JPH04249056A - Mass-spectrometric device using induction coupling plasma with heating and gasification - Google Patents

Mass-spectrometric device using induction coupling plasma with heating and gasification

Info

Publication number
JPH04249056A
JPH04249056A JP3013549A JP1354991A JPH04249056A JP H04249056 A JPH04249056 A JP H04249056A JP 3013549 A JP3013549 A JP 3013549A JP 1354991 A JP1354991 A JP 1354991A JP H04249056 A JPH04249056 A JP H04249056A
Authority
JP
Japan
Prior art keywords
gas
inductively coupled
coupled plasma
carrier gas
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3013549A
Other languages
Japanese (ja)
Other versions
JP3116137B2 (en
Inventor
Yoshitomo Nakagawa
良知 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP03013549A priority Critical patent/JP3116137B2/en
Publication of JPH04249056A publication Critical patent/JPH04249056A/en
Application granted granted Critical
Publication of JP3116137B2 publication Critical patent/JP3116137B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

PURPOSE:To enhance the sensitivity of a mass-spectrometric device, which makes mass analysis upon ionizing atomic vapor, and obtain measurements stable against inclusion of air or water vapor in a piping by using a carrier gas consisting of an inert gas to which H or N is added. CONSTITUTION:A container 1 is filled with Ar gas, while a mixture gas container 15 filled with Ar gas to which H is added. This mixture gas is decompressed by a regulator 16, and its rate of flow is controlled by a flow controller-B 17. The gas is then sent to a plasma torch 9 to become induction coupling plasma 11. The flow controller-B 17 and another flow controller-A 14 work interlocking and control so that the sum of the Ar gas rate of flow from the container 1 and the rate of flow of the mixtute gas will be constant. If 1-2% H is added to the carrier gas in this manner, sensitivity change for changing concentration of the addtive gas such as remains small, which enables obtainment of measurements stable against inclusion of the air of water vapor in the piping.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、試料溶液中の微量不
純物の分析を行う誘導結合プラズマ質量分析装置に関し
、特に微少試料量の分析を行う加熱気化誘導結合プラズ
マ質量分析装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inductively coupled plasma mass spectrometer for analyzing trace impurities in a sample solution, and more particularly to a heated vaporization inductively coupled plasma mass spectrometer for analyzing a trace amount of a sample.

