JPH06260134A - Heat vaporization inductively coupled plasma mass-spectrographic device - Google Patents

Heat vaporization inductively coupled plasma mass-spectrographic device

Info

Publication number
JPH06260134A
JPH06260134A JP5045444A JP4544493A JPH06260134A JP H06260134 A JPH06260134 A JP H06260134A JP 5045444 A JP5045444 A JP 5045444A JP 4544493 A JP4544493 A JP 4544493A JP H06260134 A JPH06260134 A JP H06260134A
Authority
JP
Japan
Prior art keywords
heating furnace
furnace
inductively coupled
coupled plasma
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5045444A
Other languages
Japanese (ja)
Other versions
JP3116151B2 (en
Inventor
Tetsumasa Itou
哲雅 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP05045444A priority Critical patent/JP3116151B2/en
Publication of JPH06260134A publication Critical patent/JPH06260134A/en
Application granted granted Critical
Publication of JP3116151B2 publication Critical patent/JP3116151B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electron Tubes For Measurement (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

PURPOSE:To lessen the rate of variation in the amount of adsorptive loss and obtain stable measurements. CONSTITUTION:A plasma mass-spectrographic device of heat vaporization inductively coupled type has a heating furnace 4 made of graphite in which a specimen solution is injected, and impurities are turned into atomic vapor by heating the furnace 4 at a high temp., and this atomic vapor is ionized by the induction coupling plasma to undergo mass segregation by a mass-spectrographic part 13, and thus sensing is made. Gas sumps 14 are provided in a transport path leading from the furnace 4 to a plasma torch 9 and on the carrier gas supply path of the furnace, wherein the capacity of the gas sump 14 is approx. five times as large as the capacity of the furnace 4, and the sump 14 is located in proximity to the furnace 4. This decreases remarkably the amount of atomic vapor adsorption to the furnace wall, enhances the sensitivity one order of magnitude up, and reduces the absolute amount of the adsorptive loss amount.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、試料溶液中の微量不
純物の分析を行う誘導結合プラズマ質量分析装置に関
し、特に微少試料量の分析を行う加熱気化誘導結合プラ
ズマ質量分析装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inductively coupled plasma mass spectrometer for analyzing trace impurities in a sample solution, and more particularly to a heating vaporization inductively coupled plasma mass spectrometer for analyzing a minute amount of sample.

【0002】[0002]

【従来の技術】従来技術の例を模式図を用いて説明す
る。図2において、1はボンベ、2はレギュレーター、
3は流量制御部、4は加熱炉、6および7は電極、8は
輸送管、9はプラズマトーチ、10はワークコイル、1
1は誘導結合プラズマ、12はサンプリングオリフィ
ス、13は質量分析部である。加熱炉4は上部に試料溶
液を注入するための孔5が開いた円筒状の構造で、電極
6及び7をとおして通電することにより加熱される。キ
ャリアガスはボンベ1中のガスをレギュレーター2によ
り一定の圧力に減圧された後、1から1.5l/min
程度に流量制御部3で制御され、加熱炉4及び輸送管8
を通してプラズマトーチ9に流される。ここでキャリア
ガスは例えばアルゴンガスが使用される。
2. Description of the Related Art An example of prior art will be described with reference to schematic diagrams. In FIG. 2, 1 is a cylinder, 2 is a regulator,
3 is a flow rate control unit, 4 is a heating furnace, 6 and 7 are electrodes, 8 is a transport tube, 9 is a plasma torch, 10 is a work coil, 1
Reference numeral 1 is an inductively coupled plasma, 12 is a sampling orifice, and 13 is a mass spectrometric section. The heating furnace 4 has a cylindrical structure in which a hole 5 for injecting a sample solution is opened in the upper portion, and is heated by supplying electricity through the electrodes 6 and 7. As the carrier gas, the gas in the cylinder 1 was depressurized to a constant pressure by the regulator 2 and then 1 to 1.5 l / min.
The flow rate control unit 3 controls the heating furnace 4 and the transport pipe 8 to some extent.
Through the plasma torch 9. Here, for example, argon gas is used as the carrier gas.

