JPH04247863A - Formation of metallic nitride layer - Google Patents

Formation of metallic nitride layer

Info

Publication number
JPH04247863A
JPH04247863A JP732191A JP732191A JPH04247863A JP H04247863 A JPH04247863 A JP H04247863A JP 732191 A JP732191 A JP 732191A JP 732191 A JP732191 A JP 732191A JP H04247863 A JPH04247863 A JP H04247863A
Authority
JP
Japan
Prior art keywords
nitride layer
metal substrate
metal
forming
base body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP732191A
Other languages
Japanese (ja)
Inventor
Noritada Sato
則忠 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP732191A priority Critical patent/JPH04247863A/en
Publication of JPH04247863A publication Critical patent/JPH04247863A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To efficiently form a nitride layer by generating a glow discharge between counter electrodes and forming a nitride layer on the surface of a metallic base body by the reaction of the plasma of the gaseous nitrogen generated at this time and the metallic base body. CONSTITUTION:The positive electrode 2 and the negative electrode 3 facing each other are disposed within a hermetic vessel (vacuum vessel) 1. The metallic base body 4 is imposed on the negative electrode 3. The inside of the hermetic vessel 1 is evacuated by using a vacuum discharge system 8. The gaseous nitrogen is thereafter introduced from a gaseous nitrogen cylinder 6 into the vessel 1 to attain a prescribed pressure. A DC voltage is impressed between the counter electrodes 2 and 3 to generate the glow discharge. The nitride layer is formed on the surface of the metallic base body 4 by the reaction of the plasma of the gaseous nitrogen generated at this time and the metallic base body 4. The nitride layer is easily formed over the entire circumference without receiving restrictions in the shape of the metallic base body.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、金属の表面に機械的強
度や耐蝕性などに優れた窒化物層を形成する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a nitride layer having excellent mechanical strength and corrosion resistance on the surface of a metal.

【0002】0002

【従来の技術】金属の表面を改質し、耐摩擦摩耗性など
の機械的性質や雰囲気に対する耐蝕性などを高めるため
に、特にAl,Ti,ステンレスなどの表面に窒化物層
を形成することが行なわれている。
[Prior Art] Nitride layers are formed on the surfaces of Al, Ti, stainless steel, etc. in order to modify the surface of metals and improve mechanical properties such as friction and wear resistance and corrosion resistance against the atmosphere. is being carried out.

【0003】金属窒化物を形成する方法として、■CV
D法,■イオンプレーティング法,■MOCVD法,■
イオン注入法などが知られている。これらのうち、■の
イオン注入法は、所定の元素(ここでは窒素)をイオン
化し、高加速エネルギでこのイオンを金属基体表面に打
ち込んだ後、所定の温度で熱処理し、金属表面に窒化物
を形成するものであり、その他の■〜■の方法に比べて
、次のような特徴を持っている。
As a method for forming metal nitrides, CV
D method, ■Ion plating method, ■MOCVD method, ■
Ion implantation methods are known. Among these, the ion implantation method (■) ionizes a predetermined element (nitrogen in this case), implants the ions into the metal substrate surface with high acceleration energy, and then heat-treats it at a predetermined temperature to form a nitride on the metal surface. It has the following characteristics compared to the other methods ① to ②.

【0004】即ち、イオン注入法は、他の方法に比べて
200℃以下の低温プロセスが可能であり、イオンを注
入した後の金属基体の表面形状の変化が少なく、窒化物
層の密着性も良好であり、溶解度以上の非平衡相が得ら
れるなどの利点がある。
That is, compared to other methods, the ion implantation method allows a low temperature process of 200°C or less, causes less change in the surface shape of the metal substrate after ion implantation, and improves the adhesion of the nitride layer. It has the advantage that a non-equilibrium phase with a higher solubility can be obtained.

【0005】したがって、イオン注入法は最近利用され
始めているが、このように優れたイオン注入法も、以下
のような問題がある。
[0005] Therefore, although the ion implantation method has recently begun to be used, even this excellent ion implantation method has the following problems.

【0006】[0006]

【発明が解決しようとする課題】イオン注入法は、使用
する金属の形状と大きさが限定される上に、イオンの注
入に長時間を要し、そのほか、イオン注入装置が高価な
ことなどの欠点を持つ。例えば、100×100×1m
m3 のAl基板にN+ イオンを注入して、AlN層
を形成する場合のイオンを注入条件を、トーズ量:1×
1018cm−2,電流密度:80μA/cm2 ,加
速電圧:50keVとしたとき、約30分の処理時間を
要するので、工業的な用途には適していない。このよう
に、イオン注入法でAlN層やTiN層を形成する方法
は、費用と時間がかかり過ぎ、またAlやTiなど金属
基体の形状が板状のものにしか適用することができない
などの問題がある。
[Problems to be Solved by the Invention] The ion implantation method is not only limited in the shape and size of the metal used, but also requires a long time to implant the ions, and the ion implantation equipment is expensive. have shortcomings. For example, 100x100x1m
When implanting N+ ions into an Al substrate of m3 to form an AlN layer, the ion implantation conditions are as follows: torse amount: 1×
1018 cm-2, current density: 80 μA/cm2, and acceleration voltage: 50 keV, the processing time is about 30 minutes, so it is not suitable for industrial use. As described above, the method of forming AlN and TiN layers by ion implantation has problems such as being too expensive and time-consuming, and being applicable only to plate-shaped metal substrates such as Al and Ti. There is.

【0007】本発明は上述の欠点を解決するためになさ
れ、その目的は任意の形状を有する金属基体についても
、その表面に効率よく金属窒化物の形成可能な方法を提
供することにある。
The present invention has been made to solve the above-mentioned drawbacks, and its object is to provide a method that can efficiently form a metal nitride on the surface of a metal substrate having an arbitrary shape.

【0008】[0008]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の方法は、密閉容器内の対向する正負電極
間の負電極側に金属基体を配置した後、密閉容器内に所
定の圧力の窒素ガスを導入し、正負電極間に直流電圧を
印加して窒素プラズマを発生させ、金属基体の表面に窒
化物層を形成する。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the method of the present invention includes disposing a metal substrate on the negative electrode side between opposing positive and negative electrodes in a closed container, and then Nitrogen gas is introduced at a pressure of , and a DC voltage is applied between the positive and negative electrodes to generate nitrogen plasma and form a nitride layer on the surface of the metal substrate.

【0009】[0009]

【作用】本発明の方法は上記のように、所定圧力の窒素
ガスを充満した密閉容器内に配置した負電極側の金属基
体と正電極との間に、直流電圧を印加することにより、
発生した窒素プラズマ中の窒素ラジカルや窒素イオンと
金属基体とが反応し、同時にこの直流電圧によって加速
された窒素イオンが金属基体中に侵入して、この金属基
体表面に窒化物層が形成される。
[Operation] As described above, the method of the present invention involves applying a DC voltage between the metal substrate on the negative electrode side and the positive electrode, which are placed in a closed container filled with nitrogen gas at a predetermined pressure.
Nitrogen radicals and nitrogen ions in the generated nitrogen plasma react with the metal substrate, and at the same time, nitrogen ions accelerated by this DC voltage penetrate into the metal substrate, forming a nitride layer on the surface of the metal substrate. .

【0010】0010

【実施例】以下、本発明を実施例に基づき説明する。EXAMPLES The present invention will be explained below based on examples.

【0011】図1は本発明の窒化物層形成方法が適用さ
れる装置の要部構成を示す模式図である。図1は板状の
金属基体4の表面に窒化物層11を形成するときの装置
として示してある。図1において、真空容器1内に、対
向する正電極2と負電極3を配置してあり、板状の金属
基体4は負電極3の上に載置する。真空容器1の外部に
設置したグロー放電用DC電源5は正電極2に接続し、
窒素ガスボンベ6から、窒素ガスの圧力と流量を調整す
るための調整回路7を通して、真空容器1内に窒素ガス
を送る。真空容器1と真空排気系8の間に、グロー放電
時のガス圧力を調整する調整弁9を接続し、これとは別
に真空容器1に、真空計10を取り付けてある。
FIG. 1 is a schematic diagram showing the main structure of an apparatus to which the nitride layer forming method of the present invention is applied. FIG. 1 shows an apparatus for forming a nitride layer 11 on the surface of a plate-shaped metal substrate 4. In FIG. In FIG. 1, a positive electrode 2 and a negative electrode 3 facing each other are arranged in a vacuum container 1, and a plate-shaped metal substrate 4 is placed on the negative electrode 3. A glow discharge DC power source 5 installed outside the vacuum container 1 is connected to the positive electrode 2,
Nitrogen gas is sent from a nitrogen gas cylinder 6 into the vacuum container 1 through an adjustment circuit 7 for adjusting the pressure and flow rate of nitrogen gas. A regulating valve 9 for adjusting the gas pressure during glow discharge is connected between the vacuum vessel 1 and the evacuation system 8, and a vacuum gauge 10 is separately attached to the vacuum vessel 1.

【0012】この装置を用いて、金属基体4の表面に窒
化物層を形成するには、まず、真空排気系8により真空
容器1内を排気し、約1×10−7torrの真空にし
た後調整弁9を絞り、真空排気系8の排気速度を下げる
と同時に、真空容器1に調整回路7を通して、真空容器
1内に窒素ガスを導入し、所定のガス圧力に調整する。 その後、正電極2と負電極3の間に直流電圧を印加して
、グロー放電を起こさせて窒素ガスのプラズマを発生さ
せると、このとき生じた窒素イオンと金属基体4とが反
応すると同時に、加速された窒素イオンが金属基体4中
に侵入し、この金属基体4の表面に窒化物層11を形成
することができる。
[0012] In order to form a nitride layer on the surface of the metal substrate 4 using this apparatus, first, the inside of the vacuum container 1 is evacuated by the vacuum evacuation system 8 to create a vacuum of about 1 x 10-7 torr. The regulating valve 9 is throttled to reduce the exhaust speed of the evacuation system 8, and at the same time nitrogen gas is introduced into the vacuum container 1 through the regulating circuit 7 to adjust the gas pressure to a predetermined value. After that, when a DC voltage is applied between the positive electrode 2 and the negative electrode 3 to cause a glow discharge and generate nitrogen gas plasma, the nitrogen ions generated at this time react with the metal substrate 4, and at the same time, The accelerated nitrogen ions can penetrate into the metal substrate 4 and form a nitride layer 11 on the surface of the metal substrate 4.

【0013】次に本発明の方法により、金属基体の表面
に金属窒化物を形成する具体例を示す。
Next, a specific example of forming a metal nitride on the surface of a metal substrate by the method of the present invention will be shown.

【0014】金属窒化物形成条件は下記の通りである。 金属基体:Al板,鏡面仕上げ 基体温度:200℃ 窒素ガス圧力:2.0torr 放電条件:DC600V,0.6mA/cm2 電極間
距離:50mm
The conditions for forming metal nitride are as follows. Metal substrate: Al plate, mirror finish Substrate temperature: 200℃ Nitrogen gas pressure: 2.0torr Discharge conditions: DC600V, 0.6mA/cm2 Distance between electrodes: 50mm

【0015】かくして得られたAlN層のオージェ電子
分光分析法(AES)による深さ方向のAlとNの分布
状態を図2(a)に示すが、比較のために従来のイオン
注入法で形成したAlN層の場合についても図2(b)
に示した。イオン注入条件は、加速電圧:50keV,
ドーズ量:1×1018cm−2である。図2(a),
(b)の比較から本発明の方が、表面に近い所で形成さ
れたAlN層が内部に向かって次第に減少して行き、A
lNによる表面改質層として極めて好ましい状態になっ
ていることがわかる。
FIG. 2(a) shows the distribution of Al and N in the depth direction of the AlN layer thus obtained by Auger electron spectroscopy (AES). Figure 2(b) also shows the case of the AlN layer.
It was shown to. Ion implantation conditions were acceleration voltage: 50 keV,
Dose amount: 1×10 18 cm −2 . Figure 2(a),
From the comparison in (b), the present invention shows that the AlN layer formed near the surface gradually decreases toward the inside, and the
It can be seen that the surface is in an extremely favorable state as a surface modified layer by IN.

【0016】図3は図2(a)に関し、AlN層とAl
基体のAlのオージェ電子スペクトルを示すものである
。図3のように、AlN層にけおるAlのオージェ電子
運動エネルギーは、58keV(LVV)と1384k
eV(KLL)であり、Al基体中では、70keV(
LVV)と1390keV(KLL)である。このよう
に、AlN層におけるAlのオージェ電子運動エネルギ
ーのピーク位置が、Al基体の場合に比べて低エネルギ
ー側に移動する現象は、ケミカルシフトによるものであ
り、金属状態のAlがAlNに変化していることを表わ
している。勿論、イオン注入法の場合も、同様のオージ
ェ電子スペクトルが得られる。
FIG. 3 shows the relationship between the AlN layer and the Al layer shown in FIG. 2(a).
This figure shows the Auger electron spectrum of Al as a substrate. As shown in Figure 3, the Auger electron kinetic energies of Al that breaks down into the AlN layer are 58 keV (LVV) and 1384 k.
eV (KLL), and in the Al substrate, it is 70 keV (
LVV) and 1390 keV (KLL). In this way, the phenomenon in which the peak position of the Auger electron kinetic energy of Al in the AlN layer moves to a lower energy side compared to the case of the Al base is due to chemical shift, and Al in the metallic state changes to AlN. It indicates that Of course, a similar Auger electron spectrum can be obtained using the ion implantation method as well.

【0017】図4は金属基体4の裏面を含む全表面に窒
化物層を形成するときの装置構成を示す模式図であり、
図1と共通部分を同一符号で表わしてある。図4が図1
と異なる点は、金属基体4を負電極として、これを対向
する2枚の正電極2a,2bの間に配置し、金属基体4
の裏面まで及ぶ全表面に窒化物層11aを形成したこと
にある。
FIG. 4 is a schematic diagram showing an apparatus configuration for forming a nitride layer on the entire surface including the back surface of the metal substrate 4.
Components common to those in FIG. 1 are designated by the same reference numerals. Figure 4 is Figure 1
The difference is that the metal base 4 is used as a negative electrode and is placed between two opposing positive electrodes 2a and 2b, and the metal base 4 is used as a negative electrode.
The reason is that the nitride layer 11a is formed on the entire surface extending to the back surface.

【0018】図5は金属基体4aの形状が円筒状を呈し
、その外周面に窒化物層を形成するときの装置構成を示
す模式図であり、図1,図4と共通部分を同一符号で表
わしてあるが、図5が図1,図4と異なる点は、金属基
体4aを負電極とし、正電極2cを円筒状として金属基
体4aの外側に配置し、金属基体4aの外周面に窒化物
層11bを形成したことである。また、図示を省略した
が、この場合も金属基体4aの内側にもう一つの正電極
を配置することにより、金属基体4aの外周面と内周面
に同時に窒化物層を形成することができる。
FIG. 5 is a schematic diagram showing the configuration of an apparatus for forming a nitride layer on the outer peripheral surface of a metal substrate 4a having a cylindrical shape. Parts common to those in FIGS. 1 and 4 are designated by the same reference numerals. 5 is different from FIGS. 1 and 4 in that the metal base 4a is a negative electrode, the positive electrode 2c is cylindrical and is placed outside the metal base 4a, and the outer peripheral surface of the metal base 4a is nitrided. This is because the material layer 11b was formed. Also, although not shown, by arranging another positive electrode inside the metal base 4a, a nitride layer can be simultaneously formed on the outer and inner peripheral surfaces of the metal base 4a.

【0019】本発明の方法における利点の一つは図4,
図5に示すように、金属基体の形状に大きな制約を受け
ないことであるが、これらの場合も図1で述べたと同様
の形成条件により、AlN層を得ることができ、得られ
たAlN層も同様の特性を有する。
One of the advantages of the method of the present invention is as shown in FIG.
As shown in FIG. 5, an AlN layer can be obtained under the same formation conditions as described in FIG. also has similar characteristics.

【0020】また、金属基体4,4aとして、Alの他
にTiやFe,ステンレスなども上述と同様にして表面
に金属窒化物層を形成することができる。
Furthermore, as the metal substrates 4 and 4a, a metal nitride layer can be formed on the surface of Ti, Fe, stainless steel, etc. in addition to Al in the same manner as described above.

【0021】[0021]

【発明の効果】金属の表面を改質して耐摩耗性や耐蝕性
を向上させるために、その金属の窒化物層を表面に形成
する方法として、例えばイオン注入法などがあるが、窒
化物層の安定性に欠け、また処理時間も長いなど適切な
方法ではなかった。これに対して本発明の方法によれば
、実施例で説明した如く、直流グロー放電で発生した窒
素プラズマ中に、所定の金属基体を負電位となるように
配置することにより、この金属基体の表面から深さ方向
に滑らかに分布する窒化物層を効率よく形成することが
可能となった。特に金属基体の形状について、大きな制
約をうけることなく、金属基体を負電極とし、その周囲
に正電極を配置すると、この金属基体のほぼ全周に容易
に窒化物層を形成することができ、金属基体が板状のと
きは、一表面のみ、または表裏両面に同時に窒化物層を
形成することができるなど、従来にくらべて利用範囲が
著しく拡大される。
Effects of the Invention: In order to modify the surface of a metal and improve its wear resistance and corrosion resistance, there is a method for forming a nitride layer of the metal on the surface, such as ion implantation. It was not an appropriate method as the layer lacked stability and the processing time was long. On the other hand, according to the method of the present invention, as explained in the examples, a predetermined metal substrate is placed in nitrogen plasma generated by direct current glow discharge so as to have a negative potential. It has become possible to efficiently form a nitride layer that is smoothly distributed from the surface to the depth direction. In particular, if the metal substrate is used as a negative electrode and a positive electrode is placed around it without any major restrictions on the shape of the metal substrate, a nitride layer can be easily formed almost all around the metal substrate. When the metal substrate is plate-shaped, a nitride layer can be formed on only one surface or on both the front and back surfaces at the same time, which greatly expands the range of applications compared to conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の窒化物層形成方法が適用される装置の
要部構成を示す模式図
FIG. 1 is a schematic diagram showing the main part configuration of an apparatus to which the nitride layer forming method of the present invention is applied.

【図2】(a)は本発明の方法により得られたAlN層
のオージェ電子分光分析法による深さ方向のAlとNの
分布図、(b)は  (a)と比較のために示したイオ
ン注入法で形成したAlN層のオージェ電子分光分析法
による深さ方向のAlとNの分布図
[Figure 2] (a) is a distribution map of Al and N in the depth direction obtained by Auger electron spectroscopy of the AlN layer obtained by the method of the present invention, and (b) is shown for comparison with (a). Distribution diagram of Al and N in the depth direction obtained by Auger electron spectroscopy of an AlN layer formed by ion implantation method

【図3】本発明の方法により得られたAlN層とAl基
体のAlのオージェ電子スペクトル図
[Figure 3] Auger electron spectrum diagram of Al in the AlN layer and Al substrate obtained by the method of the present invention

【図4】図1とは異なる実施例を示す本発明の窒化物層
形成方法が適用される装置の要部構成の模式図
FIG. 4 is a schematic diagram of the main part configuration of an apparatus to which the nitride layer forming method of the present invention is applied, showing an embodiment different from FIG. 1;

【図5】
図1,図4とは異なる実施例を示す本発明の窒化物層形
成方法が適用される装置の要部構成の模式図
[Figure 5]
A schematic diagram of the main part configuration of an apparatus to which the nitride layer forming method of the present invention is applied, showing an embodiment different from FIGS. 1 and 4.

【符号の説明】[Explanation of symbols]

1    真空容器 2    正電極 2a  正電極 2b  正電極 2c  正電極 3    負電極 4    金属基体 4a  金属基体 5    DC電源 6    窒素ガスボンベ 7    調整回路 8    真空排気系 9    調整弁 10    真空計 11    窒化物層 11a  窒化物層 11b  窒化物層 1 Vacuum container 2 Positive electrode 2a Positive electrode 2b Positive electrode 2c Positive electrode 3 Negative electrode 4 Metal base 4a Metal base 5 DC power supply 6 Nitrogen gas cylinder 7 Adjustment circuit 8 Vacuum exhaust system 9 Adjustment valve 10 Vacuum gauge 11 Nitride layer 11a Nitride layer 11b Nitride layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】金属基体表面に窒化物層を形成する方法で
あって、対向する正負電極の負電極上に金属基体を配置
した密閉容器内を排気し窒素ガスを導入して所定の圧力
とした後、前記対向電極間に直流電圧を印加してグロー
放電を起こさせ、このとき生ずる窒素ガスのプラズマと
前記金属基体との反応により、前記金属基体の表面に窒
化物層を形成することを特徴とする金属窒化物層の形成
方法。
Claim 1: A method for forming a nitride layer on the surface of a metal substrate, comprising: evacuating the airtight container in which the metal substrate is placed on the negative electrodes of opposing positive and negative electrodes, and introducing nitrogen gas to maintain a predetermined pressure. After that, a direct current voltage is applied between the opposing electrodes to cause glow discharge, and a nitride layer is formed on the surface of the metal substrate by a reaction between the nitrogen gas plasma generated at this time and the metal substrate. A method for forming a metal nitride layer.
【請求項2】請求項1記載の方法において、負電極とし
て表面に窒化物層を形成させる金属基体を用いることを
特徴とする金属窒化物層の形成方法。
2. A method for forming a metal nitride layer according to claim 1, wherein a metal substrate on which a nitride layer is formed is used as the negative electrode.
【請求項3】請求項1または2記載の方法において、金
属基体がAlであることを特徴とする金属窒化物層の形
成方法。
3. A method for forming a metal nitride layer according to claim 1 or 2, wherein the metal substrate is Al.
【請求項4】請求項1または2記載の方法において、金
属基体がTiであることを特徴とする金属窒化物層の形
成方法。
4. A method for forming a metal nitride layer according to claim 1 or 2, wherein the metal substrate is Ti.
【請求項5】請求項1または2記載の方法において、金
属基体がFeもしくはその合金であることを特徴とする
金属窒化物層の形成方法。
5. The method of forming a metal nitride layer according to claim 1 or 2, wherein the metal substrate is Fe or an alloy thereof.
JP732191A 1991-01-25 1991-01-25 Formation of metallic nitride layer Pending JPH04247863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP732191A JPH04247863A (en) 1991-01-25 1991-01-25 Formation of metallic nitride layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP732191A JPH04247863A (en) 1991-01-25 1991-01-25 Formation of metallic nitride layer

Publications (1)

Publication Number Publication Date
JPH04247863A true JPH04247863A (en) 1992-09-03

Family

ID=11662712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP732191A Pending JPH04247863A (en) 1991-01-25 1991-01-25 Formation of metallic nitride layer

Country Status (1)

Country Link
JP (1) JPH04247863A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09102544A (en) * 1995-05-09 1997-04-15 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacture
CN1110579C (en) * 1998-11-16 2003-06-04 江西省科学院应用物理研究所 Plasma reinforcement technology for the surface of tantalum spinning jet
JP2013224464A (en) * 2012-04-20 2013-10-31 Keio Gijuku Apparatus and method for surface treatment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09102544A (en) * 1995-05-09 1997-04-15 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacture
CN1110579C (en) * 1998-11-16 2003-06-04 江西省科学院应用物理研究所 Plasma reinforcement technology for the surface of tantalum spinning jet
JP2013224464A (en) * 2012-04-20 2013-10-31 Keio Gijuku Apparatus and method for surface treatment

Similar Documents

Publication Publication Date Title
Mantese et al. Plasma-immersion ion implantation
US5712000A (en) Large-scale, low pressure plasma-ion deposition of diamondlike carbon films
US4500564A (en) Method for surface treatment by ion bombardment
Collins et al. Development of a plasma immersion ion implanter for the surface treatment of metal components
JPS60211061A (en) Ion-nitrifying method of aluminum material
JP2004292934A (en) Ion nitriding apparatus and deposition system using the same
JPH04247863A (en) Formation of metallic nitride layer
JPH0351787B2 (en)
JPH01129958A (en) Formation of titanium nitride film having high adhesive strength
JPS61295371A (en) Production of aluminum material having aluminum nitride layer
JP2002194527A (en) Nitriding equipment with electron beam excitation plasma
Moller et al. Plasma-based ion implantation
US6039847A (en) Method of forming a highly pure thin film and apparatus therefor
JPS6196721A (en) Film forming method
JPS5927212B2 (en) plasma reactor
JP5134223B2 (en) Semiconductor device manufacturing method and substrate processing apparatus
JPH04337064A (en) Boron nitride coating member
CN113930715A (en) Ion nitriding method for small-module gear
KR100333948B1 (en) Method for ion-nitrating and coating diamond-Like carbon film using micropulse glow discharge
JPS6326349A (en) Formation of cubic boron nitride film
KR100317731B1 (en) High density plasma ion nitriding method and apparatus
JPH01168857A (en) Formation of titanium nitride film
JPH04199828A (en) Manufacture of oxide thin film of high dielectric constant
JP2895981B2 (en) Silicon oxide film forming method
JPH0211762A (en) Method of implanting middle and high energy into surface working vessel