【0002】0002

【従来の技術】従来技術の例を図2を用いて説明する。 1はボンベ、2はレギュレーター、3は流量制御部、4
は加熱炉、6および7は電極、8は輸送管9はプラズマ
トーチ、10はワークコイル、11は誘導結合プラズマ
、12はサンプリングオリフィス、13は質量分析部で
ある。加熱炉4は上部に試料溶液を注入するための孔5
が開いた円筒状の構造で、電極6及び7をとおして通電
することにより加熱される。キャリアガスはボンベ1中
のガスをレギュレーター2により一定の圧力に減圧され
た後、1から1.5L/min程度に流量制御部3で制
御され、加熱炉4及び輸送管8を通してプラズマトーチ
9に流される。ここでキャリアガスは例えばアルゴンガ
スが使用される。試料溶液は5から50mL程度加熱炉
4に滴下されて100℃前後で脱溶媒されたのち300
から1000℃で灰化される。測定すべき試料溶液中の
不純物元素は、その後1500から3000℃に加熱さ
れて原子蒸気化され、キャリアガスとともに輸送管8を
通してプラズマトーチ9にいたる。プラズマトーチ9の
先端ではワークコイル10により例えば27.12MH
zの高周波が印加されており、キャリアガス及び原子化
蒸気は誘導結合して誘導結合プラズマ11となる。質量
分析部13の誘導結合プラズマ11の軸上にはサンプリ
ングオリフィスと呼ばれる径1mm程度の孔12が開い
ている。原子化蒸気は、誘導結合プラズマ11内でイオ
ン化されてサンプリングオリフィス12を通して質量分
析部13に入り、質量分析されて元素同定あるいは定量
される。
2. Description of the Related Art An example of the prior art will be explained with reference to FIG. 1 is a cylinder, 2 is a regulator, 3 is a flow rate controller, 4
1 is a heating furnace, 6 and 7 are electrodes, 8 is a transport tube 9 is a plasma torch, 10 is a work coil, 11 is an inductively coupled plasma, 12 is a sampling orifice, and 13 is a mass spectrometry section. The heating furnace 4 has a hole 5 at the top for injecting the sample solution.
It has an open cylindrical structure and is heated by passing electricity through electrodes 6 and 7. After the carrier gas in the cylinder 1 is reduced to a constant pressure by the regulator 2, the flow rate is controlled by the flow rate controller 3 to about 1 to 1.5 L/min, and the carrier gas is passed through the heating furnace 4 and the transport pipe 8 to the plasma torch 9. be swept away. Here, for example, argon gas is used as the carrier gas. Approximately 5 to 50 mL of the sample solution was dropped into the heating furnace 4, and after being desolvated at around 100°C, it was heated at 300°C.
It is incinerated at 1000℃. Impurity elements in the sample solution to be measured are then heated to 1,500 to 3,000° C. to be atomically vaporized, and delivered to the plasma torch 9 through the transport pipe 8 together with the carrier gas. At the tip of the plasma torch 9, the work coil 10 generates, for example, 27.12MH
A high frequency wave of z is applied, and the carrier gas and atomized vapor are inductively coupled to form an inductively coupled plasma 11. A hole 12 with a diameter of about 1 mm, called a sampling orifice, is opened on the axis of the inductively coupled plasma 11 of the mass spectrometer 13. The atomized vapor is ionized within the inductively coupled plasma 11, enters the mass spectrometer 13 through the sampling orifice 12, and is subjected to mass spectrometry to identify or quantify the elements.

【0003】0003

【発明が解決しようとする課題】しかし、従来技術では
測定する不純物元素の検出下限が2桁ppt程度であり
、例えば半導体産業で管理されるべき不純物レベルを測
定するには感度不足であった。さらに従来技術では定量
分析値のバラツキが大きく信頼性が乏しいという課題が
あった。
[Problems to be Solved by the Invention] However, in the prior art, the lower limit of detection of impurity elements to be measured is about two digits ppt, and the sensitivity is insufficient for measuring impurity levels that should be controlled in the semiconductor industry, for example. Furthermore, the conventional technology has a problem in that the quantitative analysis values vary widely and are unreliable.

【0004】この発明は、加熱気化誘導結合プラズマ質
量分析装置の感度向上及び安定性向上をさせて、従来の
このような課題を解決することを目的としたものである
The object of the present invention is to improve the sensitivity and stability of a heated vaporization inductively coupled plasma mass spectrometer to solve these conventional problems.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、この発明は試料溶液をグラファイト製の加熱炉に滴
下し、前記加熱炉を高温で加熱することにより前記不純
物を原子蒸気化し、前記原子蒸気を流量制御されたキャ
リアガスにより誘導結合プラスマを発生するプラスマト
ーチに輸送し、前記誘導結合プラズマにより前記原子蒸
気をイオン化して質量分析部で質量分離して検出する加
熱気化誘導結合プラズマ質量分析装置において、前記キ
ャリアガスが水素あるいは窒素を添加した不活性ガスと
したことにより、感度向上及び安定性向上を図れるよう
にしたものである。
[Means for Solving the Problems] In order to solve the above problems, the present invention drips a sample solution into a graphite heating furnace, heats the heating furnace at a high temperature to atomically vaporize the impurities, and A heating vaporization inductively coupled plasma mass in which atomic vapor is transported to a plasma torch that generates inductively coupled plasma using a carrier gas whose flow rate is controlled, and the atomic vapor is ionized by the inductively coupled plasma, and the mass is separated and detected by a mass spectrometer. In the analyzer, the carrier gas is an inert gas to which hydrogen or nitrogen is added, thereby improving sensitivity and stability.

【0006】[0006]

【作用】上記のように構成された加熱気化誘導結合プラ
ズマ質量分析装置においては、キャリアガス中に水素あ
るいは窒素を添加することにより誘導結合プラズマ中で
の原子化蒸気のイオン化効率を向上させて感度を向上さ
せた。さらに、混入する空気や水蒸気等の濃度変化に対
して装置の感度の影響が最小限になるように、キャリア
ガス中に添加する水素あるいは窒素の濃度を設定するこ
とにより、バラツキがなくて信頼性の高い測定値を得ら
れるようにした。
[Operation] In the heated vaporization inductively coupled plasma mass spectrometer configured as described above, the sensitivity is improved by adding hydrogen or nitrogen to the carrier gas to improve the ionization efficiency of the atomized vapor in the inductively coupled plasma. improved. Furthermore, by setting the concentration of hydrogen or nitrogen added to the carrier gas so that the influence of the sensitivity of the device on changes in the concentration of air, water vapor, etc. mixed in is minimized, reliability is ensured without variation. It is now possible to obtain high measured values.

【0007】[0007]

【実施例】以下に、この発明の実施例を図に基づいて説
明する。図1は本発明の実施例を示す概略図で、ボンベ
1、レギュレーター2、加熱炉4、電極6及び7、輸送
管8、プラズマトーチ9、質量分析部13は従来技術と
同等である。14は流量制御部A、15は混合ガスボン
ベ、16はレギュレーター、17は流量制御部Bである
。ボンベ1にはアルゴンガスが充填されているのに対し
て、混合ガスボンベ15には水素を1から10%程度添
加されたアルゴンガスが充填されている。この混合ガス
は、レギュレーター16で3kg/cm2 程度に減圧
された後流量制御部B17で流量制御されて加熱炉4、
輸送管8を通してプラズマトーチ9に至り、誘導結合プ
ラズマ11となる。流量制御部A14と流量制御部B1
7は連動して、ボンベ1からのアルゴンガス流量と混合
ガスボンベ15からの混合ガス流量の和が1から1.5
L/min程度で一定になるように制御しており、水素
ガス濃度を自由にコントロールできるようになっている
。これは、加熱気化誘導結合プラズマ質量分析装置の感
度はキャリアガス流量に対して敏感であり、キャリアガ
ス流量をパラメーターとしたときの感度は、水素ガスの
濃度に関わらず、キャリアガスがある一定流量のところ
で極大になるため、アルゴンガス流量と混合ガス流量の
和を一定に制御することによってキャリアガス流量の設
定を容易にするためである。図3にキャリアガス流量を
一定にして添加した水素濃度をパラメーターとしたとき
の鉄の感度の関係を示す。水素無添加のときとくらべ、
感度は水素濃度が1から2%のときに1桁程度高くなる
。この傾向は水素以外のガス、例えば酸素や窒素、水蒸
気でも認められる。これは、水素等の存在により誘導結
合プラズマ内でのイオン化効率が向上するためと推定さ
れる。また図3によると、水素濃度が0%付近で急激に
変化している。このことは、キャリアガス中に意図的に
は何も添加していない従来技術では配管中にわずかの空
気や水蒸気が混入していても感度が大きく変化してしま
うことを意味している。本実施例によりキャリアガス中
に水素を1から2%程度添加していると、水素等の添加
ガス濃度の変化に対する感度変化が小さいたことが図3
からわかるために、配管中の空気や水蒸気の混入に対し
て安定した測定値を得ることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing an embodiment of the present invention, in which a cylinder 1, a regulator 2, a heating furnace 4, electrodes 6 and 7, a transport tube 8, a plasma torch 9, and a mass spectrometer 13 are the same as those in the prior art. 14 is a flow rate control section A, 15 is a mixed gas cylinder, 16 is a regulator, and 17 is a flow rate control section B. While the cylinder 1 is filled with argon gas, the mixed gas cylinder 15 is filled with argon gas to which about 1 to 10% hydrogen is added. After the pressure of this mixed gas is reduced to about 3 kg/cm2 by the regulator 16, the flow rate is controlled by the flow rate controller B17, and the heating furnace 4,
It reaches the plasma torch 9 through the transport pipe 8 and becomes inductively coupled plasma 11. Flow rate control section A14 and flow rate control section B1
7 is linked so that the sum of the argon gas flow rate from cylinder 1 and the mixed gas flow rate from mixed gas cylinder 15 is 1 to 1.5.
The hydrogen gas concentration is controlled to be constant at about L/min, and the hydrogen gas concentration can be freely controlled. This is because the sensitivity of the heating vaporization inductively coupled plasma mass spectrometer is sensitive to the carrier gas flow rate, and when the carrier gas flow rate is used as a parameter, the sensitivity is This is to make it easier to set the carrier gas flow rate by controlling the sum of the argon gas flow rate and the mixed gas flow rate to be constant. FIG. 3 shows the relationship between iron sensitivity when the carrier gas flow rate is kept constant and the added hydrogen concentration is used as a parameter. Compared to when no hydrogen was added,
The sensitivity increases by about an order of magnitude when the hydrogen concentration is 1 to 2%. This tendency is also observed for gases other than hydrogen, such as oxygen, nitrogen, and water vapor. This is presumed to be because the presence of hydrogen or the like improves the ionization efficiency within the inductively coupled plasma. Further, according to FIG. 3, the hydrogen concentration changes rapidly near 0%. This means that in conventional techniques in which nothing is intentionally added to the carrier gas, even if a small amount of air or water vapor is mixed into the piping, the sensitivity will change significantly. Figure 3 shows that when approximately 1 to 2% hydrogen was added to the carrier gas according to this example, the change in sensitivity to changes in the concentration of added gas such as hydrogen was small.
Therefore, stable measurement values can be obtained even when air or water vapor enters the pipes.

【0008】ところで、加熱気化誘導結合プラズマ質量
分析装置で測定する元素としては、半導体産業では鉄が
重要であるが、キャリアガスに添加する添加ガスとして
は、酸素を含むガスはアルゴンと化合した酸化アルゴン
が鉄と干渉して不適当であり、水素や窒素が特に有効で
あった。また図1の混合ガスボンベ15に純粋水素を充
填して使用すると、キャリアガス流量が1L/minと
すると、水素ガス流量は図3によると10から20mL
/min程度が適当となる。10から20mL/min
という微量の流量制御を行うには、流量制御部B17が
高価なものになるし、純粋水素に対する安全対策も必要
になってくる。これに対して混合ガスボンベ15に例え
ば5%程度水素を添加したアルゴンガスを充填して使用
すると、流量制御部B17で制御する流量は200から
400mL/minとなり、流量制御部B17を高価な
ものにしなくとも容易に流量制御できるようになる。ま
た純粋水素でないために、安全性も特に配慮しなくとも
確保できる。
By the way, iron is important in the semiconductor industry as an element to be measured with a heated vaporization inductively coupled plasma mass spectrometer, but as an additive gas to be added to the carrier gas, oxygen-containing gas is oxidized gas combined with argon. Argon was unsuitable because it interfered with iron, and hydrogen and nitrogen were particularly effective. Furthermore, when the mixed gas cylinder 15 in Fig. 1 is filled with pure hydrogen and the carrier gas flow rate is 1 L/min, the hydrogen gas flow rate is 10 to 20 mL according to Fig. 3.
/min is appropriate. 10 to 20mL/min
In order to control such a small amount of flow rate, the flow rate control unit B17 becomes expensive, and safety measures against pure hydrogen are also required. On the other hand, if the mixed gas cylinder 15 is filled with, for example, argon gas to which about 5% hydrogen is added, the flow rate controlled by the flow rate controller B17 will be from 200 to 400 mL/min, making the flow rate controller B17 expensive. At the very least, it becomes possible to easily control the flow rate. Furthermore, since it is not pure hydrogen, safety can be ensured without special consideration.