【0003】試料溶液は5から50ml程度加熱炉4に
滴下されて100℃前後で脱溶媒されたのち300から
1000℃で灰化される。測定すべき試料溶液中の不純
物元素は、その後1500から3000℃に加熱されて
原子蒸気化され、キャリアガスとともに輸送管8を通し
てプラズマトーチ9にいたる。プラズマトーチ9の先端
ではワークコイル10により例えば27.12MHzの
高周波が印加されており、キャリアガス及び原子化蒸気
は誘導結合して誘導結合プラズマ11となる。質量分析
部13の誘導結合プラズマ11の軸上にはサンプリング
オリフィスと呼ばれる径1mm程度の孔12が開いてい
る。原子化蒸気は、誘導結合プラズマ11内でイオン化
されてサンプリングオリフィス12を通して質量分析部
13に入り、質量分析されて元素同定あるいは定量され
る。
About 5 to 50 ml of the sample solution is dropped into the heating furnace 4, desolvated at around 100 ° C., and then ashed at 300 to 1000 ° C. The impurity element in the sample solution to be measured is then heated to 1500 to 3000 ° C. to be atomized and reaches the plasma torch 9 through the transport tube 8 together with the carrier gas. A high frequency of, for example, 27.12 MHz is applied by the work coil 10 at the tip of the plasma torch 9, and the carrier gas and atomized vapor are inductively coupled to form an inductively coupled plasma 11. On the axis of the inductively coupled plasma 11 of the mass spectrometric section 13, a hole 12 having a diameter of about 1 mm called a sampling orifice is opened. The atomized vapor is ionized in the inductively coupled plasma 11 and enters the mass spectrometric section 13 through the sampling orifice 12 and is mass spectrometrically identified or quantified.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来技術では
加熱によって生成された原子蒸気が加熱炉壁に吸着し、
プラズマトーチ9には原子蒸気の一部しか輸送されない
問題があった。このため測定する不純物元素の検出下限
が2桁ppt(pptは、10-12 )程度であり、例え
ば半導体産業で管理されるべき不純物レベルを測定する
には感度不足であった。さらに従来技術では加熱炉壁へ
の吸着量が変動するため定量分析値のバラツキが大きく
信頼性が乏しいという課題があった。
However, in the prior art, the atomic vapor generated by heating is adsorbed on the wall of the heating furnace,
The plasma torch 9 had a problem that only part of the atomic vapor was transported. Therefore, the lower limit of detection of the impurity element to be measured is about two digits ppt (ppt is 10 −12 ), and the sensitivity is insufficient for measuring the impurity level to be controlled in the semiconductor industry, for example. Further, the conventional technique has a problem that the amount of adsorption on the wall of the heating furnace fluctuates and the quantitative analysis value greatly varies, resulting in poor reliability.

【0005】この発明は、加熱気化誘導結合プラズマ質
量分析装置の感度向上及び安定性向上をさせて、従来の
このような課題を解決することを目的としたものであ
る。
An object of the present invention is to improve the sensitivity and stability of a heating vaporization inductively coupled plasma mass spectrometer and solve such a conventional problem.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、この発明は試料溶液をグラファイト製の加熱炉に滴
下し、前記加熱炉を高温で加熱することにより前記不純
物を原子蒸気化し、前記原子蒸気を流量制御されたキャ
リアガスにより誘導結合プラスマを発生するプラスマト
ーチに輸送し、前記誘導結合プラズマにより前記原子蒸
気をイオン化して質量分析部で質量分離して検出する加
熱気化誘導結合プラズマ質量分析装置において、前記加
熱炉と前記プラスマトーチをむすぶ輸送路内および、前
記加熱炉のキャリアガス供給路に、少なくとも前記加熱
炉の容積の約5倍以上の容積をもったガスだめを、加熱
炉に近接して設置したことにより、感度向上及び安定性
の向上を図れるようにしたものである。
In order to solve the above-mentioned problems, the present invention is to drop the sample solution into a heating furnace made of graphite and heat the heating furnace at a high temperature to atomize the impurities, Heating vaporized inductively coupled plasma mass, which transports atomic vapor to a plasma torch that generates inductively coupled plasma by a carrier gas whose flow rate is controlled, and ionizes the atomic vapor by the inductively coupled plasma and mass-separates and detects it in a mass spectrometric unit. In the analyzer, a gas reservoir having a volume of at least about 5 times or more of the volume of the heating furnace is provided in the transportation path connecting the heating furnace and the plasma torch and in the carrier gas supply path of the heating furnace. By installing it close to, it is possible to improve sensitivity and stability.

【0007】[0007]

【作用】上記のように構成された加熱気化誘導結合プラ
ズマ質量分析装置においては、加熱炉の加熱によって加
熱炉内のガスが自由に膨張できるので、原子蒸気を含ん
だ加熱炉内のガス圧力が増大しない。このため加熱炉壁
と原子蒸気の相互作用時間が著しく短縮されかつ、原子
蒸気の分圧も低くなり加熱炉壁への吸着量を低減でき
る。さらに、膨張の過程で原子蒸気は急速に冷却され酸
化物分子などに変換されるので、加熱炉壁や輸送管壁と
の相互作用が起こりにくくなり加熱炉壁や輸送管壁への
吸着ロスを低減できる。すなわち、加熱炉壁や輸送管壁
への吸着ロスを減少することにより、プラスマトーチへ
の試料の輸送効率向上させて感度を向上させた。さら
に、吸着ロスの減少は、吸着ロスの絶対量の変動が小さ
いことなので、バラツキがなくて信頼性の高い測定値を
得られるようになった。
In the heating vaporization inductively coupled plasma mass spectrometer configured as described above, since the gas in the heating furnace can freely expand by heating the heating furnace, the gas pressure in the heating furnace containing atomic vapor is Does not increase. For this reason, the interaction time between the heating furnace wall and the atomic vapor is remarkably shortened, and the partial pressure of the atomic vapor is lowered, so that the adsorption amount on the heating furnace wall can be reduced. Furthermore, during the expansion process, the atomic vapor is rapidly cooled and converted into oxide molecules, etc., so that the interaction with the heating furnace wall and the transportation tube wall is less likely to occur, and the adsorption loss to the heating furnace wall and the transportation tube wall is reduced. It can be reduced. That is, by reducing the adsorption loss on the wall of the heating furnace and the wall of the transport tube, the efficiency of transporting the sample to the plasma torch was improved and the sensitivity was improved. Further, the decrease of the adsorption loss is small in the variation of the absolute amount of the adsorption loss, so that it is possible to obtain a highly reliable measurement value without variation.

【0008】[0008]

【実施例】以下に、この発明の実施例を図に基づいて説
明する。図1は本発明の実施例を示す模式図で、ボンベ
1はキャリアガスを貯蔵しする。レギュレーター2は、
ボンベ1のキャリアガスを一定の圧力に減圧するもので
ある。流量制御部3は減圧されたキャリアガスを一定の
流量に制御するものである。流量制御部3により一定の
流量に制御されたキャリアガスは、ガスため14に導入
される。グラファイト製の加熱炉4は横向きに配置され
た円筒形状をしており、試料溶液を加熱し、試料の不純
物を原子化するものである。加熱炉4の上方には試料を
加熱炉4に注入するための孔5が設けられている。加熱
炉4の両端には電極6が配置されており、電極6、6か
ら電力を加熱炉4に供給し、そして加熱炉4は加熱され
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing an embodiment of the present invention, in which a cylinder 1 stores a carrier gas. Regulator 2 is
The carrier gas in the cylinder 1 is depressurized to a constant pressure. The flow rate control unit 3 controls the depressurized carrier gas to a constant flow rate. The carrier gas controlled to have a constant flow rate by the flow rate control unit 3 is introduced into the gas reservoir 14. The heating furnace 4 made of graphite has a cylindrical shape arranged horizontally, and heats the sample solution to atomize the impurities in the sample. A hole 5 for injecting a sample into the heating furnace 4 is provided above the heating furnace 4. Electrodes 6 are arranged at both ends of the heating furnace 4, and electric power is supplied to the heating furnace 4 from the electrodes 6, 6 and the heating furnace 4 is heated.

【0009】輸送管8は、加熱炉4にて原子化された試
料の不純物を加熱炉4からプラズマトーチ9に輸送する
ものであり、輸送管8と加熱炉4との間にガス溜14が
設けられている。プラズマトーチ9の廻りには、ワーク
コイル10が配置されており、ワークコイル10に高周
波電力を供給することにより、プラズマトーチ9の先端
から排出される試料は、誘導結合プラズマ11になる。
誘導結合プラズマ11においてイオン化した試料の不純
物の一部は、サンプリングオリフィス12を通って、質
量分析部13に到達し、質量分析される。
The transport pipe 8 transports the impurities of the sample atomized in the heating furnace 4 from the heating furnace 4 to the plasma torch 9, and a gas reservoir 14 is provided between the transportation pipe 8 and the heating furnace 4. It is provided. A work coil 10 is arranged around the plasma torch 9, and by supplying high-frequency power to the work coil 10, the sample discharged from the tip of the plasma torch 9 becomes the inductively coupled plasma 11.
A part of the impurities of the sample ionized in the inductively coupled plasma 11 reaches the mass spectrometric section 13 through the sampling orifice 12 and undergoes mass spectrometric analysis.

【0010】ガスだめ14は、加熱炉4と輸送管8の
間、および流量制御部3と加熱炉4のあいだに設置され
る。ガスだめ14はいずれも加熱炉4に近接させて設置
される必要がある。ガスだめ14の容積はそれぞれ加熱
炉の容積の約5倍以上が適当である。ガスだめ4の容積
を小さくすると吸着ロスを減少させる効果が減少する。
The gas sump 14 is installed between the heating furnace 4 and the transport pipe 8 and between the flow rate control unit 3 and the heating furnace 4. Each of the gas sumps 14 needs to be installed close to the heating furnace 4. It is suitable that the volume of each gas reservoir 14 is about 5 times or more the volume of the heating furnace. If the volume of the gas reservoir 4 is reduced, the effect of reducing the adsorption loss is reduced.

【0011】次ぎに動作について説明する。試料溶液を
孔5からグラファイト製の加熱炉4に滴下し、前記加熱
炉4を高温で加熱することにより前記不純物を原子蒸気
化し、前記原子蒸気を流量制御されたキャリアガスによ
り誘導結合プラスマを発生するプラスマトーチ1に輸送
し、前記誘導結合プラズマ11により前記原子蒸気をイ
オン化して質量分析部13で質量分離して検出する。
Next, the operation will be described. The sample solution is dropped from a hole 5 into a heating furnace 4 made of graphite, the heating furnace 4 is heated at a high temperature to atomize the impurities, and an inductively coupled plasma is generated by a carrier gas whose flow rate is controlled. The atomic vapor is ionized by the inductively coupled plasma 11 and is mass-separated by the mass spectrometric section 13 for detection.

【0012】加熱炉4を高温で加熱する過程で加熱炉内
のガスも加熱され、このガスの中に原子蒸気もふくまれ
る。等圧下では約10倍の体積膨張が見込まれ、このと
きガスだめ14が加熱炉の前後に設置されているので加
熱炉内の圧力上昇を起こさず、ガスはガスだめに向かっ
て自由に膨張する。一方、従来構成においては、ガスだ
め14が無いので加熱炉内の圧力が上昇し、ガスの移動
も小さい。このため加熱炉と原子蒸気の接触時間は従来
構成にくらべ10分の1になる。接触時間が短く、か
つ、原子蒸気の分圧も従来構成に比べ小さいので加熱炉
4の壁への吸着量を著しく減少できる。また、膨張によ
ってガスの温度が下がるので原子蒸気は酸化物分子など
の不活性な形態に変化し、加熱炉壁への吸着量の減少に
効果がある。なお、ゆうまでもなくガスだめ14は、電
極6、6の内径でつくる容積を大きくすることによって
機能を兼用することもできる。
During the process of heating the heating furnace 4 at a high temperature, the gas in the heating furnace is also heated, and atomic vapor is also included in this gas. Under equal pressure, a volume expansion of about 10 times is expected. At this time, since the gas sump 14 is installed before and after the heating furnace, the pressure in the heating furnace does not rise, and the gas expands freely toward the gas sump. . On the other hand, in the conventional configuration, since the gas reservoir 14 is not provided, the pressure in the heating furnace rises and the gas movement is small. Therefore, the contact time between the heating furnace and the atomic vapor is 1/10 of that of the conventional configuration. Since the contact time is short and the partial pressure of atomic vapor is smaller than that of the conventional structure, the amount of adsorption onto the wall of the heating furnace 4 can be significantly reduced. Further, since the temperature of the gas decreases due to the expansion, the atomic vapor changes into an inactive form such as oxide molecules, which is effective in reducing the amount of adsorption on the wall of the heating furnace. Needless to say, the gas sump 14 can also have a function by increasing the volume formed by the inner diameters of the electrodes 6, 6.

【0013】[0013]

【発明の効果】この発明は、以上説明したように試料溶
液をグラファイト製の加熱炉に滴下し、前記加熱炉を高
温で加熱することにより試料溶液中の不純物元素を不純
物を原子蒸気化し、前記原子蒸気を流量制御されたキャ
リアガスにより誘導結合プラズマを発生するプラスマト
ーチに輸送し、前記誘導結合プラズマにより前記原子蒸
気をイオン化して質量分析部で質量分離して検出する加
熱気化誘導結合プラズマ質量分析装置において、前記加
熱炉と前記プラスマトーチをむすぶ輸送路内および、前
記加熱炉のキャリアガス供給路に、少なくとも前記加熱
炉の容積の約5倍以上の容積をもったガスだめを、加熱
炉に近接して設置したことを特徴とした構成なので、加
熱炉壁への吸着量を著しく減少でき、感度を1桁向上さ
せ、しかも吸着ロス量の絶対量がへるので、吸着ロス量
の変動の割合は小さくなり、その結果安定した測定値を
得ることができる効果がある。
As described above, according to the present invention, the sample solution is dropped into a graphite heating furnace, and the heating furnace is heated at a high temperature to atomize the impurity elements in the sample solution into atomic vapors. Heating vaporized inductively coupled plasma mass that transports atomic vapor to a plasma torch that generates inductively coupled plasma by a carrier gas whose flow rate is controlled, and ionizes the atomic vapor by the inductively coupled plasma and mass-separates and detects it in a mass spectrometer In the analyzer, a gas reservoir having a volume of at least about 5 times or more of the volume of the heating furnace is provided in the transportation path connecting the heating furnace and the plasma torch and in the carrier gas supply path of the heating furnace. Since it is installed close to the furnace, the amount of adsorption to the heating furnace wall can be significantly reduced, the sensitivity is improved by one digit, and the adsorption Since the absolute amount of the amount is reduced, the ratio of the variation of the adsorption amount of loss is small, there is an effect that it is possible to obtain the result stable measurement value.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示した概略模式図である。FIG. 1 is a schematic diagram showing an example of the present invention.

【図2】従来技術を示す概略模式図である。FIG. 2 is a schematic diagram showing a conventional technique.

【符号の説明】[Explanation of symbols]

1 ボンベ 2 レギュレーター 3 流量制御部 4 加熱炉 5 孔 6 電極 8 輸送管 9 プラズマトーチ 10 ワークコイル 11 誘導結合プラズマ 12 サンプリングオリフィス 13 質量分析部 14 ガスだめ 1 cylinder 2 regulator 3 flow control unit 4 heating furnace 5 hole 6 electrode 8 transport tube 9 plasma torch 10 work coil 11 inductively coupled plasma 12 sampling orifice 13 mass spectrometry unit 14 gas sump

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 試料溶液をグラファイト製の加熱炉に滴
下し、前記加熱炉を高温で加熱することにより前記不純
物を原子蒸気化し、前記原子蒸気を流量制御されたキャ
リアガスにより誘導結合プラスマを発生するプラスマト
ーチに輸送し、前記誘導結合プラズマにより前記原子蒸
気をイオン化して質量分析部で質量分離して検出する加
熱気化誘導結合プラズマ質量分析装置において、前記加
熱炉と前記プラスマトーチをむすぶ輸送路内および、前
記加熱炉のキャリアガス供給路に、ガスだめを持ち、前
記ガスだめ野容積が、少なくとも前記加熱炉の容積の約
5倍以上であり、前記ガスだめは加熱炉に近接して設置
されることを特徴とする、加熱気化誘導結合プラズマ質
量分析装置。
1. A sample solution is dropped into a heating furnace made of graphite, and the heating furnace is heated at a high temperature to atomize the impurities, and an inductively coupled plasma is generated by a carrier gas whose flow rate is controlled. A heating vaporization inductively coupled plasma mass spectrometer, which transports to the plasma torch, ionizes the atomic vapor by the inductively coupled plasma, and mass-separates and detects the mass in a mass spectrometer. A gas reservoir is provided inside and in the carrier gas supply path of the heating furnace, the gas reservoir volume is at least about 5 times the volume of the heating furnace, and the gas reservoir is installed close to the heating furnace. A heating vaporization inductively coupled plasma mass spectrometer, which is characterized in that:
JP05045444A 1993-03-05 1993-03-05 Heated vaporization inductively coupled plasma mass spectrometer Expired - Fee Related JP3116151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05045444A JP3116151B2 (en) 1993-03-05 1993-03-05 Heated vaporization inductively coupled plasma mass spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05045444A JP3116151B2 (en) 1993-03-05 1993-03-05 Heated vaporization inductively coupled plasma mass spectrometer

Publications (2)

Publication Number Publication Date
JPH06260134A true JPH06260134A (en) 1994-09-16
JP3116151B2 JP3116151B2 (en) 2000-12-11

Family

ID=12719507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05045444A Expired - Fee Related JP3116151B2 (en) 1993-03-05 1993-03-05 Heated vaporization inductively coupled plasma mass spectrometer

Country Status (1)

Country Link
JP (1) JP3116151B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008544454A (en) * 2005-06-17 2008-12-04 パーキンエルマー・インコーポレイテッド Strengthening device and method of using the same
US8786394B2 (en) 2010-05-05 2014-07-22 Perkinelmer Health Sciences, Inc. Oxidation resistant induction devices
US8829386B2 (en) 2010-05-05 2014-09-09 Perkinelmer Health Sciences, Inc. Inductive devices and low flow plasmas using them
US8896830B2 (en) 2005-06-17 2014-11-25 Perkinelmer Health Sciences, Inc. Devices and systems including a boost device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008544454A (en) * 2005-06-17 2008-12-04 パーキンエルマー・インコーポレイテッド Strengthening device and method of using the same
US8896830B2 (en) 2005-06-17 2014-11-25 Perkinelmer Health Sciences, Inc. Devices and systems including a boost device
US8786394B2 (en) 2010-05-05 2014-07-22 Perkinelmer Health Sciences, Inc. Oxidation resistant induction devices
US8829386B2 (en) 2010-05-05 2014-09-09 Perkinelmer Health Sciences, Inc. Inductive devices and low flow plasmas using them
US10096457B2 (en) 2010-05-05 2018-10-09 Perkinelmer Health Sciences, Inc. Oxidation resistant induction devices

Also Published As

Publication number Publication date
JP3116151B2 (en) 2000-12-11

Similar Documents

Publication Publication Date Title
Beenakker A cavity for microwave-induced plasmas operated in helium and argon at atmospheric pressure
US5095247A (en) Plasma discharge apparatus with temperature sensing
Broekaert The development of microplasmas for spectrochemical analysis
Yang et al. Microwave plasma torch analytical atomic spectrometry
US4886966A (en) Apparatus for introducing samples into an inductively coupled, plasma source mass spectrometer
CN109187496B (en) Atomic emission spectrum analysis device based on electrothermal evaporation and tip discharge
Qian et al. Highly sensitive determination of cadmium and lead in whole blood by electrothermal vaporization-atmospheric pressure glow discharge atomic emission spectrometry
US4532219A (en) High frequency radiation-induced plasma analysis of volatile or non-volatile materials
Guchardi et al. A capacitively coupled microplasma in a fused silica capillary
US4794230A (en) Low-pressure water-cooled inductively coupled plasma torch
JP3116151B2 (en) Heated vaporization inductively coupled plasma mass spectrometer
CN107591310A (en) A kind of graphite furnace Electrothermal vaporization feeding device ion gun and its plasma mass spectrograph
Franzke et al. Sample analysis with miniaturized plasmas
Camuna-Aguilar et al. A comparative study of three microwave induced plasma sources for atomic emission spectrometry—I. Excitation of mercury and its determination after on-line continuous cold vapour generation
Broekaert et al. Spectrochemical analysis with DC glow discharges at atmospheric pressure
Tsuchiya et al. A new method of ionization for organic compounds in the liquid phase under atmospheric pressure
JP3116137B2 (en) Heated vaporization inductively coupled plasma mass spectrometer
CA1314636C (en) Atmospheric pressure capacitively coupled plasma atomizer for atomic absorption and emission spectroscopy
Zander et al. Modified microwave-induced plasma discharge chamber
Broekaert et al. A close-up of three microwave plasma sources in view of improved element-specific detection in liquid chromatography
Duan et al. Desolvation effect on the analytical performance of microwave-induced plasma atomic absorption spectrometry (MIP-AAS)
JPH1038851A (en) Hydrogen flame ionization detector
CN112782150A (en) Sample introduction system for liquid cathode glow discharge spectrometer
JP2557435B2 (en) Sample introduction device for inductively coupled plasma mass spectrometry
CN217954234U (en) Direct sample injection electrothermal evaporation atomic spectrum analysis device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees