JPH04249302A - High-frequency transformer - Google Patents

High-frequency transformer

Info

Publication number
JPH04249302A
JPH04249302A JP3035380A JP3538091A JPH04249302A JP H04249302 A JPH04249302 A JP H04249302A JP 3035380 A JP3035380 A JP 3035380A JP 3538091 A JP3538091 A JP 3538091A JP H04249302 A JPH04249302 A JP H04249302A
Authority
JP
Japan
Prior art keywords
magnetic
transformer
magnetic core
flux density
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3035380A
Other languages
Japanese (ja)
Inventor
Takashi Naohara
猶原 隆
Takeshi Masumoto
健 増本
Akihisa Inoue
明久 井上
Teruhiro Makino
彰宏 牧野
Masahiro Oguchi
小口 昌弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TPR Co Ltd
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Teikoku Piston Ring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd, Teikoku Piston Ring Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP3035380A priority Critical patent/JPH04249302A/en
Publication of JPH04249302A publication Critical patent/JPH04249302A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the title transformer which is suitably used for a main transformer as a switching power supply by providing the following: a magnetic core composed of an Fe-based amorphous magnetic material whose composition is expressed as Fe86-xSi6B10Nbx and in which the value of (x) is within a specific range; and a winding which has been wound on the magnetic core. CONSTITUTION:The title transformer is provided with the following: a magnetic core 2 composed of an Fe-based amorphous magnetic material whose composition is expressed as Fe86-xSi6B10Nbx and in which 0.5 atomic %<=x<=6 atomic %; and a winding 3 which has been wound on the magnetic core 2. For example, the title transformer is provided with a shell-type magnetic core 2 formed of said Fe-based amorphous magnetic material. Thereby, since the eddy-current loss in a high-frequency region such as 1MHz or the like of said amorphous magnetic material is small and the material is provided with a high saturation flux density, it is possible to obtain a high-frequency transformer whose loss in the high-frequency region is small and whose saturation flux density is high. When the high-frequency transformer is used, a switching power supply can be made small-sized.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明は、スイッチング電源の
メイントランスなどに用いて好適な高周波トランスに関
するものである。 【0002】 【従来の技術】近年、OA機器の小型化・軽量化、低価
格化に伴い、これらの電源が機器に占める割合が著しく
大きくなってきているために、各種電源の小型化が急速
に進められている。このような近年の傾向に従って小型
化が進められているスイッチング電源は、パワーエレク
トロニクスなどの分野においては、通常の50Hz電源
に置き換わりつつある傾向にある。 【0003】ここで、一般のスイッチング電源の構成部
品を検討してみると、ノイズフィルタ、メイントランス
、可飽和磁心、ノイズアブソーバ、平滑チョークなどの
種々の磁性部品を備えている。従ってこれらの磁性部品
のスイッチング周波数を高周波数化することで、これら
の磁性部品の小型化を実現することができることが判る
。このためスイッチング電源に用いられている各種部品
の小型化と高効率化が重要な課題になってきている。 【0004】このような傾向から、最近のスイッチング
電源の運転周波数は500kHzにも達しているが、今
後更にスイッチング電源を小型化するために1MHzで
の運転が目標にされている。 【0005】以上のような背景があるためにスイッチン
グ電源に用いられる部品には、高周波領域における渦電
流損失を減少させることに従来から大きな努力が払われ
てきた。 【0006】従来、この種のスイッチング電源に用いら
れているメイントランスの磁心材料として、主にMn−
Znフェライト、ケイ素鋼などが使用されている。 【0007】 【発明が解決しようとする課題】しかしながら前述の従
来材料はいずれも角形性は良好であるが、高周波数領域
の損失が大きい問題がある。例えばフェライト製のコア
などにおいては、1MHzにおける損失が、100kH
zにおける損失の60倍にもなるという試験結果も好評
されている。 【0008】そこでこれらの要求に応え得る磁性材料と
して、高周波数領域においても磁心損失が小さいという
特徴を有しているCo基などのアモルファス合金がスイ
ッチング電源用の磁心として注目され、可飽和磁心や平
滑チョークなどの一部の部品では広く利用されるように
なってきている。 【0009】ところが、100kHz以上の高周波領域
の高周波トランス用としてアモルファス合金を用いた例
は従来見られず、従来知られているCo基アモルファス
合金にあっては、飽和時速密度が10000G未満のも
のがほとんどであり、メイントランスのより一層の小型
化には特性不足な問題がある。 【0010】本発明は前記課題を解決するためになされ
たもので、高周波数領域において損失が少なく、高い飽
和磁束密度を発揮するので、スイッチング電源のメイン
トランス用として用いた場合に好適な高周波トランスを
提供することを目的とする。 【0011】 【課題を解決するための手段】本発明は前記課題を解決
するために、Fe86−xSi6B10Nbxなる組成
を有し、0.5原子%≦x≦6原子%であるFe基アモ
ルファス磁性材料からなる磁心と、この磁心に巻き付け
られた巻線とを具備してなる。 【0012】 【作用】本発明に用いるFe基アモルファス磁性材料は
特別の組成を有するので、1MHzなどの高周波領域に
おける渦電流損失が少なく、高い飽和磁束密度を有する
。従って高周波領域で損失の少ない飽和磁束密度の高い
高周波トランスが得られ、この高周波トランスを用いる
ことでスイッチング電源が小型になる。 【0013】以下に本発明について更に詳細に説明する
。 【0014】図1は本発明の高周波トランスの一実施例
を示すもので、この実施例の高周波トランス1は、後述
するFe基アモルファス磁性材料で形成され外鉄型の磁
心2とこの磁心2に巻回された巻線3を具備して構成さ
れている。 【0015】磁心2を形成するFe基アモルファス磁性
材料は、Fe86−xSi6B10Nbxなる組成を有
するものであり、FeとNbの含有量をそれぞれ示すx
の値は、0.5原子%≦x≦6原子%の範囲とする。 【0016】前記組成において、Feは磁性を担うため
の中心元素である。飽和磁束密度はNbの添加量が増加
すると順次低下する傾向にあるので、飽和磁束密度を高
くするにはNb含有量を少なくすることが好ましい。ま
た、Nb含有量によって透磁率は大幅に変化する。透磁
率を500以上にするにはNb含有量を0.5〜6原子
%にすることが必要である。更に、透磁率を1000以
上に高くするためには、Nb含有量を1〜1.8原子%
の範囲内、あるいは、3.1〜5.3原子%の範囲内に
設定することが好ましい。 【0017】前記Fe基アモルファス磁性材料を製造す
るには、前記組成の金属の溶湯から急冷することで製造
することができる。前記溶湯を急冷するには、前記溶湯
を回転中の金属ロールの表面に落下させて急冷し、リボ
ン状態として得るロール急冷法を採用することができる
が、アトマイズ法などを適用して溶湯を冷媒中に噴出さ
せて急冷した後に粉末状態として得ることもできる。 【0018】これらから磁心2を形成するには、前記の
ように得られたリボンを積層してたんざく型に加工して
積み重ねるか、環状に巻き付けたコアを2つ結合するな
どして形成すれば良い。また、前記アトマイズ法によっ
て得られた粉末を圧密して焼結することで所望の形状の
磁心2を形成することもできる。 【0019】前記組成のFe基アモルファス材料は、急
冷状態のままであっても十分に優れた飽和磁束密度と透
磁率を有するので、磁場中で特別な熱処理(焼鈍処理)
を行わなくとも高周波トランスの磁心として好適であり
、高周波トランスの小型化軽量化を推進できる効果があ
る。なお、前記組成の合金を必要に応じて磁場中で熱処
理(焼鈍処理)するならば、磁気特性を更に改善するこ
とができ、その場合は更に特性の優れた高周波トランス
1を提供することができる。 【0020】ところで、本発明に用いるFe基アモルフ
ァス材料においては、全体が完全なアモルファス相であ
る必要はなく、内部に少量の結晶相を含んでいても差し
支えなく、前記範囲の結晶相を含む材料も本発明材料と
同等とみなすことができる。 【0021】以下に前記組成のFe系軟磁性材料を製造
した場合について説明する。     【0022】Fe84−xSi6B10Nbxなる組成
(ただしx=1,2,3,4の各値に設定)の金属の溶
湯をるつぼからノズルを介して回転中の金属ロールに噴
出させて急冷することによってリボン状の幅1mm、厚
さ0.25μmの複数の試験片を得た。x=1,2,3
,4の各値に設定して製造した各試験片についてX線回
折試験結果を第1図に示す。回折試験には、フィルタを
通したCoのKα放射線を用いるX線回折法を採用した
。 【0023】図2から、Nb含有量のx値を1,2に設
定した試験片では、bcc相の(110)面から回折さ
れる小さいピークが見られた。従ってこれらの組成のも
のは、結晶相を一部含み、他はアモルファスの基質から
なっていることが判明した。またx値を3,4に設定し
た試験片ではアモルファスの単相構造であることが判明
した。 【0024】次に、前記組成の各試験片に対し、1MH
zにおける飽和磁束密度(Bs)の測定を行うとともに
、(有効)透磁率(μe)と保磁力(Hc)の測定を行
った。飽和磁束密度の測定は、適用磁場800kA/m
の下で振動サンプル磁力計を用いて行った。また、保磁
力は最大磁場が0.8kA/mの直流B−Hループから
評価した。更に、透磁率は0.8A/mの駆動磁場の中
でベクトル・インピーダンス解析器を用い1kHz〜1
0MHzの間の周波数範囲で測定した。それらの結果を
図3(a),(b)に示す。 【0025】図3(a)に示す結果から、飽和磁束密度
は磁気希釈の結果としてNb含有量の増加とともに減少
する傾向にある。これに対し、図3(b)に示す結果か
ら、透磁率は、Nb含有量0.5〜6原子%の範囲内で
2つのピークを有することが判明したが、0.5〜6原
子%の全範囲で500以上の優れた透磁率を示した。な
お、透磁率を1000以上にするためには、Nb含有量
を1〜1.8原子%の範囲と3.1〜5.3原子%の範
囲に設定することが好ましいことも判明した。 【0026】なお、Fe83Si6B10Nb1なる組
成の試料片は、1.44Tの飽和磁束密度を示し、Fe
80Si6B10Nb4なる組成の試験片は1.17T
の飽和磁束密度を示した。また、Fe82.5Si6B
10Nb1.5なる組成の試験片は、透磁率1650を
示し、Fe80Si6B10Nb1なる組成の試験片は
透磁率1800を示した。 【0027】更に、Fe81Si6B10Nb3なる組
成のアモルファス材料とFe80Si6B10Nb4な
る組成のアモルファス材料について磁束密度と磁場強さ
の関係を示すB−Hループを得た。その結果を図4(a
),(b)に示す。Hcの値はそれぞれ前者が3.4A
/mであり、後者が5.8A/mであった。更に、2つ
のアモルファス合金の間でB−Hループの形が図4(a
),(b)に示すように全く異なっており、ΔBの値が
大きく異なっている。この原因は、誘導磁気異方性Ku
の高い値がFe80Si6B10Nb4なる組成の合金
の斜めループ、並びに、保磁力値の増加に著しく影響す
るためであると推定できる。 【0028】なお、Fe80Si6B10Nb4なる組
成の試験片において、Bmは1.17Tであり、Brは
0.06Tであるので、ΔBの値は1.11Tであって
、十分に大きな値であることが判明した。また、Nb含
有量4原子%におけるμe値の著しい増加は図3(b)
で判明するような優れた直流磁気特性に密接に関係して
いると考えられる。このことから、極端に低い残留磁気
比(Br/Bs)を持つ直流B−HループからMHz領
域において損失の著しい低下を実現できる。 【0029】ところで、前記試験片は特別な熱処理を行
っていないが、未熱処理状態であってもコンバータの磁
心用として十分な磁気特性を発揮していることが判明し
た。 【0030】また、前記の実施例で得られたFe80S
i6B10Nb4なる組成の試験片(実施例1)と、(
Co−Fe−Mn−Mo)77(Si−B)23なる組
成のアモルファス材料(比較例1)とMn−Znフェラ
イト(比較例2)の各々について、飽和磁束密度Brと
BsとΔB[Bs−Br]とBr/Bsと保磁力Hcと
透磁率を測定した結果を第1表に示す。(以下、余白) 【0031】  【第1表】 【0032】第1表に示す結果から、実施例1の合金は
、比較例1,2の合金よりも飽和磁束密度(Bs)が大
きいとともに、ΔBの値も大きく、保磁力(Hc)は中
間値であり、透磁率も優秀な値となっている。また、1
MHzでの透磁率の値はCo基アモルファス合金及びM
n−Zn粉末フェライトと比較してもある程度大きい。 前述のように、本発明に係る磁性材料が高いΔBをもた
らす大きな飽和磁束密度を有し、小さいBr/Bs値を
有する。更に、透磁率が1800と大きいので、1MH
zのような高い周波数で使用し、渦電流損失が、ある程
度増大することがあっても、発熱を低く抑えることがで
き十分な性能を確保することができる。 【0033】以上のことから本発明に用いる磁性材料は
、1MHzの運転周波数で使用されるフォワードコンバ
ータのメイントランスの磁心材料として好適であること
が明らかになった。 【0034】図5は本発明の高周波トランスの他の実施
例を示すもので、この実施例の高周波トランス5は先に
説明した組成のFe系アモルファス磁性材料からなる環
状の磁心6を備え、この磁心6を取り巻くように巻線7
を設けたトロイダル型のものであり、この実施例におい
ても先に記載した実施例と同様の効果を得ることができ
る。 【0035】なお、先の実施例においては外鉄型とトロ
イダル型のトランスに本発明を適用した例について説明
したが、その他の種々の形状のトランスに本発明を適用
しても良いのは勿論である。 【発明の効果】以上説明したように本願発明は、Fe8
6−xSi6B10Nbxなる組成を有するFe基アモ
ルファス材料で磁心を構成してあるので、十分に優れた
飽和磁束密度と透磁率を有する。また、透磁率が十分に
高いので1MHzなどの高周波領域において多少渦電流
損失を生じても温度上昇を低く抑え、十分に高い磁気特
性を維持することができる。従って本発明により、高性
能な高周波トランスを提供することができ、メイントラ
ンスの小型化軽量化を推進でき、スイッチング電源の小
型化をなしえる。また、本発明に用いるFe基アモルフ
ァス材料は、磁場中で特別な熱処理(焼鈍処理)を行わ
なくとも高周波トランスの磁心として好適な軟磁気特性
を発揮するので、熱処理が必要な従来材料よりも製造が
容易にできる効果がある。なお、前記組成の合金を必要
に応じて磁場中で熱処理(焼鈍処理)するならば、磁気
特性を更に改善することができ、その場合は更に特性の
優れた高周波トランスを提供することができる。
Description: FIELD OF INDUSTRIAL APPLICATION This invention relates to a high frequency transformer suitable for use as a main transformer of a switching power supply. [0002] In recent years, as OA equipment has become smaller, lighter, and cheaper, the proportion of these power supplies in the equipment has increased significantly, and the miniaturization of various power supplies has been rapid. is being advanced. Switching power supplies, which have been miniaturized in accordance with recent trends, are replacing normal 50 Hz power supplies in fields such as power electronics. [0003] If we consider the components of a typical switching power supply, it includes various magnetic parts such as a noise filter, a main transformer, a saturable magnetic core, a noise absorber, and a smoothing choke. Therefore, it can be seen that by increasing the switching frequency of these magnetic components, it is possible to realize miniaturization of these magnetic components. For this reason, miniaturization and higher efficiency of various components used in switching power supplies have become important issues. Due to this trend, the operating frequency of recent switching power supplies has reached as high as 500 kHz, but in the future, the goal is to operate at 1 MHz in order to further downsize switching power supplies. Due to the above background, great efforts have been made to reduce eddy current loss in the high frequency range of components used in switching power supplies. Conventionally, Mn- was mainly used as the magnetic core material of the main transformer used in this type of switching power supply.
Zn ferrite, silicon steel, etc. are used. [0007] However, although all of the above-mentioned conventional materials have good squareness, they have the problem of large loss in the high frequency region. For example, in a ferrite core, the loss at 1MHz is 100kHz.
Test results showing that the loss is 60 times greater than that in z have also been well received. Therefore, as magnetic materials that can meet these demands, amorphous alloys such as Co-based alloys, which have the characteristic of low core loss even in high frequency regions, are attracting attention as magnetic cores for switching power supplies, and are being used as saturable magnetic cores and It is becoming widely used in some parts such as smooth chokes. However, there have been no examples of using amorphous alloys for high-frequency transformers in the high-frequency range of 100 kHz or higher, and among the previously known Co-based amorphous alloys, those with a saturated hourly density of less than 10,000 G However, the further miniaturization of the main transformer has the problem of insufficient characteristics. The present invention has been made to solve the above problems, and is a high frequency transformer suitable for use as a main transformer of a switching power supply because it exhibits low loss and high saturation magnetic flux density in a high frequency region. The purpose is to provide [Means for Solving the Problems] In order to solve the above problems, the present invention provides an Fe-based amorphous magnetic material having a composition of Fe86-xSi6B10Nbx and where 0.5 at.%≦x≦6 at.%. The magnetic core includes a magnetic core, and a winding wire wound around the magnetic core. [0012] Since the Fe-based amorphous magnetic material used in the present invention has a special composition, it has low eddy current loss in a high frequency region such as 1 MHz, and has a high saturation magnetic flux density. Therefore, a high frequency transformer with low loss and high saturation magnetic flux density in a high frequency region can be obtained, and by using this high frequency transformer, a switching power supply can be made smaller. The present invention will be explained in more detail below. FIG. 1 shows an embodiment of the high frequency transformer of the present invention. The high frequency transformer 1 of this embodiment is made of an Fe-based amorphous magnetic material, which will be described later, and has an outer iron type magnetic core 2 and a magnetic core 2. It is configured to include a wound wire 3. The Fe-based amorphous magnetic material forming the magnetic core 2 has a composition of Fe86-xSi6B10Nbx, and x represents the content of Fe and Nb, respectively.
The value of is in the range of 0.5 atomic %≦x≦6 atomic %. In the above composition, Fe is the central element responsible for magnetism. Since the saturation magnetic flux density tends to decrease as the amount of Nb added increases, it is preferable to reduce the Nb content in order to increase the saturation magnetic flux density. Moreover, the magnetic permeability changes significantly depending on the Nb content. In order to increase the magnetic permeability to 500 or more, it is necessary to adjust the Nb content to 0.5 to 6 at%. Furthermore, in order to increase the magnetic permeability to 1000 or more, the Nb content should be increased from 1 to 1.8 at%.
It is preferable to set it within the range of , or within the range of 3.1 to 5.3 atomic %. The Fe-based amorphous magnetic material can be manufactured by rapidly cooling a molten metal having the composition described above. To rapidly cool the molten metal, it is possible to adopt a roll quenching method in which the molten metal is dropped onto the surface of a rotating metal roll to obtain a ribbon state. It can also be obtained as a powder after being squirted into a liquid and rapidly cooled. In order to form the magnetic core 2 from these, the ribbons obtained as described above are laminated and processed into a tanzaku shape and stacked, or two cores wound in an annular shape are joined together. Good. Moreover, the magnetic core 2 of a desired shape can also be formed by compacting and sintering the powder obtained by the atomization method. Since the Fe-based amorphous material having the above composition has sufficiently excellent saturation magnetic flux density and magnetic permeability even in the rapidly cooled state, it is subjected to special heat treatment (annealing treatment) in a magnetic field.
Even if it is not carried out, it is suitable as a magnetic core of a high frequency transformer, and has the effect of promoting miniaturization and weight reduction of high frequency transformers. Note that if the alloy having the above composition is heat-treated (annealed) in a magnetic field as necessary, the magnetic properties can be further improved, and in that case, a high-frequency transformer 1 with even more excellent properties can be provided. . By the way, the Fe-based amorphous material used in the present invention does not need to be completely amorphous as a whole, and may contain a small amount of crystalline phase inside. can also be considered to be equivalent to the material of the present invention. [0021] A case in which a Fe-based soft magnetic material having the above composition is manufactured will be described below. A ribbon is formed by spouting a molten metal having a composition of Fe84-xSi6B10Nbx (where x is set to each value of 1, 2, 3, and 4) from a crucible onto a rotating metal roll through a nozzle and rapidly cooling it. A plurality of test pieces having a width of 1 mm and a thickness of 0.25 μm were obtained. x=1,2,3
, 4, and the results of the X-ray diffraction test are shown in FIG. For the diffraction test, an X-ray diffraction method using filtered Co Kα radiation was employed. From FIG. 2, a small peak diffracted from the (110) plane of the bcc phase was observed in the test pieces in which the x value of the Nb content was set to 1 and 2. Therefore, it was found that these compositions partially contained a crystalline phase and the rest consisted of an amorphous matrix. In addition, it was found that the test pieces in which the x value was set to 3 or 4 had an amorphous single-phase structure. Next, for each test piece having the above composition, 1MH
In addition to measuring the saturation magnetic flux density (Bs) at z, the (effective) magnetic permeability (μe) and coercive force (Hc) were also measured. The saturation magnetic flux density was measured using an applied magnetic field of 800 kA/m.
was carried out using a vibrating sample magnetometer under Moreover, the coercive force was evaluated from a DC B-H loop with a maximum magnetic field of 0.8 kA/m. Furthermore, the magnetic permeability was measured using a vector impedance analyzer in a driving magnetic field of 0.8 A/m from 1 kHz to 1
Measurements were made in the frequency range between 0 MHz. The results are shown in FIGS. 3(a) and 3(b). From the results shown in FIG. 3(a), the saturation magnetic flux density tends to decrease as the Nb content increases as a result of magnetic dilution. On the other hand, from the results shown in FIG. 3(b), it was found that the magnetic permeability had two peaks within the range of Nb content of 0.5 to 6 at%, but It showed an excellent magnetic permeability of 500 or more over the entire range. It has also been found that in order to make the magnetic permeability 1000 or more, it is preferable to set the Nb content in the range of 1 to 1.8 at % and 3.1 to 5.3 at %. Note that the sample piece with the composition Fe83Si6B10Nb1 showed a saturation magnetic flux density of 1.44T, and
The test piece with the composition 80Si6B10Nb4 was 1.17T.
showed a saturation magnetic flux density of Also, Fe82.5Si6B
A test piece with a composition of 10Nb1.5 showed a magnetic permeability of 1650, and a test piece with a composition of Fe80Si6B10Nb1 showed a magnetic permeability of 1800. Furthermore, a B-H loop showing the relationship between magnetic flux density and magnetic field strength was obtained for an amorphous material having a composition of Fe81Si6B10Nb3 and an amorphous material having a composition of Fe80Si6B10Nb4. The results are shown in Figure 4 (a
) and (b). The value of Hc is 3.4A for the former.
/m, and the latter was 5.8A/m. Furthermore, the shape of the B-H loop between the two amorphous alloys is shown in Figure 4 (a
) and (b), they are completely different, and the values of ΔB are greatly different. The reason for this is the induced magnetic anisotropy Ku
It can be presumed that this is because a high value of . [0028] In the test piece with the composition Fe80Si6B10Nb4, Bm is 1.17T and Br is 0.06T, so the value of ΔB is 1.11T, which is found to be a sufficiently large value. did. Furthermore, the significant increase in the μe value at a Nb content of 4 at% is shown in Figure 3(b).
It is thought that this is closely related to the excellent DC magnetic properties as revealed in . From this, it is possible to realize a significant reduction in loss in the MHz region from a DC B-H loop having an extremely low remanence ratio (Br/Bs). Incidentally, although the test piece was not subjected to any special heat treatment, it was found that even in the unheated state, it exhibited sufficient magnetic properties for use as a magnetic core of a converter. [0030] Also, Fe80S obtained in the above example
A test piece with a composition of i6B10Nb4 (Example 1) and (
The saturation magnetic flux density Br, Bs, and ΔB[Bs- Table 1 shows the measurement results of Br], Br/Bs, coercive force Hc, and magnetic permeability. (The following is a blank space) [Table 1] From the results shown in Table 1, the alloy of Example 1 has a higher saturation magnetic flux density (Bs) than the alloys of Comparative Examples 1 and 2, and The value of ΔB is also large, the coercive force (Hc) is an intermediate value, and the magnetic permeability is also an excellent value. Also, 1
The magnetic permeability value at MHz is the same for Co-based amorphous alloys and M
It is somewhat larger than n-Zn powder ferrite. As mentioned above, the magnetic material according to the invention has a large saturation magnetic flux density resulting in a high ΔB and has a small Br/Bs value. Furthermore, since the magnetic permeability is as high as 1800, 1MH
Even if eddy current loss increases to some extent when used at a high frequency such as Z, heat generation can be kept low and sufficient performance can be ensured. From the above, it has become clear that the magnetic material used in the present invention is suitable as a magnetic core material for a main transformer of a forward converter used at an operating frequency of 1 MHz. FIG. 5 shows another embodiment of the high frequency transformer of the present invention. The high frequency transformer 5 of this embodiment is equipped with an annular magnetic core 6 made of an Fe-based amorphous magnetic material having the composition described above. The winding 7 surrounds the magnetic core 6.
This embodiment is of a toroidal type, and the same effects as in the previously described embodiment can be obtained in this embodiment. [0035] In the previous embodiment, an example was explained in which the present invention was applied to an outer iron type and a toroidal type transformer, but it goes without saying that the present invention may be applied to transformers of various other shapes. It is. Effects of the Invention As explained above, the present invention provides Fe8
Since the magnetic core is made of an Fe-based amorphous material having a composition of 6-xSi6B10Nbx, it has sufficiently excellent saturation magnetic flux density and magnetic permeability. Furthermore, since the magnetic permeability is sufficiently high, even if some eddy current loss occurs in a high frequency region such as 1 MHz, the temperature rise can be suppressed to a low level and sufficiently high magnetic properties can be maintained. Therefore, according to the present invention, a high-performance high-frequency transformer can be provided, the main transformer can be made smaller and lighter, and the switching power supply can be made smaller. In addition, the Fe-based amorphous material used in the present invention exhibits soft magnetic properties suitable for the magnetic core of a high-frequency transformer without special heat treatment (annealing treatment) in a magnetic field, so it is easier to manufacture than conventional materials that require heat treatment. There is an effect that can be easily achieved. Note that if the alloy having the above composition is heat-treated (annealed) in a magnetic field as necessary, the magnetic properties can be further improved, and in that case, a high-frequency transformer with even more excellent properties can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】図1は本発明の高周波トランスの一実施例を示
す断面図である。
FIG. 1 is a sectional view showing one embodiment of a high frequency transformer of the present invention.

【図2】図2は本発明に係るFe86−xSi6B10
Nbxなる組成の合金のX線回折図形を示すグラフであ
る。
FIG. 2 shows Fe86-xSi6B10 according to the present invention.
1 is a graph showing an X-ray diffraction pattern of an alloy having a composition of Nbx.

【図3】図3(a)は同合金におけるNb含有量と飽和
磁束密度の関係を示すグラフである。  図3(b)は
同合金におけるNb含有量と透磁率の関係を示すグラフ
である。
FIG. 3(a) is a graph showing the relationship between Nb content and saturation magnetic flux density in the same alloy. FIG. 3(b) is a graph showing the relationship between Nb content and magnetic permeability in the same alloy.

【図4】図4(a)はFe81Si6B10Nb3なる
組成の合金のB−Hループを示すグラフである。図4(
b)はFe80Si6B10N4なる組成の合金のB−
Hループを示す線図である。
FIG. 4(a) is a graph showing a B-H loop of an alloy having a composition of Fe81Si6B10Nb3. Figure 4 (
b) is B- of the alloy with the composition Fe80Si6B10N4.
It is a diagram showing an H loop.

【図5】図5は本発明を適用したトランスの他の実施例
を示す断面図である。
FIG. 5 is a sectional view showing another embodiment of a transformer to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1    高周波トランス、 2    磁心、 3    巻線、 5    高周波トランス、 6    磁心、 7    巻線。 1 High frequency transformer, 2. Magnetic core, 3 Winding wire, 5 High frequency transformer, 6 Magnetic core, 7 Winding wire.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Fe86−xSi6B10Nbxなる組成
を有し、0.5原子%≦x≦6原子%であるFe基アモ
ルファス磁性材料からなる磁心と、この磁心に巻き付け
られた巻線とを具備してなることを特徴とする高周波ト
ランス。
Claim 1: A magnetic core made of an Fe-based amorphous magnetic material having a composition of Fe86-xSi6B10Nbx, where 0.5 atomic %≦x≦6 atomic %, and a winding wound around this magnetic core. A high frequency transformer characterized by:
JP3035380A 1991-02-05 1991-02-05 High-frequency transformer Withdrawn JPH04249302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3035380A JPH04249302A (en) 1991-02-05 1991-02-05 High-frequency transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3035380A JPH04249302A (en) 1991-02-05 1991-02-05 High-frequency transformer

Publications (1)

Publication Number Publication Date
JPH04249302A true JPH04249302A (en) 1992-09-04

Family

ID=12440294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3035380A Withdrawn JPH04249302A (en) 1991-02-05 1991-02-05 High-frequency transformer

Country Status (1)

Country Link
JP (1) JPH04249302A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006149172A (en) * 2004-11-24 2006-06-08 D & M Holdings Inc Power supply device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006149172A (en) * 2004-11-24 2006-06-08 D & M Holdings Inc Power supply device
JP4523389B2 (en) * 2004-11-24 2010-08-11 株式会社ディーアンドエムホールディングス Power supply

Similar Documents

Publication Publication Date Title
JP5664934B2 (en) Soft magnetic alloy and magnetic component using the same
US4881989A (en) Fe-base soft magnetic alloy and method of producing same
US4385932A (en) Amorphous magnetic alloy
JP4210986B2 (en) Magnetic alloy and magnetic parts using the same
JP4547671B2 (en) High saturation magnetic flux density low loss magnetic alloy and magnetic parts using the same
JPH044393B2 (en)
JP2573606B2 (en) Magnetic core and manufacturing method thereof
WO2014126220A1 (en) Annular magnetic core using iron-based nanocrystalline soft-magnetic alloy and magnetic component using said annular magnetic core
JP5445891B2 (en) Soft magnetic ribbon, magnetic core, and magnetic parts
JP2007270271A (en) Soft magnetic alloy, its manufacturing method, and magnetic component
JP3357386B2 (en) Soft magnetic alloy, method for producing the same, and magnetic core
US4834816A (en) Metallic glasses having a combination of high permeability, low coercivity, low ac core loss, low exciting power and high thermal stability
JPH05335154A (en) Magnetic core and manufacture thereof
KR950014314B1 (en) Iron-base soft magnetic alloy
JP5445924B2 (en) Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon
JPH04249302A (en) High-frequency transformer
JPH08153614A (en) Magnetic core
JPH04249301A (en) Converter
JP2005187917A (en) Soft magnetic alloy, and magnetic component
JPH04348006A (en) Noise filter
JPH04198459A (en) Fe-base amorphous magnetic material
JPH01180944A (en) Amorphous magnetic alloy for choking coil and its production
JP2002327226A (en) Co-BASED MAGNETIC ALLOY AND MAGNETIC COMPONENT THEREWITH
JPH04249303A (en) Noise absorber
JPH04311006A (en) Smoothing choke coil

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514