JPH0221569A - Manufacture of carbon composite member for fuel cell - Google Patents

Manufacture of carbon composite member for fuel cell

Info

Publication number
JPH0221569A
JPH0221569A JP63172055A JP17205588A JPH0221569A JP H0221569 A JPH0221569 A JP H0221569A JP 63172055 A JP63172055 A JP 63172055A JP 17205588 A JP17205588 A JP 17205588A JP H0221569 A JPH0221569 A JP H0221569A
Authority
JP
Japan
Prior art keywords
base material
cellulose
green
porosity
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63172055A
Other languages
Japanese (ja)
Inventor
Yoshio Suzuki
義雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP63172055A priority Critical patent/JPH0221569A/en
Publication of JPH0221569A publication Critical patent/JPH0221569A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8626Porous electrodes characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0284Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0286Processes for forming seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To increase heat-cycle resistance by forming green precursors of an electrode base, a separator base. and side seal bases, by stacking each green precursor in a specified shape, and by hot-pressing, completely curing, then carbonizing. CONSTITUTION:The green precursor of an electrolyte base 2 is formed by impregnating a solution of thermoset resin whose carbon residual rate is 45% or more in an alpha-cellulose sheet having a porosity of 70% or more and semicuring. Green precursors of a separator base 1 and side seal bases 3 are formed by impregnating a solution of thermoset resin whose carbon residual rate is 45% or more in each of an alpha-cellulose sheet having a porosity of 60% or less, then by semicuring them. Each green precursor of the electrode base 2, separator base 1, and side seal base 3 is stacked in a specified cell shape, hot-pressed, and completely cured, then baked and carbonized in a nonoxidizing atmosphere at 1000 deg.C or higher. Generation of defect such as boundary separation is prevented and heat-cycle resistance is increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、炭素質材料で構成された多孔質電極板ならび
に緻密質セパレータ板を一体的に形成してなる燃料電池
用炭素質複合部材の製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a carbonaceous composite member for fuel cells, which is formed by integrally forming a porous electrode plate and a dense separator plate made of a carbonaceous material. Regarding the manufacturing method.

〔従来の技術〕[Conventional technology]

燃料電池を構成する電極板、セパレータ板などの部材に
は、材質的に耐熱性、耐薬品性、良電気伝導性、易加工
性等の要求特性を満たす炭素質材料が有用されている。
Carbonaceous materials that meet required properties such as heat resistance, chemical resistance, good electrical conductivity, and ease of processing are useful for members such as electrode plates and separator plates that constitute fuel cells.

ところが、炭素質材料は本質的に機械的強度が低いため
、ハンドリングあるいはセルの組立時に破損することが
ある。近時、抵抗およびスタック厚みの低下を図るため
に電極板は約211111%セパレータ板は0.2〜0
.4+a+*程度まで薄肉化が進んでおり、破損の度合
は一層増加する傾向にある。また、電極板とセパレータ
板を積層する従来の方式では、両方の面間に十分均等な
密着接触を得ることが困難であるため、電池内部抵抗の
低減化には限界がある。
However, carbonaceous materials inherently have low mechanical strength and may break during handling or cell assembly. Recently, in order to reduce the resistance and stack thickness, the electrode plate is approximately 211111%, and the separator plate is 0.2 to 0.
.. The wall thickness is becoming thinner to about 4+a+*, and the degree of damage tends to further increase. In addition, in the conventional method of laminating electrode plates and separator plates, it is difficult to obtain sufficiently uniform close contact between both surfaces, so there is a limit to the reduction in battery internal resistance.

このような不都合を排除し、機械的強度の向上、電気的
・熱的抵抗の低減およびセル組立の簡素化を図るため、
電極板とセパレータ板の両部材を予め一体形成して複合
構造とする試みが急速に進められている。
In order to eliminate such inconveniences, improve mechanical strength, reduce electrical and thermal resistance, and simplify cell assembly,
Attempts are rapidly being made to form a composite structure by integrally forming both the electrode plate and the separator plate in advance.

このような複合部材を製造するための最も簡易で実用性
の高い手段は、特開昭60−2047L号公報、実開昭
60−15759号公報などに開示されているような電
極基材とセパレータ基材とを接着剤で結合したのち焼成
する接合焼成法である。
The simplest and most practical means for manufacturing such a composite member is to use an electrode base material and a separator as disclosed in Japanese Unexamined Patent Publication No. 60-2047L, Japanese Utility Model Application No. 60-15759, etc. This is a bonding firing method in which the base material is bonded with an adhesive and then fired.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の接合焼成法には、各炭化済の炭素質電極板と炭素
質セパレータ板を接合して焼成する方法と、焼成前のグ
リーン前駆体の段階にある電極板とセパレータ板を接合
して焼成する方法とがあるが、前者の方法に比べ後者の
方法は焼成炭化の工程が1回で済むうえ接合強度が増大
する点で有利である。
The above bonding and firing methods include a method in which each carbonized carbon electrode plate and a carbonaceous separator plate are joined and fired, and a method in which the electrode plate and separator plate, which are in the green precursor stage before firing, are joined and fired. However, compared to the former method, the latter method is advantageous in that only one sintering and carbonization step is required and the bonding strength is increased.

しかしながら、後者のグリーン前駆体段階における接合
方式を採る場合には、組合せる電極材とセパレータ板の
焼成段階における収縮差が大きいと焼成中あるいは実用
過程におけるヒートサイクルにより界面剥離や部材の反
り、割れ等の欠陥現象が起こる。この傾向は、部材が大
型化するほど顕著となるため、実用面の大きなネックと
なっている。
However, when adopting the latter bonding method at the green precursor stage, if there is a large shrinkage difference between the combined electrode material and separator plate during the firing stage, interfacial peeling, warping, and cracking of the member may occur due to heat cycles during firing or in the practical process. Defect phenomena such as these occur. This tendency becomes more pronounced as the size of the member increases, and is therefore a major bottleneck in practical use.

そのうえ、この方法による場合にはセパレータ基材の厚
さを現状の要求単位(0,2〜0.4關厚)まで極薄化
することが至難であり、また、セパレータ基材の成形に
工数を要するため生産性およびコスト的にも問題点があ
った。
Moreover, when using this method, it is extremely difficult to reduce the thickness of the separator base material to the current required unit (0.2 to 0.4 inch thickness), and it takes a lot of man-hours to mold the separator base material. There were also problems in terms of productivity and cost.

本発明は上記の課題を解決するためになされたもので、
焼成中あるいは実用過程で界面剥離等の欠陥現象を生ず
ることがなく、またセパレータ基材の肉厚を極薄化する
ことができる燃料電池用炭素質複合部材の製造方法を提
供するものである。
The present invention was made to solve the above problems,
The present invention provides a method for manufacturing a carbonaceous composite member for a fuel cell, which does not cause defective phenomena such as interfacial peeling during firing or in practical use, and allows the thickness of a separator base material to be extremely thin.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち、本発明に係る燃料電池用炭素質複合部材の製
造方法は、α−セルロースにより構成された気孔率70
%以上のシートに残炭率45%以上の熱硬化性樹脂溶液
を含浸したのち半硬化して電極基材のグリーン前駆体を
形成する工程と、α−セルロースにより構成された気孔
率60%以下のシートに残炭率45%以上の熱硬化性樹
脂溶液を含浸したのち半硬化してセパレータ基材および
サイドシール基材のグリーン前駆体を形成する工程と、
前記電極基材、セパレータ基材およびサイドシール基材
の各グリーン前駆体を所定のセル形態に積層して熱圧接
合したのち完全硬化し、ついで非酸化性雰囲気中100
0℃以上の温度域で焼成炭化する工程、からなることを
構成上の特徴とする。
That is, the method for manufacturing a carbonaceous composite member for fuel cells according to the present invention is a carbonaceous composite member made of α-cellulose with a porosity of 70.
% or more sheet with a thermosetting resin solution having a residual carbon content of 45% or more, and then semi-curing to form a green precursor for the electrode base material; impregnating the sheet with a thermosetting resin solution having a residual carbon content of 45% or more and semi-curing to form a green precursor of a separator base material and a side seal base material;
The green precursors of the electrode base material, separator base material, and side seal base material were laminated into a predetermined cell shape and bonded under heat and pressure, and then completely cured, and then heated for 100 minutes in a non-oxidizing atmosphere.
The structural feature is that it consists of a step of firing and carbonizing in a temperature range of 0° C. or higher.

(1)電極基材の形成工程 α−セルロースは17.5%濃度の水酸化ナトリウム溶
液に不溶のセルロースで、本発明の目的には製紙用の溶
解パルプなどが好適に使用される。このα−セルロース
を水に分散させたのち、抄紙法を用いてシート化する。
(1) Formation step of electrode base material α-cellulose is a cellulose that is insoluble in a 17.5% sodium hydroxide solution, and for the purpose of the present invention, dissolving pulp for paper manufacturing is preferably used. After dispersing this α-cellulose in water, it is formed into a sheet using a papermaking method.

この際、分散濃度を調整して気孔率が70%以上の疎密
シートに形成する。
At this time, the dispersion concentration is adjusted to form a dense sheet with a porosity of 70% or more.

気孔率が70%を下潮ると、電極基材として要求される
多孔質の組織構造を得ることができなくなる。
When the porosity drops below 70%, it becomes impossible to obtain the porous structure required as an electrode base material.

更に望ましくは、シートを構成するα−セルロースの含
有率を60%以上とし、平均気孔径を60〜200 u
nの範囲に設定することであり、この性状調整により均
質な多孔質構造を形成することが可能となる。
More preferably, the content of α-cellulose constituting the sheet is 60% or more, and the average pore diameter is 60 to 200 u.
This adjustment of properties makes it possible to form a homogeneous porous structure.

セルロースシートは、乾燥後、必要に応じて所定の厚さ
になるように積層し、これに残炭率45%以上の熱硬化
性樹脂溶液を含浸する。残炭率とは、樹脂を非酸化雰囲
気中で1000℃の温度に焼成したときに残留する炭素
分の重量%を指し、これが45%未満の場合には得られ
る電極基材の強度を実用水準まで向上させることが極め
て困難となる。この種45%以上の残炭率を有する熱硬
化性樹脂の例としては、フェノールホルムアルデヒド、
フルフリルアルコール、ジビニルベンゼン等が挙げられ
、いずれも本目的に有効使用される。熱硬化性樹脂の溶
液化は、樹脂をアルコール、アセトンなど常用の有機溶
媒に溶解することによっておこなわれるが、溶液の樹脂
濃度は5〜20重量%に設定することが望ましい。この
理由は、樹脂濃度が5重量%を下潮ると強度特性の減退
を招き、また、20重量%を越えると気孔の閉塞を伴う
からである。
After drying, the cellulose sheets are laminated to a predetermined thickness if necessary, and impregnated with a thermosetting resin solution having a residual carbon content of 45% or more. The residual carbon percentage refers to the weight percent of carbon remaining when the resin is fired at a temperature of 1000°C in a non-oxidizing atmosphere, and if this is less than 45%, the strength of the resulting electrode base material will be reduced to a practical level. It is extremely difficult to improve this level. Examples of this type of thermosetting resin having a residual carbon content of 45% or more include phenol formaldehyde,
Examples include furfuryl alcohol and divinylbenzene, all of which can be effectively used for this purpose. The thermosetting resin is converted into a solution by dissolving the resin in a commonly used organic solvent such as alcohol or acetone, and the resin concentration of the solution is preferably set to 5 to 20% by weight. The reason for this is that if the resin concentration falls below 5% by weight, the strength properties will deteriorate, and if it exceeds 20% by weight, the pores will be blocked.

含浸処理は、セルロースシートを熱硬化性樹脂溶液中に
浸漬するか、熱硬化性樹脂溶液をセルロースシートに塗
布またはスプレーすることによっておこなわれる。
The impregnation treatment is carried out by immersing the cellulose sheet in a thermosetting resin solution, or by applying or spraying the thermosetting resin solution onto the cellulose sheet.

含浸後のセルロースシートは、風乾したのち80〜14
0℃で5分間以上低温加熱することによって半硬化し、
電極基材のグリーン前駆体とする。
After impregnation, the cellulose sheet is air-dried and then
Semi-cured by heating at low temperature for 5 minutes or more at 0°C,
Use as a green precursor for electrode base material.

(2)セパレータ基材、サイドシール基材の形成工程 電極基材の形成工程に準じて、気孔率60%以下のα−
セルロースによる高密度のシートを形成する。気孔率が
60%を上潮ると、セパレータ基材およびサイドシール
基材として要求される気体不透過性の組織構造を得るこ
とができなくなる。更に、シートを構成するα−セルロ
ースの含有率を80%以上とし、平均気孔径を1〜50
趣の範囲に設定することが望ましく、このように性状調
整することにより均質な緻密質構造を形成することがで
きる。
(2) Formation process of separator base material and side seal base material In accordance with the formation process of electrode base material, α-
Forms a dense sheet of cellulose. When the porosity exceeds 60%, it becomes impossible to obtain a gas-impermeable tissue structure required for a separator base material and a side seal base material. Furthermore, the content of α-cellulose constituting the sheet is 80% or more, and the average pore diameter is 1 to 50%.
It is desirable to set it within a desired range, and by adjusting the properties in this way, a homogeneous dense structure can be formed.

セルロースシートは、電極基材の形成工程と同様の手段
によって残炭率45%以上の熱硬化性樹脂溶液で含浸処
理するが、この場合には組織構造の緻密化を図るため溶
液の樹脂濃度を30〜60重量%と高めることが好まし
い。
The cellulose sheet is impregnated with a thermosetting resin solution with a residual carbon content of 45% or more by the same method as the electrode base material forming process, but in this case, the resin concentration of the solution is adjusted to make the tissue structure denser. It is preferable to increase the content to 30 to 60% by weight.

含浸後のセルロースシートは、風乾したのち80〜14
0℃で5分間以上の低温加熱を施して半硬化状態に留め
、セパレータ基材およびサイドシール基材のグリーン前
駆体とする。
After impregnation, the cellulose sheet is air-dried and then
Low-temperature heating is performed at 0° C. for 5 minutes or more to keep it in a semi-cured state, and it is used as a green precursor for a separator base material and a side seal base material.

(3)接合・炭化焼成工程 上記二工程で形成された電極基材、セパレータ基材およ
びサイドシール基材の各グリーン前駆体を、図に示すよ
うに中心部にセパレータ基材1、上下に電極基材2と両
端部にサイドシール3を組合せてセル形態に積層し、1
50〜200℃程度の温度と1 kg / c−以上の
加圧力で熱圧接合する。接合後の複合グリーン部材は1
50〜250℃の温度域で完全硬化したのち、常法によ
り非酸化性雰囲気中1000〜2000℃で焼成炭化し
、更に必要に応じて3000℃の温度で黒鉛化処理をお
こなう。
(3) Bonding and carbonization firing process The green precursors of the electrode base material, separator base material and side seal base material formed in the above two steps are placed in the center as shown in the figure, with the separator base material 1 at the center and the electrodes at the top and bottom. The base material 2 and side seals 3 are combined on both ends and laminated in a cell form.
Heat-pressure bonding is performed at a temperature of about 50 to 200°C and a pressure of 1 kg/c- or more. The composite green member after joining is 1
After complete hardening at a temperature range of 50 to 250°C, it is calcined and carbonized at 1000 to 2000°C in a non-oxidizing atmosphere by a conventional method, and further graphitized at a temperature of 3000°C if necessary.

このようにして得られた炭素質複合部材は、所定のサイ
ズ形状に加工して燃料電池用セルとする。
The carbonaceous composite member thus obtained is processed into a predetermined size and shape to form a fuel cell.

〔作  用〕[For production]

本発明によれば、組織性状の異なる二種類のα−セルロ
ースシートに残炭率の高い熱硬化性樹脂溶液を含浸する
ことによって電極基材として好適な多孔質構造のグリー
ン前駆体とセパレータ基材およびサイドシール基材に適
する緻密質のグリーン前駆体を同時に形成することがで
きる。これら基材のグリーン前駆体は材質的に同一であ
るため、熱圧接合後の焼成炭化段階で収縮差に基づく界
面剥離、部材の反り、割れ等の欠陥現象が生じることは
なく、また得られる炭素質複合部材が実用過程でシート
サイクルを受けて剥離するような事態も起らない。その
うえ、α−セルロースシートの積層枚数によって基材の
肉厚調整が容易にでき、とくにセパレータ基材について
は0.4m+s以下の極薄化が可能となる。
According to the present invention, a green precursor with a porous structure suitable as an electrode base material and a separator base material are obtained by impregnating two types of α-cellulose sheets with different texture properties with a thermosetting resin solution with a high residual carbon content. and a dense green precursor suitable for the side seal base material can be formed at the same time. Since the green precursors of these base materials are the same material, defects such as interfacial peeling, warping, and cracking of parts due to shrinkage differences do not occur during the firing carbonization stage after thermopressure bonding, and the resulting There is no possibility that the carbonaceous composite member will peel off due to the sheet cycle during practical use. Moreover, the thickness of the base material can be easily adjusted by changing the number of stacked α-cellulose sheets, and in particular, the separator base material can be made extremely thin to 0.4 m+s or less.

〔実 施 例〕〔Example〕

以下、本発明の実施例を比較例と対比して説明する。 Examples of the present invention will be described below in comparison with comparative examples.

実施例 α−セルロース含有率61%、気孔率70%、平均気孔
径LO5tH@のセルロース質シート(縦横1000m
m。
Example α-Cellulose sheet with cellulose content of 61%, porosity of 70%, and average pore diameter of LO5tH (1000 m in length and width)
m.

厚さ0.1mm)を抄造し、これを30枚積層してフェ
ノール樹脂(住友デュレズ■製、  PR940)の1
5重置火濃度エタノール溶液に浸漬して含浸処理をおこ
なった。ついで、含浸シートを送風乾燥器中で40℃、
24時間の条件で風乾したのち、140℃の温度で15
分間処理して半硬化状態の電極基材グリーン前駆体を形
成した。
0.1 mm thick), and 30 sheets of this were laminated to form a sheet of phenolic resin (manufactured by Sumitomo Durez ■, PR940).
Impregnation treatment was performed by immersing it in a 5-layer ethanol solution. Then, the impregnated sheet was heated at 40°C in a blow dryer.
After air drying for 24 hours, dry at a temperature of 140℃ for 15 minutes.
The green precursor of the electrode base material was formed in a semi-cured state by processing for a minute.

また、α−セルロース含有率85%、気孔率58%、平
均気孔径5μmのセルロース質シート(縦横1000關
、厚さO,Im+s)を抄造し、これを5枚積層して上
記と同一フェノール樹脂の40重量%濃度エタノール溶
液に浸漬して含浸した。引続き、40℃、24時間風乾
したのち、120℃で15分間処理して半硬化状態のセ
パレータ基材グリーン前駆体を形成した。
In addition, a cellulose sheet (length and width 1000 squares, thickness O, Im+s) with an α-cellulose content of 85%, a porosity of 58%, and an average pore diameter of 5 μm was made, and five sheets of this were laminated and made of the same phenolic resin as above. It was impregnated by immersing it in a 40% by weight ethanol solution. Subsequently, it was air-dried at 40° C. for 24 hours, and then treated at 120° C. for 15 minutes to form a semi-cured separator base material green precursor.

同時に、縦1000mm、横80關のシートを300枚
積したほかは上記セパレータ基材グリーン前駆体の形成
と同一条件によりサイドシール基材のグリーン前駆体を
形成した。
At the same time, a green precursor for a side seal base material was formed under the same conditions as for the formation of the green precursor for a separator base material, except that 300 sheets each having a length of 1000 mm and a width of 80 mm were stacked.

得られた各グリーン前駆体を図のようなセル形態に積層
し、温度150℃、加圧力10kg/c−で5分間熱圧
して一体に接合した。
The obtained green precursors were stacked in a cell shape as shown in the figure, and bonded together by hot pressing at a temperature of 150° C. and a pressure of 10 kg/c for 5 minutes.

接合体は送風乾燥器中で180℃に1時間加熱して完全
に硬化し、次いで窒素雰囲気に保持された電気炉に詰め
、1300℃の温度で焼成炭化した。
The joined body was completely cured by heating at 180° C. for 1 hour in a blow dryer, then packed in an electric furnace maintained in a nitrogen atmosphere, and fired and carbonized at a temperature of 1300° C.

処理後の炭素材に所定の加工を施し、縦横700關、厚
さ3.5mm (うちセパレータ基材の厚さ0.3mm
)の燃料電池用炭素質複合部材を得た。
After the treatment, the carbon material was subjected to the specified processing, and the length and width were 700 mm, and the thickness was 3.5 mm (including the thickness of the separator base material, 0.3 mm).
) carbonaceous composite member for fuel cells was obtained.

この炭素質複合部材の特性は、電極基材の見掛比TKO
,51g/cc、気孔率60%、平均気孔径51庫、ま
たセパレータ基材の気体透過量は10’cc/cd・m
in、であり、いずれも材質としての要求特性を満すも
のであった。更に、接合部の強度(オートグラフ試験機
による引張強度、以下同じ)は96kg/cj、都合部
の電気抵抗(JIS R7202による電圧降下法、以
下同じ)は170X 10’Ω印であり、室温から25
0℃の温度上昇・降下を反復するヒートサイクルテスト
(以下同じ)をおこなったところ1000サイクルでも
剥離現象は全く発生しないことが確認された。
The characteristics of this carbonaceous composite member are the apparent ratio TKO of the electrode base material.
, 51g/cc, porosity 60%, average pore diameter 51, and gas permeation rate of the separator base material is 10'cc/cd・m.
in, and all of them satisfied the required characteristics as materials. Furthermore, the strength of the joint (tensile strength measured by an autograph tester, the same applies hereinafter) is 96 kg/cj, and the electrical resistance of the relevant part (voltage drop method according to JIS R7202, the same applies hereinafter) is 170 x 10' Ω mark, and the resistance from room temperature to 25
A heat cycle test (the same applies hereinafter) in which the temperature was repeatedly raised and lowered by 0° C. was conducted, and it was confirmed that no peeling phenomenon occurred even after 1000 cycles.

比較例 1 電極基材グリーン前駆体のベースとしてα−セルロース
含有率70%、気孔率62%、平均気孔径40μmのα
−セルロースシートを、またセパレータ基材およびサイ
ドシール基材のグリーン前駆体ベースとしてα−セルロ
ース含有率70%、気孔率70%、平均気孔径65即の
α−セルロースシートを用い、実施例と同一条件により
樹脂含浸、接合および焼成炭化処理を施して燃料電池用
炭素質複合部材を得た。
Comparative Example 1 α-cellulose content 70%, porosity 62%, average pore diameter 40 μm as a base for electrode substrate green precursor
- Cellulose sheet and α-cellulose sheet with an α-cellulose content of 70%, a porosity of 70%, and an average pore diameter of 65 were used as the green precursor base for the separator base material and the side seal base material, and the same as in the example. Depending on the conditions, resin impregnation, bonding, and firing carbonization treatments were performed to obtain a carbonaceous composite member for fuel cells.

このようにして得られた炭素質複合部材の特性は、電極
基材の見掛比重0.7sr/cc、気孔率41%、平均
気孔径31即、またセパレータ基材の気体透過量は10
−’cc/c4 e win、であり、燃料電池用とし
ての要求特性に対して未達であった。
The characteristics of the carbonaceous composite member obtained in this way are that the apparent specific gravity of the electrode base material is 0.7 sr/cc, the porosity is 41%, the average pore diameter is 31%, and the gas permeation rate of the separator base material is 10 sr/cc.
-'cc/c4 e win, which did not meet the required characteristics for fuel cells.

比較例 2 平均粒径5μmの黒鉛微粉30重量部とフェノール樹脂
(住友デュレズ■製、  PR940) 70重量部を
ニーダ−により混練し、押出ブレスを用いて縦150+
uq横20hm、厚さ3m+sの板状に押出成形した。
Comparative Example 2 30 parts by weight of fine graphite powder with an average particle size of 5 μm and 70 parts by weight of phenol resin (manufactured by Sumitomo Durez ■, PR940) were kneaded in a kneader, and the mixture was kneaded using an extrusion press to form a mixture with a length of 150+.
It was extruded into a plate shape with a width of 20 hm and a thickness of 3 m+s.

押出成形後の板状体を更に圧延成形して縦横800關、
厚さ0.8mmのセパレータ基材グリーン前駆体を成形
した。このグリーン板状体は極めて脆弱で、炭化後に0
.4mm以下の厚さを保持させることは困難であった。
After the extrusion molding, the plate-shaped body is further rolled and molded to a length and width of 800 mm.
A separator base material green precursor having a thickness of 0.8 mm was molded. This green plate-like body is extremely brittle and has zero after carbonization.
.. It was difficult to maintain a thickness of 4 mm or less.

上記により形成した電極基材グリーン前駆体を実施例と
同一条件で形成した電極基材グリーン前駆体と実施例1
と同様にして熱圧接合および焼成炭化して燃料電池用炭
素質複合部材を得た。
Electrode base material green precursor formed as described above under the same conditions as in Example and Example 1
A carbonaceous composite member for a fuel cell was obtained by thermopressure bonding and firing carbonization in the same manner as above.

得られた炭素質複合部材は厚さ4.5mmであり、その
接合部の強度は52kg/cd、都合部の電気抵抗は2
50XlO’Ω口、ヒートサイクルテストの結果は50
0サイクルで剥離現象が認められ、実施例に比べて性状
的に劣るものであった。
The obtained carbonaceous composite member has a thickness of 4.5 mm, the strength of the joint part is 52 kg/cd, and the electrical resistance of the convenient part is 2.
50XlO'Ω mouth, heat cycle test result is 50
A peeling phenomenon was observed at 0 cycles, and the properties were inferior to those of Examples.

〔発明の効果〕〔Effect of the invention〕

以上のとおり、本発明によれば短工程により電極および
セパレータとしての要求特性を満足し、かつ接合強度な
らびに耐ヒートサイクル性に優れた炭素質複合部材を製
造することができるから、リン酸型燃料電池、塩素−亜
鉛型電池のような二次電池用として極めて有用である。
As described above, according to the present invention, it is possible to manufacture a carbonaceous composite member that satisfies the required characteristics for electrodes and separators in a short process and has excellent bonding strength and heat cycle resistance. It is extremely useful for batteries and secondary batteries such as chlorine-zinc batteries.

【図面の簡単な説明】 図は本発明において電極基材、セパレータ基材およびサ
イドシール基材の各グリーン前駆体をセル形態に接合す
る状態を示した斜視説明図である。 1・・・セパレータ基材   2・・・電極基材3・・
・サイドシール 特許出願人 東海カーボン株式会社
BRIEF DESCRIPTION OF THE DRAWINGS The figure is a perspective explanatory view showing a state in which green precursors of an electrode base material, a separator base material, and a side seal base material are joined into a cell shape in the present invention. 1... Separator base material 2... Electrode base material 3...
・Side seal patent applicant Tokai Carbon Co., Ltd.

Claims (1)

【特許請求の範囲】 1、α−セルロースにより構成された気孔率70%以上
のシートに残炭率45%以上の熱硬化性樹脂溶液を含浸
したのち半硬化して電極基材のグリーン前駆体を形成す
る工程と、α−セルロースにより構成された気孔率60
%以下のシートに残炭率45%以上の熱硬化性樹脂溶液
を含浸したのち半硬化してセパレータ基材およびサイド
シール基材のグリーン前駆体を形成する工程と、前記電
極基材、セパレータ基材およびサイドシール基材の各グ
リーン前駆体を所定のセル形態に積層して熱圧接合した
のち完全硬化し、ついで非酸化性雰囲気中1000℃以
上の温度域で焼成炭化する工程、からなることを特徴と
する燃料電池用炭素質複合部材の製造方法。 2、α−セルロースにより構成された気孔率70%以上
のシートが、α−セルロース含有率60%以上、平均気
孔径60〜200μmの性状を有するものである請求項
1記載の燃料電池用炭素質複合部材の製造方法。 3、α−セルロースにより構成された気孔率60%以下
のシートが、α−セルロース含有率80%以上、平均気
孔径1〜50μmの性状を有するものである請求項1記
載の燃料電池用炭素質複合部材の製造方法。
[Claims] 1. A sheet made of α-cellulose and having a porosity of 70% or more is impregnated with a thermosetting resin solution having a residual carbon content of 45% or more and then semi-cured to form a green precursor for an electrode base material. and a step of forming a porosity of 60 composed of α-cellulose.
% or less with a thermosetting resin solution having a residual carbon content of 45% or more and then semi-curing to form a green precursor for the separator base material and the side seal base material, and the electrode base material and separator base material. The green precursors of the material and the side seal base material are laminated into a predetermined cell shape, thermo-pressure bonded, completely cured, and then fired and carbonized in a non-oxidizing atmosphere at a temperature range of 1000°C or higher. A method for manufacturing a carbonaceous composite member for fuel cells, characterized by: 2. The carbon material for fuel cells according to claim 1, wherein the sheet made of α-cellulose and having a porosity of 70% or more has an α-cellulose content of 60% or more and an average pore diameter of 60 to 200 μm. Method for manufacturing composite parts. 3. The carbon material for fuel cells according to claim 1, wherein the sheet composed of α-cellulose and having a porosity of 60% or less has an α-cellulose content of 80% or more and an average pore diameter of 1 to 50 μm. Method for manufacturing composite parts.
JP63172055A 1988-07-11 1988-07-11 Manufacture of carbon composite member for fuel cell Pending JPH0221569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63172055A JPH0221569A (en) 1988-07-11 1988-07-11 Manufacture of carbon composite member for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63172055A JPH0221569A (en) 1988-07-11 1988-07-11 Manufacture of carbon composite member for fuel cell

Publications (1)

Publication Number Publication Date
JPH0221569A true JPH0221569A (en) 1990-01-24

Family

ID=15934697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63172055A Pending JPH0221569A (en) 1988-07-11 1988-07-11 Manufacture of carbon composite member for fuel cell

Country Status (1)

Country Link
JP (1) JPH0221569A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04245167A (en) * 1991-01-31 1992-09-01 Sanyo Electric Co Ltd Manufacture of solid electrolytic fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04245167A (en) * 1991-01-31 1992-09-01 Sanyo Electric Co Ltd Manufacture of solid electrolytic fuel cell

Similar Documents

Publication Publication Date Title
US4064207A (en) Fibrillar carbon fuel cell electrode substrates and method of manufacture
US4234650A (en) Laminar carbon member and a method of manufacturing it
GB2185247A (en) Electrode substrate for fuel cell
JPH0449747B2 (en)
JPH076775A (en) Electrolyte holding plate and manufacture thereof
US4080413A (en) Porous carbon fuel cell substrates and method of manufacture
GB2175578A (en) Integral carbonised bodies and their use in fuel cells
US5776384A (en) Method for making carbon super capacitor electrode materials
JPH0221569A (en) Manufacture of carbon composite member for fuel cell
JPH0652863A (en) Electrode body for solid electrolytic fuel cell and manufacture thereof
JPH11340103A (en) Manufacture of activated carbon material
JPH05307967A (en) Manufacture of carbon compact for phosphoric acid type fuel battery
JP2571108B2 (en) Method for producing carbon member for fuel cell
JPH03105863A (en) Carbonaceous composite member of fuel cell and its manufacture
JP2524820B2 (en) Method for producing carbonaceous composite base material for fuel cell
JPS62171908A (en) Production of carbon plate
JP2015010014A (en) Production method of carbon plate material, and carbon plate material
CN117423881B (en) Method for improving effective contact surface of flow battery electrode and bipolar plate
JPH0677461B2 (en) Method for producing carbon composite member for fuel cell
JPH0450709B2 (en)
JP4080095B2 (en) Manufacturing method of thick porous carbon material
JP2603138B2 (en) Method for manufacturing carbonaceous composite member for fuel cell
JP2009155193A (en) Porous carbon sheet and method for manufacturing the same, and membrane electrode fusion product using porous carbon sheet
KR20220029818A (en) Thick synthetic graphite body and Method for making the same
JPH04284363A (en) Manufacture of carbon plate