capacity than that obtained by normal water supply.
[0012]
Although the example which controlled the chemical injection apparatus 9 by ON-OFF was described in the present Example, the chemical injection rate which is the ratio of the chemical injection amount with respect to the amount of water supply is changed proportionally or in steps according to water supply temperature. Also good.
[0013]
【The invention's effect】
By implementing the present invention, the dissolved oxygen in the feed water can always be kept at a low value without excessively increasing the capacity of the membrane deaerator.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing the arrangement of devices in an embodiment of the present invention.
DESCRIPTION OF SYMBOLS 1 Membrane deaeration device 2 Water supply line 3 Boiler 4 Temperature detection device 5 Chemical injection control device 6 Membrane module 7 Water tank 8 Vacuum generator 9 Chemical injection device 10 Chemical injection piping 11 Steam introduction control valve 12 Steam introduction piping 13 Feed water heating device 14 Feed water heating control device 15 Main steam piping

Claims (1)

ボイラへ給水するための給水ラインの途中に膜脱気装置を設け、ボイラで発生させた蒸気の一部を用いて膜脱気装置へ送られる給水を加熱する給水加熱装置、加熱後の給水の温度を検出する温度検出装置、膜脱気装置より下流の給水ラインへ脱酸素剤を注入する薬注装置、給水加熱装置への蒸気導入を制御する蒸気導入制御弁を設けておき、温度検出装置と薬注装置に信号線で接続され、温度検出装置にて検出された給水温度が薬注用設定値未満であると薬注装置の作動を出力し、薬注用設定値以上であれば薬注装置の作動停止の出力を行う薬注制御装置、温度検出装置と蒸気導入制御弁に信号線で接続され、温度検出装置にて検出された給水温度が給水加熱開始用設定値未満であると蒸気導入制御弁を開き、膜脱気装置における膜モジュールの上限値である給水加熱停止用設定値まで上昇すると蒸気導入制御弁を閉じる制御を行う給水加熱制御装置を設けたことを特徴とする給水温度によって薬品による脱気を併用する膜脱気装置。A membrane deaerator is provided in the middle of the water supply line for supplying water to the boiler, and a feed water heater for heating the feed water sent to the membrane deaerator using a part of the steam generated in the boiler, the heated water supply A temperature detection device for detecting the temperature, a chemical injection device for injecting an oxygen scavenger into the feed water line downstream from the membrane deaeration device, and a steam introduction control valve for controlling the introduction of steam to the feed water heating device are provided. When the feed water temperature detected by the temperature detection device is lower than the preset value for the chemical injection, the operation of the chemical injection device is output. When the feed water temperature detected by the temperature detection device is less than the set value for starting the feed water heating , connected to the chemical injection control device, the temperature detection device and the steam introduction control valve for performing the operation stop output of the injection device with a signal line Open the steam introduction control valve and set the membrane module in the membrane deaerator. Feedwater heater controller film deaerator used in combination degassed with chemicals by feed water temperature, characterized in that a performing rising when the control to close the steam introduction control valve to feed water heating stop set value which is the upper limit of.
JP34060997A 1997-11-25 1997-11-25 Membrane deaerator that uses chemical deaeration depending on the feed water temperature Expired - Fee Related JP3694399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34060997A JP3694399B2 (en) 1997-11-25 1997-11-25 Membrane deaerator that uses chemical deaeration depending on the feed water temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34060997A JP3694399B2 (en) 1997-11-25 1997-11-25 Membrane deaerator that uses chemical deaeration depending on the feed water temperature

Publications (2)

Publication Number Publication Date
JPH11156342A JPH11156342A (en) 1999-06-15
JP3694399B2 true JP3694399B2 (en) 2005-09-14

Family

ID=18338624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34060997A Expired - Fee Related JP3694399B2 (en) 1997-11-25 1997-11-25 Membrane deaerator that uses chemical deaeration depending on the feed water temperature

Country Status (1)

Country Link
JP (1) JP3694399B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2791972B1 (en) * 1999-04-08 2001-06-22 Bwt France PROCESS FOR REGULATING THE TREATMENT AND CONDITIONING OF FOOD WATER FROM BOILERS, HOT CIRCUITS OR STEAM GENERATORS
JP4687249B2 (en) * 2005-05-31 2011-05-25 三浦工業株式会社 Water treatment system
JP4919155B2 (en) * 2006-12-19 2012-04-18 三浦工業株式会社 Water treatment system
DE102010049575A1 (en) * 2010-10-26 2012-04-26 Linde Aktiengesellschaft Method and apparatus for cooling gases
JP6236982B2 (en) * 2013-08-20 2017-11-29 三浦工業株式会社 Boiler system
RU2597318C2 (en) * 2014-05-12 2016-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кузбасский государственный технический университет имени Т.Ф. Горбачева" (КузГТУ) Method of producing fine systems

Also Published As

Publication number Publication date
JPH11156342A (en) 1999-06-15

Similar Documents

Publication Publication Date Title
JP2016514046A (en) Energy efficient systems and processes for treating sludge
JP3694399B2 (en) Membrane deaerator that uses chemical deaeration depending on the feed water temperature
KR101406037B1 (en) Method for Desalination using De-wetting
JP5190674B2 (en) Operation method of boiler system
JP3725221B2 (en) Condensate recovery device
JPH11193904A (en) Deaerator and deaerating method for boiler supply water
JPS6179905A (en) Drain recovery system
KR101388475B1 (en) Device for Desalination using De-wetting
JP2004249174A (en) Filtration device and its operation method
JP4354074B2 (en) Deaerator seal steam system equipment
JP2011025206A (en) Degassed water supply system
JP2564655Y2 (en) Water supply system for small once-through boiler
JP3572461B2 (en) Apparatus and method for preventing corrosion of boiler device
JPH08164328A (en) Method for cooling filter after steam sterilization
JP4043711B2 (en) Operation method of deaeration system
JPS61178088A (en) Apparatus for making pure water
KR101335444B1 (en) Device and Method for Desalination
JP4114731B2 (en) Boiler equipment and its water supply treatment method
JP3707145B2 (en) Control method of deaerator
JP2692056B2 (en) Steam turbine equipment
JPH08170806A (en) Method for treatment of feed water in boiler
JP5482430B2 (en) Boiler starter and method
KR20240049189A (en) Sterilization method for pharmaceutical water production system
JPH07214046A (en) Deoxygenating device
JP2597594B2 (en) Feed water heater drain injection device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050624

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080701

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees