JPH0425135A - Semiconductor substrate - Google Patents

Semiconductor substrate

Info

Publication number
JPH0425135A
JPH0425135A JP12972390A JP12972390A JPH0425135A JP H0425135 A JPH0425135 A JP H0425135A JP 12972390 A JP12972390 A JP 12972390A JP 12972390 A JP12972390 A JP 12972390A JP H0425135 A JPH0425135 A JP H0425135A
Authority
JP
Japan
Prior art keywords
layer
single crystal
semiconductor
thickness
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12972390A
Other languages
Japanese (ja)
Inventor
Riichi Inoue
利一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP12972390A priority Critical patent/JPH0425135A/en
Publication of JPH0425135A publication Critical patent/JPH0425135A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To avoid the deterioration in the performances of a semiconductor element formed in a single crystal semiconductor layer by a method wherein the single crystal semiconductor forming hetrojunction with a single crystal silicon layer is formed on the single crystal silicon layer in thickness not exceeding 1500Angstrom laminated on a holding substrate through the intermediary of an insulating film. CONSTITUTION:A single crystal semiconductor layer forming heterojunction with a single crystal silicon layer 3 is formed on the single crystal silicon layer 3 in thickness not exceeding 1500Angstrom laminated on a holding substrate 1 through the intermediary of an insulating layer 2. That is, in consideration of the relation between the film thickness of the SOI layer 3 and the density of dislocation occurring in a single crystal semiconductor (GaAs) layer 5 normally about 2-3mum thick heteroepitaxially grown on the SOI layer 3, the thickness of the SOI layer 3 is made sufficiently thinner at about 50-1500Angstrom while that of the single crystal semiconductor layer 5 is made sufficiently thicker than that of the SOI layer 3. At this time, the stress imposed by the crystal lattice caused at the heterojunction part and the inconsistancy in the thermal expansion coefficient can be absorbed into the deformation of Si crystal lattice in the SOI layer 3. Through these procedures, the crystalline quality of the single crystal semiconductor layer by heteroepitaxial growth can be enhanced.

Description

【発明の詳細な説明】 〔概 要〕 半導体基板、特に半導体素子を形成するヘテロエピタキ
シャル成長による単結晶半導体層を上面に有する半導体
基板の構造に関し、 ヘテロ接合部の格子定数や熱膨張係数の不整合により、
素子が形成される単結晶半導体層に転位やストレスが発
生するのを抑制するヘテロエピタキシ基板の構造を提供
し、ヘテロエピタキシャル成長による単結晶半導体層に
形成される半導体素子の性能劣化を防止することを目的
とし、支持基板上に絶縁層を介して積層されている厚さ
1500Å以下の単結晶シリコン層上に、該単結晶シリ
コン層とヘテロ接合を形成する単結晶半導体層が形成さ
れた構成を有する。
[Detailed Description of the Invention] [Summary] Regarding the structure of a semiconductor substrate, particularly a semiconductor substrate having a single crystal semiconductor layer formed by heteroepitaxial growth on the upper surface to form a semiconductor element, there is a mismatch in the lattice constant and coefficient of thermal expansion of a heterojunction. According to
It is an object of the present invention to provide a heteroepitaxial substrate structure that suppresses the generation of dislocations and stress in a single crystal semiconductor layer in which an element is formed, and to prevent performance deterioration of a semiconductor element formed in a single crystal semiconductor layer due to heteroepitaxial growth. It has a structure in which a single crystal semiconductor layer forming a heterojunction with the single crystal silicon layer is formed on a single crystal silicon layer with a thickness of 1500 Å or less that is laminated on a support substrate via an insulating layer. .

〔産業上の利用分野〕[Industrial application field]

本発明は半導体基板、特に素子を形成するヘテロエピタ
キシャル成長による半導体層を上面に有する半導体基板
の構造に関する。
The present invention relates to a semiconductor substrate, and more particularly to the structure of a semiconductor substrate having a heteroepitaxially grown semiconductor layer on its upper surface forming a device.

近年、化合物半導体装置等においては、基板の大口径化
を図って製造原価を低減することを主たる目的として、
シリコン(Si)基板上にヘテロエピタキシャル成長に
より形成した単結晶化合物半導体層を用いて半導体装置
を形成する技術が提供されているが、上記単結晶化合物
半導体層の結晶品質が充分でなく、半導体装置の性能劣
化を生ずるので、」1記ヘテロエピタキシャル成長によ
る単結晶半導体層の結晶品質の改善が望まれている。
In recent years, in compound semiconductor devices, etc., the main purpose is to reduce manufacturing costs by increasing the diameter of the substrate.
A technique has been provided for forming a semiconductor device using a single crystal compound semiconductor layer formed by heteroepitaxial growth on a silicon (Si) substrate, but the crystal quality of the single crystal compound semiconductor layer is insufficient, and the semiconductor device Therefore, it is desired to improve the crystal quality of the single crystal semiconductor layer by heteroepitaxial growth described in 1.

〔従来の技術に余囮バ゛@決しようとIる牌、急〕従来
の、例えばSi基板上にヘテロエピタキシャル成長した
単結晶化合物半導体層を用いた半導体装置においては、
ヘテロ接合界面でのSi基板と単結晶化合物半導体層と
の間の格子定数及び熱膨張係数の不整合により、この接
合界面からSi基板に対して極端に薄い単結晶化合物半
導体層内に、高密度の転位が発生ずると共に大きな残留
スI・レスも形成され、その結果、この単結晶化合物半
導体層に形成される半導体素子に、接合リーク等による
性能劣化を多発していた。
[I'm trying to make a decision due to the influence of conventional technology.] In conventional semiconductor devices using, for example, a single-crystal compound semiconductor layer grown heteroepitaxially on a Si substrate,
Due to the mismatch in lattice constant and thermal expansion coefficient between the Si substrate and the single crystal compound semiconductor layer at the heterojunction interface, high density Along with the occurrence of dislocations, large residual I/stresses were also formed, resulting in frequent performance deterioration due to junction leakage and the like in semiconductor elements formed in this single crystal compound semiconductor layer.

そのため従来は、上記単結晶化合物半導体層の内部に中
間層としてアニール層や歪み超格子層を設け、これらの
層にヘテロ接合面からの転位やス1−レスを吸収して、
素子が形成される単結晶化合物半導体層の表面部の結晶
性を高める方法が試みられているが、転位やス1ヘレス
の除去が充分でなく、素子性能の劣化を充分に防止する
ことはできなかった。
Therefore, conventionally, an annealing layer or a strained superlattice layer is provided as an intermediate layer inside the single crystal compound semiconductor layer, and these layers absorb dislocations and stress from the heterojunction surface.
Attempts have been made to improve the crystallinity of the surface of the single-crystal compound semiconductor layer on which the device is formed, but the removal of dislocations and strands is not sufficient, and deterioration of device performance cannot be sufficiently prevented. There wasn't.

そこで本発明は、ヘテロ接合部の格子定数や熱膨張係数
の不整合により、素子が形成される単結晶半導体層に転
位やストレスが発生するのを抑制するヘテロエピタキシ
基板の構造を提供し、ヘテロエピタキシャル成長による
単結晶半導体層に形成される半導体素子の性能低下を防
止することを目的とする。
Therefore, the present invention provides a structure of a heteroepitaxy substrate that suppresses the occurrence of dislocations and stress in a single crystal semiconductor layer in which an element is formed due to mismatching of lattice constants and thermal expansion coefficients of a heterojunction. The purpose is to prevent deterioration in the performance of a semiconductor element formed in a single crystal semiconductor layer by epitaxial growth.

〔課題を解決するだめの手段] 上記課題は、支持基板上に絶縁層を介して積層されてい
る厚さ1500Å以下の単結晶シリコン層上に、該単結
晶シリコン層とヘテロ接合を形成する単結晶半導体層が
形成された本発明による半導体基板によって解決される
[Means to Solve the Problem] The above problem is achieved by forming a single crystal silicon layer, which forms a heterojunction with the single crystal silicon layer, on a single crystal silicon layer with a thickness of 1500 Å or less, which is laminated on a supporting substrate via an insulating layer. The problem is solved by a semiconductor substrate according to the invention on which a crystalline semiconductor layer is formed.

〔作 用〕[For production]

即ち、本発明においては半導体素子の形成されるヘテロ
エピタキシャル成長による単結晶半導体層の支持基板に
5OT(Silicon On Tnsulator)
基板を用い、絶縁膜上に積層されている5jN(SOI
N)上にヘテロエピタキシャル成長により素子が形成さ
れる単結晶半導体層を形成する。そして、第3図に示す
801層の膜厚と、その上にヘテロエピタキシャル成長
される通常の2〜3μm程度の厚さの単結晶半導体(G
aAs)層内に発生する転位の密度との関係から、80
1層の厚さを50〜1500人程度に充分薄<シ、単結
晶半導体層をそれに比べて充分に厚く形成することによ
り、ヘテロ接合部に生ずる結晶格子及び熱膨張係数の不
整合による応力を801層におけるSi結晶の格子の変
形によって吸収し、上記応力が素子を形成する単結晶半
導体層に及ぼされる大きさを減少させて、この単結晶半
導体層内に発生する転位密度を少なくとも10’/cm
2以下に減少させると同時に、これに伴ってストレスの
大きさをも減少せしめる。
That is, in the present invention, a 5OT (Silicon On Tnsulator) is used as a support substrate for a single crystal semiconductor layer formed by heteroepitaxial growth on which a semiconductor element is formed.
Using a substrate, 5jN (SOI) is laminated on an insulating film.
N) A single crystal semiconductor layer on which elements will be formed is formed by heteroepitaxial growth. The film thickness of the 801 layer shown in Fig. 3 and the normal single crystal semiconductor (G
aAs) From the relationship with the density of dislocations occurring within the layer, 80
By making the single crystal semiconductor layer sufficiently thin (about 50 to 1,500 layers) and making the single crystal semiconductor layer sufficiently thick in comparison, stress caused by mismatching of the crystal lattice and thermal expansion coefficient that occurs at the heterojunction can be reduced. The stress is absorbed by the deformation of the Si crystal lattice in the 801 layer, reducing the magnitude of the stress exerted on the single crystal semiconductor layer forming the device, and reducing the dislocation density generated in the single crystal semiconductor layer to at least 10'/ cm
2 or less, and at the same time, the magnitude of stress is also reduced accordingly.

なお、第3図において、^はSi基板上にヘテロエピタ
キシャル成長させた厚さ3μmのGaAs層の転位密度
を示し、Bは301層の厚さとその上にヘテロエピタキ
シャル成長された厚さ3μmの単結晶GaAs層内に発
生ずる転位の密度との関係のカーブである。
In Fig. 3, ^ indicates the dislocation density of a 3 μm thick GaAs layer grown heteroepitaxially on a Si substrate, and B indicates the dislocation density of a 3 μm thick single crystal GaAs layer heteroepitaxially grown on the 301 layer. This is a curve showing the relationship between the density of dislocations generated within the layer.

〔実施例〕〔Example〕

以下本発明を、図示実施例により具体的に説明する。 The present invention will be specifically explained below with reference to illustrated embodiments.

第1図は本発明に係る半導体基板の一実施例の模式断面
図、第2図(a)乃至(C)は本発明に係る半導体基板
の形成方法の一実施例を示す工程断面図、第3図は50
1層の膜厚と、ヘテロエピタキシャル成長GaAs層の
転位密度との関係図、第4図は本発明に係る半導体基板
を用いて形成した半導体素子の一例の模式断面図である
FIG. 1 is a schematic cross-sectional view of an embodiment of a semiconductor substrate according to the present invention, and FIGS. Figure 3 is 50
FIG. 4 is a diagram showing the relationship between the thickness of one layer and the dislocation density of a heteroepitaxially grown GaAs layer. FIG. 4 is a schematic cross-sectional view of an example of a semiconductor element formed using a semiconductor substrate according to the present invention.

全図を通じ同一対象物は同一符合で示す。Identical objects are indicated by the same reference numerals throughout the figures.

GaAs半導体装置を形成する際に用いられる本発明に
係る半導体基板は、例えば、St支持基板1上に厚さ4
500人程度0二酸化シリコン(SiO□)絶縁層2を
介して積層された50〜1500人の範囲内の例えば1
000人の厚さを有する単結晶Si層(SOI層)3上
に、厚さ100人程鹿の非晶質GaAs層4を介してヘ
テロエピタキシャル成長による厚さ2〜3μmの単結晶
GaAs層5が形成された構造を有する。
The semiconductor substrate according to the present invention used when forming a GaAs semiconductor device is, for example, formed on a St support substrate 1 with a thickness of 4
For example, 1 in the range of 50 to 1,500 laminated with a silicon dioxide (SiO□) insulating layer 2
On a single crystal Si layer (SOI layer) 3 having a thickness of about 1,000 mm, a single crystal GaAs layer 5 with a thickness of 2 to 3 μm is formed by heteroepitaxial growth via an amorphous GaAs layer 4 of about 100 mm thick. Has a formed structure.

このような本発明に係るGaAs基板は、例えば以下に
説明する方法で形成される。
Such a GaAs substrate according to the present invention is formed, for example, by the method described below.

第2図(a)参照 即ち、(100)面を有し、(011)方向2°オフの
Si単結晶基板101に酸素イオン(0゛)をドーズ量
2.0X1010cm−”、加速エネルギー150Ke
Vでイオン注入し、窒素中において1300°Cで6時
間程度アニールし、弗酸等により表面の自然酸化膜を除
去しSOI基板11を形成する。なおここで、前記Si
単結晶基板101には、表面部に301層3となる厚さ
1000人程度人程結晶Si層101八を残してその下
部に厚さ4500人程度0二iO□絶縁層2が形成され
る。
Refer to FIG. 2(a). In other words, oxygen ions (0゛) are applied to a Si single crystal substrate 101 having a (100) plane and 2° off from the (011) direction at a dose of 2.0 x 1010 cm-" and an acceleration energy of 150 Ke.
Ions are implanted with V, annealed in nitrogen at 1300° C. for about 6 hours, and the natural oxide film on the surface is removed with hydrofluoric acid or the like to form the SOI substrate 11. Note that here, the Si
On the single-crystal substrate 101, a crystalline Si layer 1018 having a thickness of about 1,000 layers and forming a 301 layer 3 is left on the surface, and an insulating layer 2 of about 4,500 layers is formed below the crystalline Si layer 1018.

なおこのSiO□絶縁層2の下部に残留するSi基板1
01Bは支持基板1として機能する。
Note that the Si substrate 1 remaining under this SiO□ insulating layer 2
01B functions as a support substrate 1.

第2図(b)参照 次いで、このSOI基板11をMOCVD (有機金属
気相成長)装置内に搬入し、例えば、 水素(H2) : 12 SLM  とアルシン(八5
H3) : 30 SCCMの混合ガスの70〜80T
orrの減圧雰囲気中で、1000°Cに約10分間保
持して、単結晶Si層101A上の自然酸化膜を除去し
た後、 例えば、トリメチルガリウム(TMG)  : 70 
SCCMと八s11. : 200 SCCMの混合ガ
スの70Torr程度の減圧雰囲気中で450’C程度
に加熱し、単結晶Si層101A上に厚さ100人程鹿
の非晶質GaAs層4を形成し、次いで成長温度を通常
のGaAsの成長温度である700°Cに昇温し、成長
ガスの混合比を、TMG:14SCCM 、ASl+3
 : 1003CCMとしてGaAsのヘテロエピタキ
シャル成長を行い、前記非晶質GaAs層4上に厚さ1
μm程度の第1の単結晶GaAs層5Aを形成し、次い
で同雰囲気中で、800°Cと200 ”Cとの間の昇
降温を5回程度繰り返す熱サイクルアニールを行い、上
記第1の単結晶GaAs層島の表面部にアニル層5an
を形成する。
Refer to FIG. 2(b) Next, this SOI substrate 11 is carried into an MOCVD (metal organic chemical vapor deposition) apparatus, and hydrogen (H2): 12 SLM and arsine (85
H3): 70-80T of mixed gas of 30 SCCM
After removing the natural oxide film on the single crystal Si layer 101A by holding it at 1000°C for about 10 minutes in a reduced pressure atmosphere of
SCCM and 8s11. : Heating to about 450'C in a reduced pressure atmosphere of about 70 Torr with a mixed gas of 200 SCCM to form an amorphous GaAs layer 4 about 100 mm thick on the single crystal Si layer 101A, and then lowering the growth temperature. The temperature was raised to 700°C, which is the normal growth temperature for GaAs, and the mixing ratio of the growth gas was changed to TMG: 14SCCM, ASl+3.
: GaAs is heteroepitaxially grown as 1003 CCM, and a thickness of 1 is formed on the amorphous GaAs layer 4.
A first single-crystal GaAs layer 5A with a thickness of approximately μm is formed, and then thermal cycle annealing is performed in the same atmosphere, increasing and decreasing the temperature between 800°C and 200''C approximately 5 times. An anil layer 5an is formed on the surface of the crystalline GaAs layer island.
form.

ここで、前記非晶質GaAs層4は単結晶化され単結晶
GaAs層論と一体化する。
Here, the amorphous GaAs layer 4 is made into a single crystal and integrated with the single crystal GaAs layer.

第2図(C)参照 次いで」1記エピタキシャル成長と同一条件で、第1の
単結晶GaAs層5A」二に厚さ1μm程度の第2の単
結晶GaAs層5Bをエピタキシャル成長させる。
Referring to FIG. 2(C), a second single crystal GaAs layer 5B with a thickness of about 1 μm is epitaxially grown under the same conditions as in the epitaxial growth described in 1.

以」−のような方法により形成した単結晶GaAs層5
表面部の転位密度は、第3図に示すsor層の厚さと転
位密度の関係図から、Si単結晶基板上に、直に、上記
実施例と同様の方法で形成した単結晶GaAs層の転位
密度(八)の値に比べ、<C> の点で示されるように
1/2程度に改善されていることがわかる。
Single-crystal GaAs layer 5 formed by the method described below.
The dislocation density in the surface area can be determined from the relation diagram between the thickness of the SOR layer and the dislocation density shown in FIG. 3. It can be seen that compared to the value of density (8), it is improved to about 1/2 as shown by the point <C>.

第4図は、例えば」1記の方法で形成した301層3上
に単結晶GaAs層5がヘテロエピタキシャル成長され
ているGaAs5OI基板21を用いて形成したMES
 FIETを示した模式断面図で、6はリセス、7はア
ルミニウム(A1)ゲート、8は金ゲルマニウム合金(
AuGe)層上に金(Au>層が積層されてなるAu/
AuGeソース電極、9はAu/AuGe  ドレイン
電極、その他の符号は第1図と同一対称物を示す。
FIG. 4 shows an MES formed using, for example, a GaAs5OI substrate 21 on which a single crystal GaAs layer 5 is heteroepitaxially grown on a 301 layer 3 formed by the method described in 1.
In the schematic cross-sectional view showing the FIET, 6 is a recess, 7 is an aluminum (A1) gate, and 8 is a gold-germanium alloy (
Au/AuGe) layer with gold (Au> layer laminated on top)
An AuGe source electrode, 9 an Au/AuGe drain electrode, and other symbols indicate the same symmetry as in FIG.

なお、本発明の構造は、素子が形成される半導体層に、
」1記GaAs以外の■−V族化合物半導体を用いる際
にも適用される。例えば、ガリウム燐(GaP)を用い
る場合、sor層」−に単結晶GaP層形成する条件は
、例えば 反応ガス   tイ2       12SLMPH3
300SCCM TMC14SCCM 圧力              7QTorr成長温
度          900 °Cである。
Note that the structure of the present invention includes a semiconductor layer in which an element is formed,
1.It is also applied when using a -V group compound semiconductor other than GaAs. For example, when using gallium phosphorus (GaP), the conditions for forming a single-crystal GaP layer on the sor layer are, for example, the reaction gas ti2 12SLMPH3
300SCCM TMC14SCCM Pressure: 7QTorr Growth temperature: 900°C.

また、本発明の構造は、素子が形成される半導体層にゲ
ルマニウム(Ge)を用いる際にも適用される。単結晶
Ge層を気相成長で形成する場合の条件は、例えば 反応ガス   Hz         8  SL?l
GeH41o  SCCM 圧力              10Torr成長温
度          600 °Cである。
Further, the structure of the present invention is also applied when germanium (Ge) is used in a semiconductor layer in which an element is formed. The conditions for forming a single crystal Ge layer by vapor phase growth are, for example, a reaction gas of Hz 8 SL? l
GeH41o SCCM pressure: 10 Torr growth temperature: 600°C.

更にまた、本発明の構造は、素子が形成される半導体層
にGeとSiの混晶を用いる際にも適用される。その場
合の気相成長条件は、例えば反応ガス   Hz   
      8  SLMGeH410SCCM S ! H2C129SCCM 0Torr 60 °C 圧力 成長温度 である。
Furthermore, the structure of the present invention is also applied when a mixed crystal of Ge and Si is used in a semiconductor layer in which an element is formed. In that case, the vapor phase growth conditions are, for example, the reaction gas Hz
8 SLMGeH410SCCM S! H2C129SCCM 0 Torr 60 °C Pressure growth temperature.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、単結晶Si上にヘ
テロエピタキシャル成長せしめたGaAs等の単結晶半
導体層内に発生する転位の密度を、従来に比べて172
程度に減少することができ、またそれと同時にストレス
も減少できるので、ヘテロエピタキシャル成長による半
導体層を用いて形成されるGaAs MESFET等の
半導体素子の、リーク電流による性能劣化を防止する効
果が生ずる。
As explained above, according to the present invention, the density of dislocations generated in a single crystal semiconductor layer such as GaAs grown heteroepitaxially on single crystal Si can be reduced by 172% compared to the conventional method.
At the same time, the stress can be reduced to a certain degree, and at the same time, the stress can be reduced, which has the effect of preventing performance deterioration due to leakage current of semiconductor elements such as GaAs MESFETs formed using semiconductor layers formed by heteroepitaxial growth.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る半導体基板の一実施例の模式断面
図、 第2図(a)乃至(C)は本発明に係る半導体基板の形
成方法の一実施例の工程断面図、 第3図は301層の厚さと、ヘテロエビクキシャル成長
GaAs層の転位密度との関係図、第4図は本発明に係
る半導体基板を用いて形成した半導体素子の模式断面図 である。 図において、 1はSi支持基板、 1は 2−!l!−3iO2絶縁膜、 3は単結晶Si層(SOT層)、 4は非晶質GaAs層、 5ば単結晶GaAs層、 6はリセス、 7はΔ1ゲート、 8は八u/AuGe ソース電極、 9はAu/八uへe  ドレイン電極 11はSO■基板、 21はGaAs Sol基板、 101は単結晶Si基板 を示す。 (2−改9)V赤患獅ω&9■’り一
FIG. 1 is a schematic cross-sectional view of an embodiment of a semiconductor substrate according to the present invention; FIGS. 2(a) to (C) are process cross-sectional views of an embodiment of a method for forming a semiconductor substrate according to the present invention; The figure is a relationship diagram between the thickness of the 301 layer and the dislocation density of the heteroepitaxially grown GaAs layer, and FIG. 4 is a schematic cross-sectional view of a semiconductor element formed using the semiconductor substrate according to the present invention. In the figure, 1 is a Si support substrate, 1 is 2-! l! -3iO2 insulating film, 3 is a single crystal Si layer (SOT layer), 4 is an amorphous GaAs layer, 5 is a single crystal GaAs layer, 6 is a recess, 7 is a Δ1 gate, 8 is an 8u/AuGe source electrode, 9 The drain electrode 11 is an SO2 substrate, 21 is a GaAs Sol substrate, and 101 is a single crystal Si substrate. (2-revised 9) V red disease lion ω & 9 ■' Riichi

Claims (5)

【特許請求の範囲】[Claims] (1)支持基板上に絶縁層を介して積層されている厚さ
1500Å以下の単結晶シリコン層上に、該単結晶シリ
コン層とヘテロ接合を形成する単結晶半導体層が形成さ
れていることを特徴とする半導体基板。
(1) A single crystal semiconductor layer that forms a heterojunction with the single crystal silicon layer is formed on a single crystal silicon layer with a thickness of 1500 Å or less that is laminated on the support substrate with an insulating layer interposed therebetween. Characteristic semiconductor substrate.
(2)前記支持基板が、単結晶シリコン基板よりなるこ
とを特徴とする請求項(1)記載の半導体基板。
(2) The semiconductor substrate according to claim (1), wherein the supporting substrate is made of a single crystal silicon substrate.
(3)前記絶縁層が前記単結晶シリコン支持基板の内部
に形成した酸素のイオン注入によって形成された酸化シ
リコン層からなり、該単結晶シリコン層が該酸化シリコ
ン層の上部に残留する該単結晶シリコン層よりなること
を特徴とする請求項(2)記載の半導体基板。
(3) The insulating layer is made of a silicon oxide layer formed by ion implantation of oxygen formed inside the single crystal silicon support substrate, and the single crystal silicon layer remains on the silicon oxide layer. 3. The semiconductor substrate according to claim 2, wherein the semiconductor substrate is made of a silicon layer.
(4)前記単結晶シリコン層が、前記絶縁層上に積層さ
れた再結晶シリコン層よりなることを特徴とする請求項
(1)及び(2)記載の半導体基板。
(4) The semiconductor substrate according to claims (1) and (2), wherein the single crystal silicon layer is a recrystallized silicon layer stacked on the insulating layer.
(5)前記単結晶半導体層が、III−V族化合物半導体
混晶、又はゲルマニウム、又はシリコンとゲルマニウム
の混晶よりなることを特徴とする請求項(1)、(2)
、(3)及び(4)記載の半導体基板。
(5) Claims (1) and (2) characterized in that the single crystal semiconductor layer is made of a III-V compound semiconductor mixed crystal, germanium, or a mixed crystal of silicon and germanium.
, (3) and (4).
JP12972390A 1990-05-18 1990-05-18 Semiconductor substrate Pending JPH0425135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12972390A JPH0425135A (en) 1990-05-18 1990-05-18 Semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12972390A JPH0425135A (en) 1990-05-18 1990-05-18 Semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH0425135A true JPH0425135A (en) 1992-01-28

Family

ID=15016607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12972390A Pending JPH0425135A (en) 1990-05-18 1990-05-18 Semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH0425135A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7501318B2 (en) 2003-05-30 2009-03-10 International Business Machines Corporation Formation of silicon-germanium-on-insulator (SGOI) by an integral high temperature SIMOX-Ge interdiffusion anneal
JP2010226079A (en) * 2008-10-02 2010-10-07 Sumitomo Chemical Co Ltd Semiconductor substrate, electronic device, and method of manufacturing the semiconductor substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7501318B2 (en) 2003-05-30 2009-03-10 International Business Machines Corporation Formation of silicon-germanium-on-insulator (SGOI) by an integral high temperature SIMOX-Ge interdiffusion anneal
JP2010226079A (en) * 2008-10-02 2010-10-07 Sumitomo Chemical Co Ltd Semiconductor substrate, electronic device, and method of manufacturing the semiconductor substrate

Similar Documents

Publication Publication Date Title
EP0365875B1 (en) Capped anneal
US6525338B2 (en) Semiconductor substrate, field effect transistor, method of forming SiGe layer and method of forming strained Si layer using same, and method of manufacturing field effect transistor
US6787793B2 (en) Strained Si device with first SiGe layer with higher Ge concentration being relaxed to have substantially same lattice constant as second SiGe layer with lower Ge concentration
EP1482549B1 (en) Method of fabrication of a heteroepitaxial microstructure
US7357838B2 (en) Relaxed silicon germanium substrate with low defect density
US5037774A (en) Process for the production of semiconductor devices utilizing multi-step deposition and recrystallization of amorphous silicon
JPH01289108A (en) Heteroepitaxy
US8043929B2 (en) Semiconductor substrate and method for production thereof
JPS60210831A (en) Manufacture of compound semiconductor crystal substrate
US20120119332A1 (en) Process for producing a semiconductor-on-sapphire article
JP2557546B2 (en) Method for manufacturing semiconductor device
JPS61188927A (en) Compound semiconductor device
JPH0425135A (en) Semiconductor substrate
JPS63182811A (en) Epitaxial growth method for compound semiconductor
JP2003142686A (en) Method of manufacturing semiconductor substrate, method of manufacturing field effect transistor, and semiconductor substrate and field effect transistor
US5281551A (en) Method for delta-doping in GaAs epitaxial layer grown on silicon substrate by metalorganic chemical vapor deposition
JPS6191917A (en) Manufacture of semiconductor thin film crystal
JPS6066811A (en) Manufacture of compound semiconductor device
JPS61241911A (en) Compound semiconductor device
JPH01184815A (en) Semiconductor wafer and manufacture thereof
JPS63192227A (en) Epitaxial growth method of compound semiconductor
JPH05335261A (en) Formation of single crystal semiconductor thin film
JP2696928B2 (en) Heteroepitaxial growth method
JPH08236453A (en) Method for growing crystal of compound semiconductor
JPH01293611A (en) Heteroepitaxial growth method