JPH0211762A - Method of implanting middle and high energy into surface working vessel - Google Patents

Method of implanting middle and high energy into surface working vessel

Info

Publication number
JPH0211762A
JPH0211762A JP15986588A JP15986588A JPH0211762A JP H0211762 A JPH0211762 A JP H0211762A JP 15986588 A JP15986588 A JP 15986588A JP 15986588 A JP15986588 A JP 15986588A JP H0211762 A JPH0211762 A JP H0211762A
Authority
JP
Japan
Prior art keywords
plasma
ion implantation
ion
vessel
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15986588A
Other languages
Japanese (ja)
Inventor
Masanobu Nunogaki
昌伸 布垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP15986588A priority Critical patent/JPH0211762A/en
Publication of JPH0211762A publication Critical patent/JPH0211762A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily implant the ion species of high energy at a uniform concn. to a working material by generating or introducing plasma in a surface working vessel and impressing the pulses of AC/DC discharge voltages to an insulating electrode enclosing the working material. CONSTITUTION:The working material 2 mounted to a material supporting base 3 in the surface working vessel 1 consisting of a vacuum vessel having a discharge pump 7 is heated up to a prescribed temp. The plasma is introduced via a bias power source 13 from a plasma source 12 into this vessel 1. A gaseous plasma source is otherwise introduced into the vessel from a gas port 8 and a filament grid 5 is heated to generate the plasma. Further, the bias voltage is impressed between the filament grid 5 and the working material 2 by a power source 15. Further, an AC/DC discharge power source 14 is intermittently and impulsively operated to impress the discharge voltage to the insulating electrode 4 of a cap-like shape made of a net enclosing the working material 2 to the extent of averting the induction of the arc discharge. The required ion species are easily implanted by high energy to the working material 2 in the arbitrary period of the surface working without using an accelerator.

Description

【発明の詳細な説明】[Detailed description of the invention]

「発明の目的」 イオン注入、イオンビームミキシング、ダイナミックミ
キシング等により、材料表面の改質や薄膜の付着力向上
を計る場合、現在、イオン注入は加速器を用いて2表面
加工は表面加工諸装置でと、各独立した複数の装置を用
いて行っているそのため、加工材料をその都度利用装置
に装填し直さねばならない、その結果、加工材料は繰り
返し加熱や冷却を不必要に受けたり、空気に曝され表面
汚染されるなど、工学上の理想的表層改質が妨げられた
。また、このように大型装置を含む複数装置を用いる加
工行程では技術的、時間的、経済的問題点の根本的解決
は難しく工業的応用への障害となっていた。 本実はくイ)所謂、加速器を用いずに、(ロ)表面加工
用真空容器内で、(ハ)処理途中で材料を空気に曝すこ
となく、(ニ)表面加工の前、途中、或は、処理後の任
意の時に、(ホ)アーク放電を惹起することなく、(へ
)必要とするイオン種を、(ト)数k e V−数10
0 k e Vの高エネルギーで、(チ)必要なフルエ
ンスだけ加工材料に注入できることを考案の直接目的と
した。 「利用分野」 金属、非金属、有機物、アモルファス等−般産業材料表
面の硬度、靭性、融点、腐食、耐摩耗性等の改善、先端
技術分野用の電子1才料や光通信用素材、医療用材料開
発、原子レベルの新物質創製などに対して新しい製造手
段を提供することになろう。 「従来の技術」 本実の目的が達成できる従来技術は末だ開発されていな
い、但し、加速器を用いれはイオン注入だけならば実施
できた。また、イオンブレーティグ法を用いれば数k 
e V以下のイオン注入だけならは実施できた 「発明が解決しようとする問題点」 加速器を用いてイオン注入を行った後、表面窒化法を適
用することにより、従来の窒化法では不可能とされたア
ルミニュウムの窒化が可能となったことや窒素化合物生
成の活性化エネルギーが著しく減少することか、最近本
実考案者により発見された(文L2)、 シかし、加速
器照射てはビームの電流、及び照射面積か小さいため、
加工IA料が大きいと照射時間が長いほか、ビームを2
次元移動するか、材料を回転させねばならない、また、
その場合イオン線量の表面分布に不均一性が生しる。更
に、イオン照射部でのビームの直線性から加工材料の構
造が複雑な祠料へのイオン!]u躬は原理的に不可能で
ある。そこて構造が複雑、月つ照射面が大面積の材料に
対しても、材料を一旦固定した後は移動することなく一
挙に高エネルギーのイオン注入が行え、しかも、同一真
空容器内で、窒化や薄膜生成等の表面加工も行えるよう
な装置構成を考案することが上述の発見やイオンヒ−ム
ミキシンクがより一般化される為に解決されるべき重要
な問題点となった。 「発明の構成」 本実の実施例を第1図に示した6本実は排気ポンプ(7
)に電気絶縁され結合された表面加工容器(1)に、同
しく絶縁材(6)により各々電気絶縁された網製帽子状
、或は、円筒状の絶縁電極(4)、及びフィラメントグ
リッド(5)、更にその中央に加工材料(2)を直接固
定した材料支持台(3)、各種電源の電流導入端子を設
ける他、イオン注入時、或は、その地表面加工時に所要
ガスを導入するガス口(8)、及び、固体または液体原
料の場合それらを気化させるためのオーブン(9,10
)、イオン原料をプラズマとして供給する場合のプラズ
マ源(12)を容器の谷内・外部に、各々大地アースに
対して電気絶縁した状態で設ける構成から成る。電源と
してはイオンを加速して注入するための交・直流放電電
11iii (+4)を加工材料(2)を陰極として絶
縁電極(4)との間に接続、また、グリッドバイアス電
源(15)を材料支持台(3)とフィラメントグリッド
(5)間に、また、プラズマ源にプラズマ電源(図中で
は省略)、プラズマ源で発生したプラズマの拡散用にバ
イアス電源(13)を、加工材料(2)を加熱するため
にヒーター(11)及び同電源(図中では省略)を、フ
ィラメントグリッド(5)を加熱する電源(図中省略)
を、絶縁電極の内周部に弱磁場を重畳するためのコイル
(16)及び同電源(省略)等を設ける。 イオン注入行程は加工材料(2)を材料支持台(3)に
固定し、表面加工容器(1)を排気後、フィラメントグ
リッド(5)を加熱し、同グリッドに対し加工材料より
数V−数kVの負バイアスを印加する。 そして、注入イオン原料ガスを同容器内に導入、または
発生、或は同カスをプラズマとして導入した後(但し、
この時はフィラメントグリッドは加熱しなくてもよい)
、加工材料をヒーター(11)により適宜昇温する。そ
して、アーク放電を誘発しない程度に、ガス圧、及び放
電電圧を抑えるとともに、パルス時間幅を短く設定した
後、交・直流放電電源(5)を間欠的にパルス作動させ
て、プラズマ生成(イオン原料をガス状態で導入した場
合)及びイオン注入を実施する。イオン・フルエンスの
制御はパルス数、及Uカス圧等を調整して行う。 尚、アーク放電を誘発し易い加工材料の場合にはコイル
(1G)を作動させてアーキングの発生を抑制する。 薄膜や窒化層形成なとの各種表面加工は加工材料をその
ままの状態に保ったまま、上記のイオン注入とは独立し
た操作により行える0例えば、窒化処理を行う場合は、
窒化加工材料(2)をヒーター(II)により処理温度
にまて昇温し、所定の窒素水素混合ガスを導入した後、
窒化材料(2)と絶縁電極(4)との開でクロー放電、
或は、高周波放電を発生させ、その際、生したプラズマ
の電位に対し加工材料を負電位に沈めると、カス軟窒化
、或は、イオン窒化が実施でき、また、プラズマ源(1
2)で同上混合プラズマを生成した後、バイアス電源(
13)及び、交・直流放電電源(5)を直流使用しつつ
、アーク放電を誘発しない程度の負の直流バイアスを材
料にかけるとプラズマ源窒化が実施できる。 その地表面加工の、PVD、CVD、スパッタリング、
イオンブレーティングはカス口(8)、或は、 オーブ
ン(9)から原料をガス、或は、蒸気として表面加工容
器(1)内に導入、或は、発生させたり、また、加工材
料(2)と絶縁電極(4)との間に交・直流放電電源(
5)を用いて適宜バイアスをかけることにより実施でき
る。 本実は上述のような操作により、
``Purpose of the Invention'' When modifying the surface of a material or improving the adhesion of a thin film by ion implantation, ion beam mixing, dynamic mixing, etc., currently, ion implantation is performed using an accelerator, and surface processing is performed using various surface processing devices. As this process is carried out using multiple independent devices, the material to be processed must be reloaded into the device each time.As a result, the material to be processed is subjected to unnecessary repeated heating and cooling, and is exposed to air. The ideal engineering surface modification was hindered due to surface contamination. Furthermore, in a processing process that uses a plurality of devices including large-sized devices, it is difficult to fundamentally solve technical, time-consuming, and economical problems, which poses an obstacle to industrial application. In fact, (a) without using a so-called accelerator, (b) in a vacuum vessel for surface processing, (c) without exposing the material to air during processing, (d) before, during, or after surface processing. , at any time after the treatment, (e) without causing arc discharge, (f) the required ion species, (g) several k e V - several tens of
The direct purpose of the invention was to be able to (h) inject only the necessary fluence into the processed material with a high energy of 0 ke V. ``Application field'' Metals, non-metals, organic materials, amorphous, etc. - Improvement of surface hardness, toughness, melting point, corrosion, wear resistance, etc. of general industrial materials, materials for electronic materials and optical communications for advanced technology fields, medical care This will provide new manufacturing methods for the development of industrial materials and the creation of new materials at the atomic level. ``Prior art'' No conventional technology has yet been developed that can achieve the actual purpose, although it could be carried out using only ion implantation using an accelerator. In addition, if the ion bracing method is used, several k
``Problems to be solved by the invention'' that could be achieved with only ion implantation below eV By performing ion implantation using an accelerator and then applying a surface nitriding method, it is possible to solve problems that would not be possible with conventional nitriding methods. The present inventor recently discovered that it has become possible to nitride aluminum and that the activation energy for forming nitrogen compounds has been significantly reduced (Text L2). Because the current and irradiation area are small,
If the processing IA material is large, the irradiation time will be long and the beam
Dimensions must be moved or materials must be rotated, and
In that case, non-uniformity occurs in the surface distribution of the ion dose. Furthermore, due to the linearity of the beam at the ion irradiation part, ions can be applied to abrasive materials whose structure is complex! ] It is impossible in principle to violate the law. Therefore, even for materials with complex structures and large irradiation surfaces, high-energy ion implantation can be performed all at once without moving once the material is fixed, and nitriding can be performed in the same vacuum chamber. In order for the above-mentioned discoveries and ion beam mixing to become more common, it is important to devise a device configuration that can perform surface processing such as surface processing and thin film formation. ``Structure of the Invention'' The actual embodiment is shown in Fig. 1, in which there are 6 exhaust pumps (7
) are electrically insulated and connected to the surface-treated container (1), and a net hat-shaped or cylindrical insulated electrode (4), each electrically insulated by an insulating material (6), and a filament grid ( 5) Furthermore, in addition to providing a material support stand (3) on which the processed material (2) is directly fixed in the center, and current introduction terminals for various power sources, necessary gases are introduced during ion implantation or ground surface processing. a gas port (8) and an oven (9, 10) for vaporizing solid or liquid raw materials;
), in which a plasma source (12) for supplying ion raw material as plasma is provided inside and outside the container, each electrically insulated from the earth. As a power source, an AC/DC discharge voltage 11iii (+4) for accelerating and implanting ions is connected between the insulated electrode (4) and the processing material (2) as a cathode, and a grid bias power source (15) is connected. Between the material support table (3) and the filament grid (5), a plasma power supply (not shown in the figure) is connected to the plasma source, a bias power supply (13) is installed for diffusing the plasma generated by the plasma source, and a processing material (2) is connected to the material support table (3). ) and a power source (not shown) to heat the filament grid (5).
A coil (16) and a power source (not shown) for superimposing a weak magnetic field are provided on the inner periphery of the insulated electrode. In the ion implantation process, the material to be processed (2) is fixed to the material support (3), the surface processing container (1) is evacuated, the filament grid (5) is heated, and the filament grid (5) is heated to a voltage of several V-several lower than the material to be processed. Apply a negative bias of kV. Then, after introducing or generating the implanted ion raw material gas into the same container, or introducing the same waste as plasma (however,
At this time, the filament grid does not need to be heated)
, the temperature of the material to be processed is raised appropriately using a heater (11). Then, after suppressing the gas pressure and discharge voltage and setting a short pulse time width to an extent that does not induce arc discharge, the AC/DC discharge power source (5) is operated intermittently in pulses to generate plasma (ion (when the raw material is introduced in a gaseous state) and ion implantation is performed. The ion fluence is controlled by adjusting the number of pulses, the gas pressure, etc. In addition, in the case of processing materials that are likely to induce arc discharge, the coil (1G) is activated to suppress the occurrence of arcing. Various surface treatments such as forming a thin film or nitriding layer can be performed by operations independent of the ion implantation mentioned above while keeping the processed material in its original state.For example, when performing nitriding treatment,
After heating the nitriding material (2) to the processing temperature using the heater (II) and introducing a predetermined nitrogen-hydrogen mixed gas,
Claw discharge occurs when the nitride material (2) and the insulated electrode (4) open,
Alternatively, by generating a high-frequency discharge and submerging the material to be processed at a negative potential with respect to the generated plasma potential, sludge soft nitriding or ion nitriding can be performed.
After generating the same mixed plasma in step 2), turn on the bias power supply (
13) Plasma source nitriding can be performed by applying a negative DC bias to the material to an extent that does not induce arc discharge while using the AC/DC discharge power source (5) for direct current. PVD, CVD, sputtering,
Ion blating involves introducing or generating raw material as gas or steam into the surface processing container (1) from the waste port (8) or oven (9), or introducing the processed material (2) into the surface processing container (1). ) and the insulated electrode (4), an AC/DC discharge power source (
This can be carried out by applying an appropriate bias using 5). Actually, by the above operation,

【イオン注入】と[Ion implantation]

【種
々の表面加工法】を、・・・・・・同一真空容器内で、
任意の相前後した組み合わせで・・・・・・、実施する
ことを可能とするイオン注入法の構成に関するものであ
る 「作用」 加工材料(2)と絶縁電極(4)間へのパルス高電圧印
加において、カス圧を低くし、印加時間幅を極端に短く
することにより、アーク放電を誘発することなく、プラ
ズマを生成(ガス注入のとき)すると同時にイオンを高
エネルギーで材料に注入することができる作用が生しる
。また、フィラメントグリッド(5)は加熱されると熱
電子を出し、カス圧及びパルス電圧を低くしてもプラズ
マ生成が行われ易くなる作用がある他、加工材料に対し
て負バイアスを与えておくとイオン注入時にも加工材料
表面に電子を供給するのでセラミック等の絶縁材料に対
してもイオン注入が効率良く行える作用がある他、材料
表面の活性化作用がある。プラズマ源(12)を用いる
と、更にイオン注入電圧を低くしてもプラズマ生成を含
むイオン注入行程が安定に行える他、イオンフラックス
が増加する、また、加工材料表面を常にプラズマで包み
こむ結果、材料表面原子の活性化状態を維持、或は励起
する作用がある 本実のように各種材料表面加工の前・中・後にイオン注
入を行うとき、材料表面にイオン照射損傷や高密度の金
属間化合物が生成される1例えば、次節に詳述する表面
窒化の前処理としてのイオン注入では、イオン注入によ
り気相中の窒素のイオン及び原子、分子の材料表面への
付着及び吸着率が増加する。また、固相に取り込まれた
窒素は材料表面に高密度に分布する転位や粒界に沿って
増速拡散する。その際、金属間化合物は材料構成原子間
のポテンシャル分布に変化を与えて窒素イオンの拡散を
助長する作用があると考えられる「発明の効果」 本実により加速器を使用することなく、窒化材料を、表
面加工容器内で、簡単、且つ均一濃度で、高エネルギー
の、任意のイオン種を、任意の線量にまでイオン注入す
ることができ、イオン注入行程とその他の表面処理行程
の間での材料の空気汚染もなく、良質の表面改質層の形
成が可能となった。 具体的例としては、純鉄及びアルミニュム材料の窒化処
理におけるニッケル、モリブデン、窒素イオン前注入の
効果がある。注入により窒化時間の短縮、窒化層厚の改
善、アルミニュムの窒化が可能となった(文1,2、及
び第2.3図参照但し、両図の実験結果はイオン注入を
加速器を用いて25keVて行ったもの)、また、前イ
オン注入を材料改質の制御手段として用いた例としてイ
オン種や注入線量を調整することにより、鋼材表面に生
成されるε相やt′相の厚みを選択的に変化させたり、
純アルミニュウム表面上の窒化アルミニュウム対母材の
含有比を制御できる結果、電子素子の製造に応用するこ
とが出来るなとの前イオン注入効果があった。 その他、本実によりイオンビームミキシングを行う場合
、薄膜生成の前、途中、或は、後処理としてイオン注入
を応用して、生成薄膜の改質や付着力の向上に更なる効
果がある。また、薄膜生成、窒化加工、イオン注入を組
み合ねた新しいタイプの複合表面加工法に応用できる。
[Various surface processing methods]... in the same vacuum container,
"Action" refers to the structure of the ion implantation method that can be carried out in arbitrary sequential combinations.Pulsed high voltage between the processed material (2) and the insulated electrode (4). By lowering the gas pressure and making the application time extremely short, plasma can be generated (during gas injection) and ions can be injected into the material at high energy at the same time without inducing arc discharge. A possible effect is produced. In addition, the filament grid (5) emits thermionic electrons when heated, which facilitates plasma generation even when the gas pressure and pulse voltage are lowered. In addition, a negative bias is applied to the processed material. During ion implantation, electrons are supplied to the surface of the processed material, which not only allows efficient ion implantation into insulating materials such as ceramics, but also activates the surface of the material. If the plasma source (12) is used, the ion implantation process including plasma generation can be performed stably even if the ion implantation voltage is lowered, and the ion flux increases, and as a result of constantly enveloping the surface of the processed material with plasma, When ion implantation is performed before, during, or after surface processing of various materials, such as Honjitsu, which has the effect of maintaining or exciting the activated state of atoms on the material surface, ion radiation damage to the material surface and high-density metal interlayers may occur. For example, in ion implantation as a pretreatment for surface nitriding, which will be detailed in the next section, the ion implantation increases the adhesion and adsorption rate of nitrogen ions, atoms, and molecules in the gas phase to the material surface. . In addition, nitrogen taken into the solid phase diffuses at increased speed along dislocations and grain boundaries that are densely distributed on the material surface. In this case, the intermetallic compound is thought to have the effect of changing the potential distribution between the material's constituent atoms and promoting the diffusion of nitrogen ions. It is possible to easily and uniformly implant high-energy, arbitrary ion species to any dose in a surface treatment container, and the material can be easily and uniformly implanted between the ion implantation process and other surface treatment processes. It is now possible to form a high-quality surface-modified layer without causing any air pollution. A specific example is the effect of pre-implantation of nickel, molybdenum, and nitrogen ions in the nitriding process of pure iron and aluminum materials. The implantation made it possible to shorten the nitriding time, improve the nitrided layer thickness, and nitride aluminum (see Sentences 1 and 2, and Figure 2.3). In addition, as an example of using pre-ion implantation as a means of controlling material modification, the thickness of the ε phase and t' phase generated on the steel surface can be selected by adjusting the ion species and implantation dose. or change the
As a result of being able to control the content ratio of aluminum nitride to the base material on the surface of pure aluminum, there was a pre-ion implantation effect that could be applied to the manufacture of electronic devices. In addition, when ion beam mixing is carried out in practice, ion implantation can be applied before, during, or as a post-treatment for forming a thin film, which is more effective in modifying the formed thin film and improving its adhesion. It can also be applied to a new type of composite surface processing method that combines thin film formation, nitriding processing, and ion implantation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本実の表面加工容器中高エネルギーイオン注入
法の実施例概略図及び電気配線図、1)表面加工容器、
2)加工材料、3)材料支持台、4)絶縁電極、5)フ
ィラメントグリッド、6)絶縁材、7)排気ポンプ、8
)ガス口、 9.10)オーブン、11)ヒーター、1
2)プラズマfi、13)バイアス電源、+4)交・直
流放電電源、15)グリッドバイアス電源、16)コイ
ル。 第2図は前イオン照射後、摂氏350度1時間プラズマ
源窒化処理された純鉄表面の深さ方向硬度比変化とその
イオン種及びイオン線量依存図。 但し、硬度比は母材硬度を1としたもの1図より、イオ
ン注入が窒化反応を著しく増大させる効果があることが
判る。(・)は非イオン照射、(○)、(ロ)、(Δ)
はニッケルイオンをエネルギ−25KeVて各線J11
E15.5E16、IE17[イオン/平方センチ]注
入、(■)は同上エネルギーで窒素分子イオンを5E1
8[イ4シ/平方+:>il注入したもの 第3図は前イオン照射後、摂氏300度で4時間プラズ
マ源窒化処理された純アルミニュムの、深さ方向硬度比
変化とそのイオン種及びイオン線量依存図0図の硬化層
は40%AIN含有層であることがAES測定により確
認され、イオン注入が表面窒化法によるアルミニュウム
の窒化処理を可能にすることが実証された。(・)は非
イオン照射、(○)はモリブデンイオンを3E15、(
ロ)は窒素分子イオンを4E19[イオン/平方tシチ
]、各25keVて注入したもの。 第1図、本実の表面加工容器中高ニオ、ルギーイオン注
入法の実施例概略図及び電気配線図第2図、イオン注入
前処理後プラズマ源電化法により処理された純鉄の表面
硬度比及び窒化層厚さのイオン種・イオン線量依存 第3図、イオン注入前処理後プラズマ源窒化法により処
理された純アルミニュウムの表面硬度比及び窒化層厚さ
のイオン種・イオン線量依存窒化層厚さ(11m )
Figure 1 is a schematic diagram and electrical wiring diagram of an example of the high-energy ion implantation method in a real surface-treated container, 1) a surface-treated container;
2) Processing material, 3) Material support, 4) Insulated electrode, 5) Filament grid, 6) Insulating material, 7) Exhaust pump, 8
) Gas port, 9.10) Oven, 11) Heater, 1
2) Plasma fi, 13) Bias power supply, +4) AC/DC discharge power supply, 15) Grid bias power supply, 16) Coil. FIG. 2 shows the change in hardness ratio in the depth direction of the pure iron surface subjected to plasma source nitriding treatment at 350 degrees Celsius for 1 hour after pre-ion irradiation, and its dependence on ion species and ion dose. However, the hardness ratio is based on the base material hardness of 1. From Figure 1, it can be seen that ion implantation has the effect of significantly increasing the nitriding reaction. (・) indicates non-ion irradiation, (○), (b), (Δ)
is a nickel ion with an energy of -25KeV and each line J11
E15.5E16, IE17 [ions/cm2] implantation, (■) is 5E1 nitrogen molecule ion at the same energy as above.
Figure 3 shows the change in hardness ratio in the depth direction, the ion species, and Ion dose dependence It was confirmed by AES measurement that the hardened layer shown in Figure 0 was a layer containing 40% AIN, and it was demonstrated that ion implantation enables nitriding of aluminum by surface nitriding. (・) is non-ion irradiation, (○) is molybdenum ion irradiation with 3E15, (
b) Nitrogen molecular ions were implanted at 4E19 [ions/sq.t.] at 25 keV each. Fig. 1. Schematic diagram and electrical wiring diagram of an example of high-Niometry ion implantation method in a real surface processing container Fig. 2. Surface hardness ratio and Dependency of nitrided layer thickness on ion species and ion dose Figure 3: Dependence of ion species and ion dose on surface hardness ratio and nitrided layer thickness of pure aluminum treated by plasma source nitriding method after ion implantation pre-treatment Nitrided layer thickness (11m)

Claims (1)

【特許請求の範囲】 材料の各種表面加工が実施できる真空容器内で、その前
・、途中・、或は、後・処理としての高エネルギーイオ
ン注入を、加速器を用いないで比較的小容積の同真空容
器内において実施できるイオン注入法に関するものであ
る、即ち、表面加工容器(1)内に各々電気絶縁された
、加工材料(2)を取り付けた材料支持台(3)、絶縁
電極(4)、フィラメントグリッド(5)、及びプラズ
マ源(12)を設け、注入イオン原料をガス口(8)や
オーブン(9、10)からガスとして注入するか、プラ
ズマとして導入した後、フィラメントグリッド(5)に
グリッドバイアス電源(15)を介して結合されている
加工材料(2)と絶縁電極(4)に対して、交・直流放
電電源(14)を用いて、絶縁電極を陽極とする短パル
ス直流高電圧を間欠的に印加して実施するイオン注入法
。 尚、注入イオン原料をガスとして供給する場合は、フィ
ラメントグリッド(5)をヒーター(11)により加熱
できる他、コイル(16)を設けて、交・直流放電電源
(14)を作動させたときに絶縁電極の内側に発生する
電場に対して交又するような磁場を重畳することもでき
る構成とする。(第1図参照)。
[Claims] High-energy ion implantation can be performed in a vacuum chamber in which various surface treatments of materials can be performed, in a relatively small volume without using an accelerator, as a pre-, intermediate-, or post-treatment. This relates to an ion implantation method that can be carried out in the same vacuum container, that is, a material support stand (3) with a processing material (2) attached, and an insulated electrode (4), each electrically insulated in the surface processing container (1). ), a filament grid (5), and a plasma source (12), and after the implanted ion raw material is injected as a gas from the gas port (8) or oven (9, 10) or introduced as a plasma, the filament grid (5) is provided. ) to the processed material (2) and the insulated electrode (4), which are connected via the grid bias power supply (15), using the AC/DC discharge power supply (14) to apply a short pulse with the insulated electrode as the anode. An ion implantation method that involves applying high DC voltage intermittently. In addition, when supplying the implanted ion raw material as a gas, the filament grid (5) can be heated with a heater (11), and a coil (16) can be installed to heat the filament grid (5) when the AC/DC discharge power supply (14) is activated. The structure is such that a magnetic field that intersects with the electric field generated inside the insulated electrode can be superimposed. (See Figure 1).
JP15986588A 1988-06-28 1988-06-28 Method of implanting middle and high energy into surface working vessel Pending JPH0211762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15986588A JPH0211762A (en) 1988-06-28 1988-06-28 Method of implanting middle and high energy into surface working vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15986588A JPH0211762A (en) 1988-06-28 1988-06-28 Method of implanting middle and high energy into surface working vessel

Publications (1)

Publication Number Publication Date
JPH0211762A true JPH0211762A (en) 1990-01-16

Family

ID=15702907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15986588A Pending JPH0211762A (en) 1988-06-28 1988-06-28 Method of implanting middle and high energy into surface working vessel

Country Status (1)

Country Link
JP (1) JPH0211762A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04264346A (en) * 1990-10-10 1992-09-21 Hughes Aircraft Co Plasma source apparatus for injecting ions
JPH06256943A (en) * 1992-11-04 1994-09-13 Hughes Aircraft Co Method and device for introducing high impedance plasma ion
JPH08222177A (en) * 1995-02-15 1996-08-30 Nissin Electric Co Ltd Metal ion implanting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04264346A (en) * 1990-10-10 1992-09-21 Hughes Aircraft Co Plasma source apparatus for injecting ions
JPH06256943A (en) * 1992-11-04 1994-09-13 Hughes Aircraft Co Method and device for introducing high impedance plasma ion
JPH08222177A (en) * 1995-02-15 1996-08-30 Nissin Electric Co Ltd Metal ion implanting device

Similar Documents

Publication Publication Date Title
US5859404A (en) Method and apparatus for plasma processing a workpiece in an enveloping plasma
USRE37537E1 (en) Method and apparatus for altering material
JPH08222177A (en) Metal ion implanting device
JPS63274762A (en) Device for forming reaction vapor-deposited film
JPH10203896A (en) Member having diamond-like carbon thin film formed thereon and its formation
US9139902B2 (en) Method and apparatus for plasma ion implantation of solid element
US4900371A (en) Method and apparatus for thermochemical treatment
KR20150110968A (en) Method and system for nitriding bore of pipe with hollow cathode discharge
CN110637103B (en) Reactive sputtering apparatus and method for forming composite metal compound or mixed film using same
JPH0211762A (en) Method of implanting middle and high energy into surface working vessel
JP4791636B2 (en) Hybrid pulse plasma deposition system
JP2002194527A (en) Nitriding equipment with electron beam excitation plasma
Moller et al. Plasma-based ion implantation
JPH024960A (en) Method for performing ion implantation and surface layer reforming in the same vessel
KR101519189B1 (en) Method and system for nitriding bore of pipe with hollow cathode discharge
CN113278928B (en) Method for preparing nano-structure transition metal nitride film by utilizing plasma
KR100317731B1 (en) High density plasma ion nitriding method and apparatus
JPH11335832A (en) Ion implantation and ion implantation device
JPH0555194A (en) Apparatus for forming thin film
JPH0111721Y2 (en)
JPH10203897A (en) Preliminary treatment on formation of thin film and device for forming thin film
CA2207273C (en) Method and apparatus for plasma processing
RU2682986C1 (en) Steel product strengthening method by ion-plasma carbonitriding
JPH0559984B2 (en)
JP3726423B2 (en) Surface modification method and surface modification apparatus