【0009】本発明の効果は、図4の実施例に示したよ
うに、混合ガスボンベ15、レギュレーター16、流量
制御部B17を加熱炉4とプラズマトーチ9の間に設置
して水素や窒素を加熱炉4よりも下流から供給しても得
られた。また水素や窒素の濃度を固定して分析するとき
は、図1のボンベ1、レギュレーター2、流量制御部A
14を省略しても従来技術の課題である感度向上及び安
定性向上は確保できる。これまでの実施例ではワークコ
イルに高周波を印加してプラズマを発生させる加熱気化
高周波誘導結合プラズマ質量分析装置について述べてき
たが、マイクロ波と容量結合してプラズマを発生させる
加熱気化マイクロ波誘導結合プラズマ質量分析装置に対
しても本発明の効果は得られる。また加熱炉4の形状と
して、本実施例では円筒状加熱炉の軸方向にキャリアガ
スを流していたが、図5に示したように、くぼみを持つ
板状のグラファイト製のボート型加熱炉18で、キャリ
アガスがボート型加熱炉18の外側を流れる加熱気化誘
導結合プラズマ質量分析装置であっても本発明の効果が
得られることは言うまでもない。さらに蛇足ながら、タ
ングステン等のメタル製の加熱炉でキャリアガスに水素
を添加する加熱気化誘導結合プラズマ質量分析装置があ
るが、この目的はメタル製加熱炉の酸化防止であり、本
発明の主旨とは異なることを付け加えておく。
The effect of the present invention is that, as shown in the embodiment of FIG. It was also obtained by feeding from the downstream side of the furnace 4. In addition, when analyzing with a fixed concentration of hydrogen or nitrogen, cylinder 1, regulator 2, and flow rate control part A in Figure 1 are used.
Even if 14 is omitted, the improvement in sensitivity and stability, which are the problems of the prior art, can be ensured. In the examples so far, we have described a heating vaporization high frequency inductively coupled plasma mass spectrometer that generates plasma by applying high frequency waves to the work coil, but we have described a heating vaporization microwave inductively coupled plasma mass spectrometer that generates plasma by capacitively coupling with microwaves. The effects of the present invention can also be obtained for plasma mass spectrometers. Furthermore, as for the shape of the heating furnace 4, in this embodiment, the carrier gas was flowed in the axial direction of the cylindrical heating furnace, but as shown in FIG. It goes without saying that the effects of the present invention can be obtained even in a heating vaporization inductively coupled plasma mass spectrometer in which the carrier gas flows outside the boat-type heating furnace 18. Furthermore, although there is a heating vaporization inductively coupled plasma mass spectrometer that adds hydrogen to carrier gas in a metal heating furnace such as tungsten, the purpose of this is to prevent oxidation of the metal heating furnace, which is not the main purpose of the present invention. I would like to add that this is different.

【0010】0010

【発明の効果】この発明は以上説明したように、試料溶
液をグラファイト製の加熱炉に滴下し、前記加熱炉を高
温で加熱することにより試料溶液中の不純物元素を不純
物を原子蒸気化し、前記原子蒸気を流量制御されたキャ
リアガスにより誘導結合プラズマを発生するプラスマト
ーチに輸送し、前記誘導結合プラズマにより前記原子蒸
気をイオン化して質量分析部で質量分離して検出する加
熱気化誘導結合プラズマ質量分析装置において、前記キ
ャリアガスが水素あるいは窒素を添加した不活性ガスで
あることを特徴とした構成なので、感度を1桁向上させ
、しかも配管中の空気や水蒸気の混入に対して安定した
測定値を得ることができる効果がある。
Effects of the Invention As explained above, the present invention drips a sample solution into a graphite heating furnace and heats the heating furnace at a high temperature to atomically vaporize the impurity elements in the sample solution. Heated vaporized inductively coupled plasma mass in which atomic vapor is transported to a plasma torch that generates inductively coupled plasma using a carrier gas whose flow rate is controlled, the atomic vapor is ionized by the inductively coupled plasma, and the mass is separated and detected by a mass spectrometer. Since the analyzer has a configuration in which the carrier gas is an inert gas to which hydrogen or nitrogen is added, sensitivity is improved by an order of magnitude, and measurement values are stable against contamination with air or water vapor in piping. There is an effect that can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例を示した概略図である。FIG. 1 is a schematic diagram showing an embodiment of the present invention.

【図2】従来技術を示す概略図である。FIG. 2 is a schematic diagram showing the prior art.

【図3】水素を添加した効果を示す図である。FIG. 3 is a diagram showing the effect of adding hydrogen.

【図4】本発明の第2の実施例を示した概略図である。FIG. 4 is a schematic diagram showing a second embodiment of the invention.

【図5】本発明を補足説明する図である。FIG. 5 is a diagram for supplementary explanation of the present invention.

【符号の説明】[Explanation of symbols]

1  ボンベ 2  レギュレーター 3  流量制御部 4  加熱炉 5  孔 6  電極 7  電極 8  輸送管 9  プラズマトーチ 10  ワークコイル 11  誘導結合プラズマ 12  サンプリングオリフィス 13  質量分析部 14  流量制御部A 15  混合ガスボンベ 16  レギュレーター 17  流量制御部B 18  ボート型加熱炉 1 Cylinder 2 Regulator 3 Flow rate control section 4 Heating furnace 5 holes 6 Electrode 7 Electrode 8 Transport pipe 9 Plasma torch 10 Work coil 11 Inductively coupled plasma 12 Sampling orifice 13 Mass spectrometry department 14 Flow rate control part A 15 Mixed gas cylinder 16 Regulator 17 Flow rate control part B 18 Boat type heating furnace

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  試料溶液中の微量不純物元素の分析を
行うことを目的として、前記試料溶液をグラファイト製
の加熱炉に滴下し、前記加熱炉を高温で加熱することに
より前記不純物を原子蒸気化し、前記原子蒸気を流量制
御されたキャリアガスにより誘導結合プラスマを発生す
るプラスマトーチに輸送し、前記誘導結合プラズマによ
り前記原子蒸気をイオン化して質量分析部で質量分離し
て検出する加熱気化誘導結合プラズマ質量分析装置にお
いて、前記キャリアガスが水素あるいは窒素を添加した
不活性ガスであることを特徴とする加熱気化誘導結合プ
ラズマ質量分析装置。
Claim 1: For the purpose of analyzing trace impurity elements in a sample solution, the sample solution is dropped into a graphite heating furnace, and the impurities are atomically vaporized by heating the heating furnace at a high temperature. , heating vaporization inductive coupling in which the atomic vapor is transported to a plasma torch that generates inductively coupled plasma using a carrier gas whose flow rate is controlled, the atomic vapor is ionized by the inductively coupled plasma, and the mass is separated and detected by a mass spectrometer. A heating vaporization inductively coupled plasma mass spectrometer, wherein the carrier gas is an inert gas added with hydrogen or nitrogen.
【請求項2】  前記キャリアガスを前記水素あるいは
窒素を添加した不活性ガスを充填したボンベにより供給
したことを特徴とする請求項1記載の加熱気化誘導結合
プラズマ質量分析装置。
2. The heating vaporization inductively coupled plasma mass spectrometer according to claim 1, wherein the carrier gas is supplied from a cylinder filled with the inert gas added with hydrogen or nitrogen.
【請求項3】  前記キャリアガスを、前記水素あるい
は窒素を添加した前記不活性ガスを充填したボンベと前
記不活性ガスを充填したボンベにより供給し、流量制御
手段により両者のガスの流量の和が一定になるように制
御したことを特徴とする請求項1記載の加熱気化誘導結
合プラズマ質量分析装置。
3. The carrier gas is supplied by a cylinder filled with the inert gas added with hydrogen or nitrogen and a cylinder filled with the inert gas, and the flow rate control means adjusts the sum of the flow rates of both gases. The heating vaporization inductively coupled plasma mass spectrometer according to claim 1, wherein the heating vaporization inductively coupled plasma mass spectrometer is controlled to be constant.
JP03013549A 1991-02-04 1991-02-04 Heated vaporization inductively coupled plasma mass spectrometer Expired - Fee Related JP3116137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03013549A JP3116137B2 (en) 1991-02-04 1991-02-04 Heated vaporization inductively coupled plasma mass spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03013549A JP3116137B2 (en) 1991-02-04 1991-02-04 Heated vaporization inductively coupled plasma mass spectrometer

Publications (2)

Publication Number Publication Date
JPH04249056A true JPH04249056A (en) 1992-09-04
JP3116137B2 JP3116137B2 (en) 2000-12-11

Family

ID=11836245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03013549A Expired - Fee Related JP3116137B2 (en) 1991-02-04 1991-02-04 Heated vaporization inductively coupled plasma mass spectrometer

Country Status (1)

Country Link
JP (1) JP3116137B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024696A1 (en) * 2011-08-15 2013-02-21 株式会社 イアス Method and device for analyzing iodine 129
CN102980936A (en) * 2012-11-05 2013-03-20 聚光科技(杭州)股份有限公司 Water vapor measurement device and its method
JP2015190889A (en) * 2014-03-28 2015-11-02 信越半導体株式会社 inductively coupled plasma mass spectrometry method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024696A1 (en) * 2011-08-15 2013-02-21 株式会社 イアス Method and device for analyzing iodine 129
CN102980936A (en) * 2012-11-05 2013-03-20 聚光科技(杭州)股份有限公司 Water vapor measurement device and its method
JP2015190889A (en) * 2014-03-28 2015-11-02 信越半導体株式会社 inductively coupled plasma mass spectrometry method

Also Published As

Publication number Publication date
JP3116137B2 (en) 2000-12-11

Similar Documents

Publication Publication Date Title
Wang et al. Determination of trace sodium, lithium, magnesium, and potassium impurities in colloidal silica by slurry introduction into an atmospheric-pressure solution-cathode glow discharge and atomic emission spectrometry
Yang et al. Low temperature hydrogen plasma assisted chemical vapor generation for Atomic Fluorescence Spectrometry
Matsumoto et al. Determination of cadmium by an improved double chamber electrothermal vaporization inductively coupled plasma atomic emission spectrometry
WO2018168599A1 (en) Reaction device for chemiluminescence detector, chemiluminescence detector equipped with same, and chemiluminescence detection method
JPH0696724A (en) Induction coupling plasma mass spectrograph
Chen et al. Combined generator/separator. Part 2. Stibine generation combined with flow injection for the determination of antimony in metal samples by atomic emission spectrometry
Qian et al. Highly sensitive determination of cadmium and lead in whole blood by electrothermal vaporization-atmospheric pressure glow discharge atomic emission spectrometry
JPH04249056A (en) Mass-spectrometric device using induction coupling plasma with heating and gasification
Kratzer et al. In situ trapping of bismuthine in externally heated quartz tube atomizers for atomic absorption spectrometry
Barth et al. Electrothermal vaporization inductively coupled plasma atomic emission spectrometric technique using a tungsten coil furnace and slurry sampling
Dittrich et al. Comparative study of injection into a pneumatic nebuliser and tungsten coil electrothermal vaporisation for the determination of rare earth elements by inductively coupled plasma optical emission spectrometry
KR19990063580A (en) Plasma torch with adjustable injector and gas analyzer using the torch
US7141211B2 (en) System for determining total sulfur content
JPH06102181A (en) Analysis method for hydrogen sulfide
JPH06260134A (en) Heat vaporization inductively coupled plasma mass-spectrographic device
Liu et al. The effect of pre-evaporation on ion distributions in inductively coupled plasma mass spectrometry
Melzer et al. Determination of trace amounts of lead in water by metastable transfer emission spectrometry
JP6066338B2 (en) Inductively coupled plasma mass spectrometry method
JPH0634006B2 (en) Method for analyzing organic compounds by gas chromatography
JPH0781953B2 (en) Analytical sample atomization method
JPH1038851A (en) Hydrogen flame ionization detector
JP2013156150A (en) Icp emission spectrophotometric analyser and analytical method of sample containing organic solvent
JPH05142202A (en) Method and apparatus for analyzing gas
CN111208115B (en) Detection method for directly measuring trace halogen
JP3098606B2 (en) Heat vaporization introduction method

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees