JPH04245167A - Manufacture of solid electrolytic fuel cell - Google Patents

Manufacture of solid electrolytic fuel cell

Info

Publication number
JPH04245167A
JPH04245167A JP3010407A JP1040791A JPH04245167A JP H04245167 A JPH04245167 A JP H04245167A JP 3010407 A JP3010407 A JP 3010407A JP 1040791 A JP1040791 A JP 1040791A JP H04245167 A JPH04245167 A JP H04245167A
Authority
JP
Japan
Prior art keywords
stack
solid electrolyte
fuel cell
electrode
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3010407A
Other languages
Japanese (ja)
Other versions
JP2912031B2 (en
Inventor
Yukinori Akiyama
秋 山  幸 徳
Noboru Ishida
石 田   登
Shuzo Murakami
村 上  修 三
Toshihiko Saito
齋 藤  俊 彦
Sanehiro Furukawa
古 川  修 弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP3010407A priority Critical patent/JP2912031B2/en
Publication of JPH04245167A publication Critical patent/JPH04245167A/en
Application granted granted Critical
Publication of JP2912031B2 publication Critical patent/JP2912031B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To lengthen the life of a solid electrolytic fuel cell by suppressing the increase in the contact resistance at a collecting part such as a bipolar plate, or the contact resistance between a solid electrolyte and electrodes for a long term. CONSTITUTION:A manufacture of a solid electrolytic fuel cell comprising; the first step for producing a layered product in such a way that a fuel pole is disposed on one plane of a solid electrolyte, and the second step for heat-treating the layered product while applying a predetermined load in a reducing atmosphere of 1000 deg.C or higher (the operating temperature of a battery).

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は固体電解質燃料電池の製
造方法に関し、特に平板型の固体電解質燃料電池の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid oxide fuel cell, and more particularly to a method for manufacturing a flat solid oxide fuel cell.

【0002】0002

【従来の技術】燃料電池は、供給されるガスの化学エネ
ルギーを直接電気エネルギーに変換するので、高い発電
効率が期待される。特に、固体電解質燃料電池(SOF
C)は、リン酸型及び溶融炭酸塩型燃料電池に次ぐ第三
世代の燃料電池として注目されている。
2. Description of the Related Art Fuel cells directly convert the chemical energy of supplied gas into electrical energy, and are therefore expected to have high power generation efficiency. In particular, solid oxide fuel cells (SOF)
C) is attracting attention as a third generation fuel cell following phosphoric acid type and molten carbonate type fuel cells.

【0003】具体的には、上記固体電解質燃料電池は酸
化物固体(Y2 O3 安定化ZrO2 等)から成り
、電解液の蒸発やクリーページを回避することができる
ので、電解質損失を解消でき、且つ、約1000℃とい
う高温で作動するため、廃熱の利用を含めると発電効率
が高くなるという利点を有している。
Specifically, the solid electrolyte fuel cell is made of solid oxides (Y2 O3 stabilized ZrO2, etc.) and can avoid evaporation and creepage of the electrolyte, thereby eliminating electrolyte loss. Since it operates at a high temperature of about 1000°C, it has the advantage of increasing power generation efficiency when waste heat is included.

【0004】0004

【発明が解決しようとする課題】ところで、上記固体電
解質燃料電池の製造方法としては、各種の湿式法や乾式
法が提案されているが、どのような方法で作製しても電
池運転中に電極が焼結し、電気的導通という役割を有す
るして電極(特に、燃料極)の厚みが減少する。この結
果、電極と例えばバイポーラプレート等の集電部及び固
体電解質との接触が悪くなって、接触抵抗が増大すると
いう課題を有していた。
[Problems to be Solved by the Invention] By the way, various wet methods and dry methods have been proposed as methods for manufacturing the solid electrolyte fuel cell, but no matter which method is used, electrodes may not be produced during battery operation. is sintered, and the thickness of the electrode (particularly the fuel electrode), which plays the role of electrical conduction, is reduced. As a result, the contact between the electrode and the current collector such as a bipolar plate and the solid electrolyte deteriorates, resulting in an increase in contact resistance.

【0005】本発明はかかる現状に鑑みてなされたもの
であり、バイポーラプレート等の集電部及び固体電解質
と電極との接触抵抗が増大するのを長期に渡って抑制し
て、長寿命な固体電解質燃料電池の製造方法の提供を目
的とする。
The present invention has been made in view of the current situation, and is an object of the present invention to suppress the increase in contact resistance between a current collector such as a bipolar plate and a solid electrolyte and an electrode over a long period of time, thereby producing a long-life solid state. The purpose of the present invention is to provide a method for manufacturing an electrolyte fuel cell.

【0006】[0006]

【課題を解決するための手段】本発明は上記目的を達成
するために、固体電解質の一方の面に燃料極を配置して
積重体を作製する第1ステップと、上記積重体を100
0℃以上の還元雰囲気中で、所定の荷重を加えつつ熱処
理する第2ステップとを有することを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention includes a first step of preparing a stack by arranging a fuel electrode on one side of a solid electrolyte, and a first step of fabricating a stack by disposing a fuel electrode on one side of a solid electrolyte.
The method is characterized by comprising a second step of performing heat treatment while applying a predetermined load in a reducing atmosphere at 0° C. or higher.

【0007】[0007]

【作用】上記構成の如く、固体電解質の一方の面に燃料
極を配置した積重体を、1000℃以上の還元雰囲気中
で所定の荷重を加えつつ熱処理すれば、熱処理時に燃料
極が焼結して縮む。したがって、運転時に燃料極のクリ
ープが抑制され、燃料極の厚みの減少を抑制することが
可能となる。
[Operation] If a stack with a fuel electrode arranged on one side of a solid electrolyte is heat-treated in a reducing atmosphere of 1000°C or higher while applying a predetermined load, the fuel electrode will be sintered during the heat treatment. It shrinks. Therefore, creep of the fuel electrode is suppressed during operation, and it becomes possible to suppress reduction in the thickness of the fuel electrode.

【0008】尚、焼成時の荷重は運転時の締付圧より大
きいことが望ましいが、小さい場合であっても焼成時間
を長くする等の操作により同様の効果が期待できる。ま
た、セル形成後に、1000℃以上の酸化雰囲気中で所
定の荷重を加えつつ再度の熱処理を行えば、酸化剤極の
クリープも抑制されるので、酸化剤極の厚みの減少も抑
制することができる。
[0008] It is desirable that the load during firing is greater than the clamping pressure during operation, but even if it is smaller, the same effect can be expected by increasing the firing time. In addition, if heat treatment is performed again while applying a predetermined load in an oxidizing atmosphere at 1000°C or higher after cell formation, the creep of the oxidizer electrode can be suppressed, and therefore the decrease in the thickness of the oxidizer electrode can also be suppressed. can.

【0009】[0009]

【実施例】本発明の一実施例を、図1及び表1に基づい
て、以下に説明する。 〔実施例1〕セルは、Ni−ZrO2 サーメットから
成る燃料極と、La0.9 Sr0.1 MnO3 か
ら成る酸化剤極と、Y2 O3 安定化ZrO2 を主
体とし上記両極間に介装された固体電解質板とを有して
いる。
[Embodiment] An embodiment of the present invention will be described below based on FIG. 1 and Table 1. [Example 1] The cell consisted of a fuel electrode made of Ni-ZrO2 cermet, an oxidizer electrode made of La0.9 Sr0.1 MnO3, and a solid electrolyte mainly composed of Y2 O3 stabilized ZrO2 interposed between the two electrodes. It has a board.

【0010】ここで、上記構造のセルを、以下のように
して作製した。先ず、下記に示す燃料極用材料と、酸化
剤極用材料とを、各々ボールミルにて十分混合し、スラ
リー中に含まれた微小な気泡を減圧下で攪拌除去する。 (1) 燃料極用材料 NiO粉末                    
        70重量部Y2 O3 安定化ZrO
2                 30重量部バイ
ンダ(ポリビニルブチラール樹脂)  20重量部可塑
剤(フタル酸ジオクチル)          10重
量部溶媒(エタノール)              
    200重量部(2) 酸化剤極用材料 La0.9 Sr0.1 MnO3 粉末      
  100重量部バインダ(ポリビニルブチラール樹脂
)  30重量部可塑剤(フタル酸ジオクチル)   
       20重量部溶媒(エタノール)    
              300重量部次に、市販
の部分安定化ZrO2 板(固体電解質板であって、厚
み200μm)の一方の面に、燃料極用のスラリーを厚
さ100μm塗布した後、1200℃で4時間(大気中
)焼成する。この後、荷重4kg/cm2にて、100
0℃で4時間(水素雰囲気中)熱処理する。しかる後、
上記固体電解質の他方の面に、酸化剤極用のスラリーを
100μm塗布し、更に1100℃で4時間(大気中)
焼成して、平板状のセルを作製する。最後に、この平板
状のセルを5つ用いて、有効面積100cm2 のスタ
ックを作製した。
[0010] Here, a cell having the above structure was manufactured as follows. First, a fuel electrode material and an oxidizer electrode material shown below are thoroughly mixed in a ball mill, and minute air bubbles contained in the slurry are stirred and removed under reduced pressure. (1) Fuel electrode material NiO powder
70 parts by weight Y2 O3 Stabilized ZrO
2 30 parts by weight Binder (polyvinyl butyral resin) 20 parts by weight Plasticizer (dioctyl phthalate) 10 parts by weight Solvent (ethanol)
200 parts by weight (2) Oxidizer electrode material La0.9 Sr0.1 MnO3 powder
100 parts by weight Binder (polyvinyl butyral resin) 30 parts by weight Plasticizer (dioctyl phthalate)
20 parts by weight solvent (ethanol)
300 parts by weight Next, a slurry for fuel electrodes was applied to a thickness of 100 μm on one side of a commercially available partially stabilized ZrO2 plate (a solid electrolyte plate, 200 μm thick), and then heated at 1200°C for 4 hours (in the atmosphere). Medium) Baking. After this, at a load of 4 kg/cm2, 100
Heat treatment is performed at 0° C. for 4 hours (in a hydrogen atmosphere). After that,
On the other side of the solid electrolyte, 100 μm of slurry for the oxidizer electrode was applied, and then heated at 1100°C for 4 hours (in air).
Firing is performed to produce a flat cell. Finally, using five of these flat cells, a stack with an effective area of 100 cm2 was fabricated.

【0011】このようにして作製したスタックを、以下
(A1 )スタックと称する。 〔実施例2〕上記平板状のセルを、再度、荷重4kg/
cm2にて、1000℃で4時間(大気中)熱処理する
他は、上記実施例1と同様にしてスタックを作製した。 このようにして作製したスタックを、以下(A2 )ス
タックと称する。 〔比較例〕熱処理を行わない他は、上記実施例1と同様
にしてスタックを作製した。
The stack thus produced is hereinafter referred to as the (A1) stack. [Example 2] The above flat cell was again subjected to a load of 4 kg/
A stack was produced in the same manner as in Example 1 above, except that the stack was heat-treated at 1000° C. for 4 hours (in the atmosphere). The stack produced in this way is hereinafter referred to as the (A2) stack. [Comparative Example] A stack was produced in the same manner as in Example 1 above, except that no heat treatment was performed.

【0012】このようにして作製したスタックを、以下
(X)スタックと称する。 〔実験〕上記本発明の(A1 )スタック,(A2 )
スタック及び比較例の(X)スタックにおける運転時間
とセル電圧との関係を調べたので、その結果を図1に示
す。 尚、スタックの締め付けはエアシリンダ方式(シリンダ
ロッドにセラミックスを取り付け、このセラミックスに
てスタックを押圧)を用い、且つ締付圧は2kg/cm
2とし、室温から運転温度(1000℃)まで常に一定
となるように制御している。また、実験は、酸化剤ガス
として空気を、燃料ガスとして水素を用いると共に、3
00mA/cm2の定電流で放電するという条件である
。更に、300mA/cm2の定電流放電の際の酸素の
利用率(UOX)と燃料の利用率(Uf )とは共に3
0%であり、且つ図1におけるセル電圧は単セル当たり
の値である。
The stack thus produced is hereinafter referred to as an (X) stack. [Experiment] (A1) stack of the above invention, (A2)
The relationship between operating time and cell voltage in the stack and the (X) stack of Comparative Example was investigated, and the results are shown in FIG. The stack is tightened using an air cylinder method (ceramics are attached to the cylinder rod, and the stack is pressed by this ceramic), and the tightening pressure is 2 kg/cm.
2, and is controlled to always remain constant from room temperature to operating temperature (1000°C). In addition, the experiment used air as the oxidant gas and hydrogen as the fuel gas, and
The condition is to discharge at a constant current of 00 mA/cm2. Furthermore, the oxygen utilization rate (UOX) and fuel utilization rate (Uf) during constant current discharge of 300 mA/cm2 are both 3.
0%, and the cell voltage in FIG. 1 is a value per single cell.

【0013】図1から明らかなように、比較例の(X)
スタックは初期の電圧低下が著しいのに対して、本発明
の(A1 )スタック,(A2 )スタックは僅かしか
電圧が低下しておらず、特に(A2 )スタックは殆ど
低下していないことが認められる。このように比較例の
(X)スタックの特性が本発明の(A1 )スタック,
(A2 )スタックに比べて低下するのは、バイポーラ
プレート及び固体電解質と電極(特に、燃料極)との接
触抵抗の増大に起因するものと考えられる。そこで、各
スタック(セル)を分解した後、電極の厚みの変化を調
べたので、その結果を表1に示す。尚、表1において、
各データは5セルの平均値であり、且つ酸化剤極はスタ
ック組立前の厚みを100とし、燃料極は還元後の厚み
(セル外試験でのデータ)を100としている。
As is clear from FIG. 1, (X) of the comparative example
While the stack has a significant initial voltage drop, the (A1) stack and (A2) stack of the present invention have only a slight voltage drop, and in particular, the (A2) stack has almost no voltage drop. It will be done. In this way, the characteristics of the (X) stack of the comparative example are the same as those of the (A1) stack of the present invention.
The decrease compared to the (A2) stack is considered to be due to an increase in the contact resistance between the bipolar plate and the solid electrolyte and the electrodes (particularly the fuel electrode). Therefore, after disassembling each stack (cell), changes in electrode thickness were investigated, and the results are shown in Table 1. In addition, in Table 1,
Each data is an average value of 5 cells, and the thickness of the oxidizer electrode before stack assembly is 100, and the thickness of the fuel electrode after reduction (data from outside the cell test) is 100.

【0014】[0014]

【表1】[Table 1]

【0015】表1より明らかなように、本発明の(A1
 )スタック,(A2 )スタックは比較例の(X)ス
タックに比べて、燃料極の厚みの減少が極めて少なくな
っており、特に(A2 )スタックでは酸化剤極の厚み
の減少も極めて少なくなっていることが認められる。こ
れは、本発明の(A1 )スタック,(A2 )スタッ
クでは、燃料極の形成後に、スタック締付圧より大きな
圧力で荷重を加えつつ電池作動温度と同等以上の温度で
熱処理しているので、この熱処理時に燃料極が焼結する
。したがって、運転時に燃料極のクリープが抑制される
ことになる。これに対して、比較例の(X)スタックで
は、燃料極の形成後に熱処理を行わないので、運転時に
燃料極のクリープが発生するという理由によるものと考
えられる。
As is clear from Table 1, (A1
) stack, (A2) stack has an extremely small decrease in the thickness of the fuel electrode compared to the comparative example (X) stack, and in particular, in the (A2) stack, the decrease in the thickness of the oxidizer electrode is also extremely small. It is recognized that there are This is because in the stacks (A1) and (A2) of the present invention, after the fuel electrode is formed, heat treatment is performed at a temperature equal to or higher than the cell operating temperature while applying a load at a pressure greater than the stack clamping pressure. During this heat treatment, the fuel electrode is sintered. Therefore, creep of the fuel electrode is suppressed during operation. On the other hand, in the stack of Comparative Example (X), since no heat treatment was performed after the fuel electrode was formed, this is considered to be due to the fact that creep of the fuel electrode occurs during operation.

【0016】また、(A2 )スタックにおいては燃料
極のみならず酸化剤極の厚みの減少も極めて少なくなる
のは、セル作製後に締付圧より大きな圧力で荷重を加え
つつ電池作動温度と同等以上の温度で熱処理を行ってい
るので、この熱処理時に酸化剤極が焼結する。したがっ
て、運転時に酸化剤極のクリープも抑制されるという理
由によるものと考えられる。 〔その他の事項〕■焼成時間、焼成温度、焼成荷重、及
び締付圧等は、上記実施例に限定されるものではなく、
使用条件等によって変更可能である。■燃料極、固体電
解質、酸化剤極の製造方法としては、上記実施例の方法
に限定するものではなく、例えば燃料極用グリーンシー
トと固体電解質用グリーンシートと酸化剤極用グリーン
シートとを積層した後、これらを一体で焼成するような
方法を用いることも可能である。
In addition, (A2) in the stack, the decrease in the thickness of not only the fuel electrode but also the oxidizer electrode is extremely small because after cell fabrication, a load is applied at a pressure greater than the tightening pressure and the temperature is equal to or higher than the cell operating temperature. Since the heat treatment is performed at a temperature of , the oxidizer electrode is sintered during this heat treatment. Therefore, this is thought to be due to the fact that creep of the oxidizer electrode is also suppressed during operation. [Other matters] ■ Firing time, firing temperature, firing load, clamping pressure, etc. are not limited to the above examples,
It can be changed depending on usage conditions, etc. ■The method for manufacturing the fuel electrode, solid electrolyte, and oxidizer electrode is not limited to the method described in the above embodiments; for example, a green sheet for the fuel electrode, a green sheet for the solid electrolyte, and a green sheet for the oxidizer electrode are laminated. After that, it is also possible to use a method in which they are fired together.

【0017】[0017]

【発明の効果】以上説明したように本発明によれば、運
転時に燃料極のクリープが抑制されるので、電極の厚み
の減少が抑制される。したがって、固体電解質と燃料極
との接触抵抗が増大するのを抑制でき、電池寿命が長く
なるといった優れた効果を奏する。
As explained above, according to the present invention, the creep of the fuel electrode is suppressed during operation, and therefore the reduction in the thickness of the electrode is suppressed. Therefore, an increase in contact resistance between the solid electrolyte and the fuel electrode can be suppressed, and excellent effects such as a longer battery life can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の(A1 )スタック,(A2 )スタ
ック及び比較例の(X)スタックにおける運転時間とセ
ル電圧との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between operating time and cell voltage in the (A1) stack of the present invention, the (A2) stack, and the (X) stack of the comparative example.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  固体電解質の一方の面に燃料極を配置
して積重体を作製する第1ステップと、上記積重体を1
000℃以上の還元雰囲気中で、所定の荷重を加えつつ
熱処理する第2ステップと、を有することを特徴とする
固体電解質燃料電池の製造方法。
Claim 1: A first step of fabricating a stack by arranging a fuel electrode on one side of a solid electrolyte;
A method for manufacturing a solid electrolyte fuel cell, comprising: a second step of performing heat treatment while applying a predetermined load in a reducing atmosphere at a temperature of 000° C. or higher.
JP3010407A 1991-01-31 1991-01-31 Method for manufacturing solid electrolyte fuel cell Expired - Fee Related JP2912031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3010407A JP2912031B2 (en) 1991-01-31 1991-01-31 Method for manufacturing solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3010407A JP2912031B2 (en) 1991-01-31 1991-01-31 Method for manufacturing solid electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JPH04245167A true JPH04245167A (en) 1992-09-01
JP2912031B2 JP2912031B2 (en) 1999-06-28

Family

ID=11749288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3010407A Expired - Fee Related JP2912031B2 (en) 1991-01-31 1991-01-31 Method for manufacturing solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2912031B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009146745A (en) * 2007-12-14 2009-07-02 Nippon Telegr & Teleph Corp <Ntt> Method of manufacturing solid oxide fuel cells
JP2014534576A (en) * 2011-10-24 2014-12-18 テクニカル・ユニヴァーシティ・オブ・デンマーク Improved anode / electrolyte structure for a solid oxide electrochemical cell and method of making the structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0221569A (en) * 1988-07-11 1990-01-24 Tokai Carbon Co Ltd Manufacture of carbon composite member for fuel cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0221569A (en) * 1988-07-11 1990-01-24 Tokai Carbon Co Ltd Manufacture of carbon composite member for fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009146745A (en) * 2007-12-14 2009-07-02 Nippon Telegr & Teleph Corp <Ntt> Method of manufacturing solid oxide fuel cells
JP2014534576A (en) * 2011-10-24 2014-12-18 テクニカル・ユニヴァーシティ・オブ・デンマーク Improved anode / electrolyte structure for a solid oxide electrochemical cell and method of making the structure

Also Published As

Publication number Publication date
JP2912031B2 (en) 1999-06-28

Similar Documents

Publication Publication Date Title
JP3502012B2 (en) Solid oxide fuel cell and method of manufacturing the same
KR20100050687A (en) Fabrication method of metal supported solid oxide fuel cell
US6982130B2 (en) Fused zirconia-based solid oxide fuel cell
JP2001351647A (en) Solid electrolyte fuel cell
JP2002175814A (en) Manufacturing method of fuel electrode for solid electrolyte type fuel cell, the solid electrolyte type fuel cell and its manufacturing method
JPH08287926A (en) Manufacture of solid electrolyte fuel cell
JP3620800B2 (en) Method for producing solid electrolyte sintered body
CN109360991B (en) Low-temperature solid oxide fuel cell composite cathode and preparation method thereof
JPH04245167A (en) Manufacture of solid electrolytic fuel cell
KR101020742B1 (en) Fabrication method of metal-supported solid oxide fuel cells
JP2003288919A (en) Electric conductive ceramic and its manufacturing method, and inter connector for solid oxide fuel cell using the same
JP3113347B2 (en) Solid oxide fuel cell
JP2000243405A (en) Manufacture of solid electrolyte fuel cell
JPH03116659A (en) Solid electrolyte type fuel battery
JP2809841B2 (en) Method for manufacturing solid oxide fuel cell
KR101871349B1 (en) Cathode for solid oxide fuel cells and electrolysis cells, method for fabricating the same
JP2003331874A (en) Interconnector for solid oxide fuel cell and its formation method
JPH07245113A (en) Solid electrolyte for fuel cell and solid electrolyte fuel cell using this
JPH08287921A (en) Fuel electrode for solid electrolyte fuel cell
JPH05170528A (en) Method for sintering lanthanum chromite
KR20150062393A (en) Fabrication methode of the metal slurry coating layer on cathode surface of solid oxide fuel cell and the solid oxide fuel cell stack using the same
JPH0745297A (en) Solid electrolyte fuel cell
JP3213400B2 (en) Method for manufacturing solid oxide fuel cell
JP7278241B2 (en) electrochemical reaction single cell
KR102117739B1 (en) Method of preparing anode-supported solid oxide fuel cell

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees