JPH04241918A - Control method for injection molding machine - Google Patents

Control method for injection molding machine

Info

Publication number
JPH04241918A
JPH04241918A JP1266491A JP1266491A JPH04241918A JP H04241918 A JPH04241918 A JP H04241918A JP 1266491 A JP1266491 A JP 1266491A JP 1266491 A JP1266491 A JP 1266491A JP H04241918 A JPH04241918 A JP H04241918A
Authority
JP
Japan
Prior art keywords
screw
injection
pressure
charging
injection molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1266491A
Other languages
Japanese (ja)
Other versions
JP2650790B2 (en
Inventor
Kaneyuki Takebayashi
武林 謙行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Machinery and Metal Co Ltd
Original Assignee
Toyo Machinery and Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Machinery and Metal Co Ltd filed Critical Toyo Machinery and Metal Co Ltd
Priority to JP1266491A priority Critical patent/JP2650790B2/en
Publication of JPH04241918A publication Critical patent/JPH04241918A/en
Application granted granted Critical
Publication of JP2650790B2 publication Critical patent/JP2650790B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To stabilize the charging volume in the case of setting the dwell pressure high and charging pressure low by using an electric servo motor as an injection driving source. CONSTITUTION:Immediately after the completion of dwelling process, an injection motor 7 is rotated and driven in the direction reverse to the direction of injection to force a screw 3 to move back, and the screw is further moved back forcibly and the loading pressure to the screw is confirmed to be the given value or lower by a pressure sensor 13 for sensing the loading pressure applied to the screw.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、射出駆動源として電気
サーボモータを用いたインラインスクリュータイプの射
出成形機の制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of controlling an in-line screw type injection molding machine using an electric servo motor as an injection drive source.

【0002】0002

【従来の技術】射出駆動源等々の各動作駆動源として電
気サーボモータを用いた射出成形機は、油圧機器や油圧
配管がないので油圧に関するメンテナンスが要らず、ま
た、装置の軽量化も可能である。さらに、電気サーボモ
ータによるフィードバック制御は、油圧回路に較べて応
答性が良好であるという利点もある。
[Prior Art] Injection molding machines that use electric servo motors as the driving source for various operations, such as the injection driving source, do not require hydraulic maintenance because they do not have hydraulic equipment or hydraulic piping, and the equipment can also be made lighter. be. Furthermore, feedback control using an electric servo motor has the advantage of better responsiveness than a hydraulic circuit.

【0003】ところで、射出成形機においては、保圧圧
力を高くしてチャージ圧力は低く設定する必要のある成
形条件が往々にして生じる。ところが斯様な設定を行な
うと、この種の射出駆動源として電気サーボモータを用
いた射出成形機においては、保圧行程終了後にチャージ
行程へ移る際に、(油圧機器と異なり)駆動源自身の負
荷が軽いためスクリューが後退方向に跳ね返る現象が生
じた。
By the way, in injection molding machines, molding conditions often occur that require the holding pressure to be set high and the charging pressure to be set low. However, when such a setting is made, in this type of injection molding machine that uses an electric servo motor as the injection drive source, when moving to the charging stroke after the pressure holding stroke, the drive source itself (unlike hydraulic equipment) Because the load was light, a phenomenon occurred in which the screw rebounded in the backward direction.

【0004】0004

【発明が解決しようとする課題】上述したように、従来
技術による電気サーボモータを用いた射出成形機におい
ては、保圧圧力を高くチャージ圧力は低く設定すると(
例えば、保圧圧力を2000kgf/cm2 、チャー
ジ圧力を50kgf/cm2 程度)、保圧完了後にス
クリューの後退方向への跳ね返りが発生し、このため実
質的なクッション位置がばらついて、チャージ量(計量
樹脂量)がばらつくと言う大きな問題があった。また、
チャージ量の設定が少ない場合には、上記した跳ね返り
でスクリューが計量完了位置(チャージ完了位置)を超
えて後退してしまうので、この場合にはマシンが見かけ
上チャージ完了と見做してしまうという致命的な問題を
生じた。
[Problems to be Solved by the Invention] As mentioned above, in an injection molding machine using an electric servo motor according to the prior art, when the holding pressure is set high and the charging pressure is set low, (
For example, when the holding pressure is about 2000 kgf/cm2 and the charging pressure is about 50 kgf/cm2), the screw rebounds in the backward direction after the holding pressure is completed, and this causes the actual cushion position to vary and the charge amount (metering resin There was a big problem that the quantity) varied. Also,
If the charging amount is set too low, the above-mentioned rebound will cause the screw to move back beyond the metering completion position (charging completion position), so in this case the machine will apparently assume that charging is complete. A fatal problem arose.

【0005】この保圧行程からチャージ行程に移行する
際のスクリューの跳ね返りを防止するには、保圧行程時
の保圧圧力を多段設定し、保圧行程終期の保圧圧力を跳
ね返りが生じない程度の値に設定すれば良いが、良品成
形のために求められる成形条件上の制約からこれが出来
ないこともしばしばある。また、そもそもオペレータが
、この保圧行程終期の保圧圧力を跳ね返りが生じない程
度の値に設定することを失念すると、依然として上述し
た問題が生じる。
[0005] In order to prevent the screw from rebounding when transitioning from the holding stroke to the charging stroke, the holding pressure during the holding stroke is set in multiple stages, and the holding pressure at the end of the holding stroke is adjusted so that rebound does not occur. However, this is often not possible due to constraints on the molding conditions required for molding a good product. Further, if the operator forgets to set the holding pressure at the end of the holding pressure stroke to a value that does not cause rebound, the above-mentioned problem still occurs.

【0006】従って、本発明の解決すべき技術的課題は
上記した従来技術のもつ問題点を解消することにあり、
その目的とするところは、射出駆動源として電気サーボ
モータを用いた射出成形機において、保圧圧力を高く且
つチャージ圧力を低く設定した場合でもスクリューの跳
ね返りが確実に防止でき、チャージ量が安定する射出成
形機の制御方法を提供することにある。
Therefore, the technical problem to be solved by the present invention is to solve the above-mentioned problems of the prior art.
The purpose of this is to reliably prevent screw rebound and stabilize the charge amount even when the holding pressure is set high and the charging pressure is set low in injection molding machines that use electric servo motors as the injection drive source. An object of the present invention is to provide a method for controlling an injection molding machine.

【0007】[0007]

【課題を解決するための手段】本発明は上記した目的を
達成するため、加熱シリンダ内に配設されたスクリュー
の前後進動作を電気サーボモータで行なう射出成形機の
制御方法において、保圧行程を含む射出行程の完了後に
、前記電気サーボモータによって前記スクリューを所定
量だけ強制後退させ、然る後チャージ行程に移行させる
ようにされる。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the present invention provides a method for controlling an injection molding machine in which the forward and backward movement of a screw disposed in a heating cylinder is performed by an electric servo motor. After completion of the injection stroke including the above, the electric servo motor forcibly retracts the screw by a predetermined amount, after which the charge stroke begins.

【0008】[0008]

【作用】保圧行程が完了すると、直ちに射出用電気サー
ボモータ(以下射出用モータと称す)が射出方向とは逆
方向に回転駆動されてスクリューが強制後退させられ始
め、スクリューに加えられる負荷圧力を検出する圧力セ
ンサによって、スクリューへの負荷圧力が所定値以下と
なることが確認されるまで、スクリューは強制後退させ
られ、然る後、射出モータの上記した逆方向回転が停止
される。そしてこの後、チャージ用電気サーボモータ(
以下チャージ用モータと称す)が回転駆動されて、チャ
ージ行程が開始される。斯様にすることにより、チャー
ジスタート時のスクリュー位置が常に一定に保たれるた
め、チャージ量(計量樹脂量)のばらつきが無くなり、
安定成形が行なえるようになる。
[Operation] Immediately after the pressure holding stroke is completed, the electric servo motor for injection (hereinafter referred to as the injection motor) is driven to rotate in the opposite direction to the injection direction, and the screw begins to be forcibly retracted, and the load pressure is applied to the screw. The screw is forcibly retracted until it is confirmed by the pressure sensor that the load pressure on the screw is below a predetermined value, and then the rotation of the injection motor in the above-mentioned reverse direction is stopped. And after this, the electric servo motor for charging (
The charging motor (hereinafter referred to as a charging motor) is driven to rotate, and a charging process is started. By doing this, the screw position at the start of charging is always kept constant, which eliminates variations in the amount of charge (metered amount of resin).
Stable molding becomes possible.

【0009】[0009]

【実施例】以下、本発明を図1〜図3に示した1実施例
によって説明する。図1は本実施例に係る射出成形機の
要部構成を簡略化して示す説明図、図2は動作説明図、
図3はスクリューの強制後退行程時にマイクロコンピュ
ータで実行される処理フローを示す説明図である。
[Embodiment] The present invention will be explained below using an embodiment shown in FIGS. 1 to 3. FIG. 1 is an explanatory diagram showing a simplified configuration of the main parts of an injection molding machine according to this embodiment, FIG. 2 is an explanatory diagram of operation,
FIG. 3 is an explanatory diagram showing the processing flow executed by the microcomputer during the forced backward stroke of the screw.

【0010】図1において、1は加熱シリンダで、その
後部を図示せぬ公知のヘッドストックに取付け・保持さ
れている。この加熱シリンダ1の先端部にはノズル2が
螺着されていると共に、その外周部には図示せぬ公知の
バンドヒータが巻装されている。3はスクリューで、加
熱シリンダ1内に前後進並びに回転可能であるように配
設されており、その後端部と一体化された軸部材3aは
加熱シリンダ1外に延出している。4は樹脂材料供給用
のホッパーで、該ホッパー4から樹脂材料が加熱シリン
ダ1内に落下・供給される。
In FIG. 1, reference numeral 1 denotes a heating cylinder, the rear part of which is attached and held by a known headstock (not shown). A nozzle 2 is screwed onto the tip of the heating cylinder 1, and a known band heater (not shown) is wrapped around the outer periphery of the nozzle 2. Reference numeral 3 denotes a screw, which is disposed within the heating cylinder 1 so as to be able to move forward and backward as well as rotate, and a shaft member 3a integrated with the rear end thereof extends outside the heating cylinder 1. Reference numeral 4 denotes a hopper for supplying resin material, from which the resin material falls and is supplied into the heating cylinder 1.

【0011】前記スクリュー3と一体の軸部材3aは、
チャージ用モータ(チャージ用電気サーボモータ)5に
よって回転駆動される回転体6にスプライン軸結合され
ていて、チャージ用モータ5の回転によりスクリュー3
が回転駆動されるようになっている。また、軸部材3a
は、射出用モータ(射出用電気サーボモータ)7によっ
て回転駆動される回転体8にナット−ネジ結合(具体的
にはボールネジ結合)されていて、射出用モータ7の回
転によりスクリュー3が軸方向に駆動されるようになっ
ている。
The shaft member 3a integrated with the screw 3 is
The spline shaft is coupled to a rotating body 6 that is rotationally driven by a charging motor (electric servo motor for charging) 5, and the screw 3 is rotated by the rotation of the charging motor 5.
is designed to be rotationally driven. In addition, the shaft member 3a
is a nut-screw connection (specifically, a ball screw connection) to a rotating body 8 which is rotationally driven by an injection motor (injection electric servo motor) 7, and the rotation of the injection motor 7 causes the screw 3 to move in the axial direction. It is designed to be driven by

【0012】前記チャージ用モータ5及び射出用モータ
7は、マイクロコンピュータ(以下マイコンと称す)9
によってドライバ回路10、11を介して駆動制御され
る。このマイコン9は、マシン(射出成形機)全体の動
作制御などを司り、チャージ動作、射出動作(1次射出
及び保圧動作)、型開閉動作、イジェクト動作等の成形
行程全体の制御や、実測データの演算・格納処理等々を
実行する。すなわち、マイコン9は、実際には各種I/
Oインターフェイス、ROM、RAM、CPU等を具備
したもので構成され、予め作成された成形プロセス制御
プログラムと設定運転条件値とに基づき、マシンの各部
に配設された多数のセンサ(位置センサ、圧力センサ等
々)からの計測情報及び自身に内蔵されたクロックから
の計時情報を参照しつつ、上記したドライバ回路10、
11を含むドライバ群を介して対応する各駆動源を駆動
制御し、一連の成形行程を実行させるようになっている
The charging motor 5 and the injection motor 7 are operated by a microcomputer (hereinafter referred to as microcomputer) 9.
The drive is controlled by the driver circuits 10 and 11. This microcomputer 9 controls the operation of the entire machine (injection molding machine), and controls the entire molding process such as charging operation, injection operation (primary injection and holding pressure operation), mold opening/closing operation, and ejecting operation, as well as actual measurement. Executes data calculations, storage processing, etc. In other words, the microcomputer 9 actually handles various I/
The machine is equipped with an O interface, ROM, RAM, CPU, etc., and is equipped with a large number of sensors (position sensors, pressure sensors, The driver circuit 10 described above,
Each of the corresponding drive sources is driven and controlled through a group of drivers including 11 to execute a series of molding processes.

【0013】12はエンコーダ等よりなる射出ストロー
ク検出センサ、13はロードセル等よりなる射出圧力検
出センサで、この各センサ12、13の計測情報により
、前記マイコン9が、スクリュー3の位置並びにスクリ
ュー3に対する前進方向への負荷圧力をそれぞれ認知す
るようになっている。
Reference numeral 12 denotes an injection stroke detection sensor consisting of an encoder, etc., and 13 an injection pressure detection sensor consisting of a load cell, etc. Based on the measurement information of these sensors 12 and 13, the microcomputer 9 determines the position of the screw 3 and the position of the screw 3. It is designed to recognize the load pressure in the forward direction.

【0014】上記した構成において、チャージ行程時に
はチャージ用モータ5が所定方向に回転駆動され、前記
ホッパー4から加熱シリンダ1の後部に投入された樹脂
材料が、スクリュー3の回転で混練・可塑化されつつス
クリュー3のネジ送り作用で加熱シリンダ1の前方側に
移送される。そして、加熱シリンダ1の前方側(スクリ
ュー3の頭部前方側)に溶融樹脂が貯えられるに従って
、スクリュー3が前記射出用モータ7により背圧を制御
されつつ後退し、加熱シリンダ1の前方側に1ショット
相当分の溶融樹脂が貯えられたことが、前記射出ストロ
ーク検出センサ12の計測情報で確認された時点(計量
完了位置までスクリュー3が後退した時点)で、スクリ
ュー回転が停止される。そして、この後適宜秒時を経た
射出開始タイミング時点に至ると、前記射出用モータ7
が所定方向へ回転駆動され、これによってスクリュー3
が前進駆動されて、加熱シリンダ1前端の前記ノズル2
から溶融樹脂が型締された図示せぬ金型のキャビティ内
に射出・充填される(1次射出行程)。この1次射出行
程の終了後、前記射出用モータ7は、前記射出圧力検出
センサ13による計測情報を参照しているマイコン9に
よる制御の下で、予め設定されている保圧圧力条件を維
持するようフィードバック駆動制御され、これにより金
型内の溶融樹脂に所定時間だけ圧力が加えられることに
なる(保圧行程)。
In the above configuration, during the charging process, the charging motor 5 is rotated in a predetermined direction, and the resin material introduced from the hopper 4 into the rear part of the heating cylinder 1 is kneaded and plasticized by the rotation of the screw 3. At the same time, it is transferred to the front side of the heating cylinder 1 by the screw feeding action of the screw 3. As the molten resin is stored in the front side of the heating cylinder 1 (the front side of the head of the screw 3), the screw 3 moves backward while the back pressure is controlled by the injection motor 7, and moves toward the front side of the heating cylinder 1. At the time when it is confirmed by the measurement information of the injection stroke detection sensor 12 that the molten resin equivalent to one shot has been stored (when the screw 3 has retreated to the metering completion position), the screw rotation is stopped. Then, when the injection start timing is reached after an appropriate period of time, the injection motor 7
is rotationally driven in a predetermined direction, thereby causing the screw 3 to rotate in a predetermined direction.
is driven forward, and the nozzle 2 at the front end of the heating cylinder 1
The molten resin is injected and filled into the cavity of a clamped mold (not shown) (primary injection process). After the primary injection stroke ends, the injection motor 7 maintains the preset holding pressure condition under the control of the microcomputer 9 that refers to the measurement information from the injection pressure detection sensor 13. As a result, pressure is applied to the molten resin in the mold for a predetermined period of time (pressure holding stroke).

【0015】上記した保圧行程の終了は、マイコン9が
自身の時計機能によって判定するようになっている。そ
して、本実施例においては従前とは異なり、保圧行程の
後に直ちにチャージ行程に移行するのではなく、換言す
るなら、例えばスクリュー3に2000kgf/cm2
 程度の保圧圧力(前進方向の負荷圧力)がかかってい
る状態から直ちに50kgf/cm2 程度のチャージ
設定圧力へ移行させるのではなく、保圧行程の終了後に
スクリュー3の強制後退行程を入れ、この後でチャージ
行程に移行させるようにしてある。すなわち、マイコン
9は保圧行程が完了した判断すると、前記射出用モータ
7を射出行程時とは反対方向に回転駆動してスクリュー
3を強制後退させ、前記射出圧力検出センサ13によっ
てスクリュー3への前進方向の負荷圧力が予め設定され
た圧力値まで低下したことが確認される時点まで、この
スクリュー強制後退を実行させるようになっている。
[0015] The end of the above-mentioned pressure holding stroke is determined by the microcomputer 9 using its own clock function. In this embodiment, unlike the previous example, the charging stroke does not proceed immediately after the pressure holding stroke, but in other words, for example, 2000 kgf/cm
Instead of immediately shifting from a state where a holding pressure (load pressure in the forward direction) of about 50 kgf/cm2 is applied to a charge setting pressure of about 50 kgf/cm2, a forced backward stroke of the screw 3 is performed after the holding pressure stroke is completed. It is arranged to move to the charging process later. That is, when the microcomputer 9 determines that the pressure holding stroke is completed, it rotates the injection motor 7 in the opposite direction to that during the injection stroke to forcibly retreat the screw 3, and the injection pressure detection sensor 13 causes the injection pressure detection sensor 13 to This forced retraction of the screw is executed until it is confirmed that the load pressure in the forward direction has decreased to a preset pressure value.

【0016】図2はこの様子を示す説明図で、保圧完了
時点では図示実線位置にあるスクリュー3は、保圧完了
後に先ず同図で1点鎖線で示す位置まで強制後退させら
れる。例えば、保圧圧力設定値が2000kgf/cm
2 で、チャージ圧力設定値が50kgf/cm2 で
あると、1点鎖線の強制後退位置におけるスクリュー3
への負荷圧力は300kgf/cm2 程度であるよう
にされ、この強制後退量は機種にもよるが略5mm程度
以下に相当する。斯様なスクリュー強制後退制御を行な
うと、従前のように保圧行程終了後にスクリューが後退
方向に不定長に跳ね返ることがなく、チャージ開始時点
のスクリュー位置が常に安定することになる。そして、
上記1点鎖線位置からスクリュー3が前述したように回
転駆動されてチャージ行程に移行し、同図で2点鎖線で
示したチャージ完了位置までスクリュー3が後退した時
点でスクリュー回転は停止される。よって、チャージ量
は常に一定に保たれることとなる。
FIG. 2 is an explanatory diagram showing this situation, and the screw 3, which is at the position shown by the solid line at the time of completion of pressure holding, is first forcibly retreated to the position shown by the dashed line in the figure after the completion of pressure holding. For example, the holding pressure setting value is 2000 kgf/cm
2, when the charge pressure setting value is 50 kgf/cm2, the screw 3 at the forced retreat position indicated by the dashed line
The load pressure is set to be about 300 kgf/cm2, and the amount of forced retraction corresponds to about 5 mm or less, although it depends on the model. When such forced screw retraction control is performed, the screw does not bounce an indefinite length in the retraction direction after the end of the pressure holding stroke as in the conventional case, and the screw position at the start of charging is always stable. and,
The screw 3 is driven to rotate as described above from the one-dot chain line position and shifts to the charging stroke, and when the screw 3 retreats to the charging completion position shown by the two-dot chain line in the figure, the screw rotation is stopped. Therefore, the amount of charge is always kept constant.

【0017】図3は上述したスクリュー3の強制後退行
程時にマイコン9で実行される処理フローを示しており
、ステップS1において保圧行程が完了したかどうかが
問われ、YESならステップS2へ進み、NOならステ
ップS1に戻る。ステップS2ではスクリュー3の強制
後退が実行され、ステップS3へ進む。ステップS3に
おいては、スクリュー3への前進方向負荷圧力が所定値
以下となったか否かが問われ、NOならステップS2に
戻り、YESなら当該強制後退実行処理は終了する(別
処理へ抜け出る)。
FIG. 3 shows a processing flow executed by the microcomputer 9 during the above-mentioned forced backward stroke of the screw 3. In step S1, it is asked whether the pressure holding stroke has been completed, and if YES, the process advances to step S2. If NO, return to step S1. In step S2, forced retraction of the screw 3 is executed, and the process proceeds to step S3. In step S3, it is asked whether the forward direction load pressure on the screw 3 has become below a predetermined value. If NO, the process returns to step S2, and if YES, the forced retreat execution process ends (exits to another process).

【0018】[0018]

【発明の効果】以上のように本発明によれば、射出駆動
源として電気サーボモータを用いた射出成形機において
、保圧圧力を高く且つチャージ圧力を低く設定した場合
でもスクリューの跳ね返りが確実に防止でき、チャージ
量が安定する射出成形機の制御方法が提供でき、その価
値は大きい。
[Effects of the Invention] As described above, according to the present invention, in an injection molding machine that uses an electric servo motor as an injection drive source, the rebound of the screw can be reliably prevented even when the holding pressure is set high and the charging pressure is set low. It is possible to provide a control method for an injection molding machine that can prevent this problem and stabilize the amount of charge, and its value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例による射出成形機の要部構成を
簡略化して示す説明図である。
FIG. 1 is an explanatory diagram showing a simplified configuration of main parts of an injection molding machine according to an embodiment of the present invention.

【図2】本発明の実施例によるスクリューの強制後退動
作を示す動作説明図である。
FIG. 2 is an operation explanatory diagram showing a forced retraction operation of the screw according to the embodiment of the present invention.

【図3】本発明の実施例によるスクリューの強制後退動
作時にマイクロコンピュータで実行される処理フローを
示す説明図である。
FIG. 3 is an explanatory diagram showing a processing flow executed by a microcomputer during a forced retraction operation of a screw according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1  加熱シリンダ 2  ノズル 3  スクリュー 5  チャージ用電気サーボモータ(チャージ用モータ
)7  射出用電気サーボモータ(射出用モータ)9 
 マイクロコンピュータ(マイコン)12  射出スト
ローク検出センサ 13  射出圧力検出センサ
1 Heating cylinder 2 Nozzle 3 Screw 5 Electric servo motor for charging (charging motor) 7 Electric servo motor for injection (injection motor) 9
Microcomputer 12 Injection stroke detection sensor 13 Injection pressure detection sensor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  加熱シリンダ内に配設されたスクリュ
ーの前後進動作を電気サーボモータで行なう射出成形機
の制御方法において、保圧行程を含む射出行程の完了後
に、前記電気サーボモータによって前記スクリューを所
定量だけ強制後退させ、然る後、チャージ行程に移行さ
せるようにしたことを特徴とする射出成形機の制御方法
1. A method for controlling an injection molding machine in which a screw disposed in a heating cylinder is moved back and forth by an electric servo motor, wherein after the completion of an injection stroke including a pressure holding stroke, the electric servo motor moves the screw 1. A method for controlling an injection molding machine, comprising forcibly retracting the injection molding machine by a predetermined amount, and then transitioning to a charging process.
【請求項2】  請求項1記載において、前記したスク
リューの強制後退は、スクリューに対する前進方向への
負荷圧力が所定値以下となるまで行なわれることを特徴
とする射出成形機の制御方法。
2. The method of controlling an injection molding machine according to claim 1, wherein the forcible retraction of the screw is performed until the load pressure applied to the screw in the forward direction becomes equal to or less than a predetermined value.
JP1266491A 1991-01-11 1991-01-11 Control method of injection molding machine Expired - Fee Related JP2650790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1266491A JP2650790B2 (en) 1991-01-11 1991-01-11 Control method of injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1266491A JP2650790B2 (en) 1991-01-11 1991-01-11 Control method of injection molding machine

Publications (2)

Publication Number Publication Date
JPH04241918A true JPH04241918A (en) 1992-08-28
JP2650790B2 JP2650790B2 (en) 1997-09-03

Family

ID=11811636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1266491A Expired - Fee Related JP2650790B2 (en) 1991-01-11 1991-01-11 Control method of injection molding machine

Country Status (1)

Country Link
JP (1) JP2650790B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0974443A2 (en) * 1998-07-22 2000-01-26 Fanuc Ltd Injection molding machine controller
SG82618A1 (en) * 1998-06-17 2001-08-21 Sumitomo Heavy Industries Depressurization method in plasticization and metering process for motor-driven injection molding machine
CN104960139A (en) * 2015-04-08 2015-10-07 广东伟达塑机工业有限公司 Die charging mechanism and charging method for oblique injection molding machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG82618A1 (en) * 1998-06-17 2001-08-21 Sumitomo Heavy Industries Depressurization method in plasticization and metering process for motor-driven injection molding machine
US6340439B1 (en) 1998-06-17 2002-01-22 Sumitomo Heavy Industries, Ltd. Depressurization method in plasticization and metering process for a motor-driven injection molding machine
KR100473928B1 (en) * 1998-06-17 2005-03-07 스미도모쥬기가이고교 가부시키가이샤 A Motor-Driven Injection Molding Machine and Depressurization Method In Plasticization And Metering Process For the same
EP0974443A2 (en) * 1998-07-22 2000-01-26 Fanuc Ltd Injection molding machine controller
EP0974443A3 (en) * 1998-07-22 2000-09-20 Fanuc Ltd Injection molding machine controller
CN104960139A (en) * 2015-04-08 2015-10-07 广东伟达塑机工业有限公司 Die charging mechanism and charging method for oblique injection molding machine

Also Published As

Publication number Publication date
JP2650790B2 (en) 1997-09-03

Similar Documents

Publication Publication Date Title
US4950144A (en) Nozzle touch apparatus in an injection molding machine
JP3649714B2 (en) Control device for injection molding machine
JPH0455569B2 (en)
JPH04241918A (en) Control method for injection molding machine
JP3830335B2 (en) Screw control method for injection molding machine
JP2004255588A (en) Method for controlling preplastication type injection molding machine
JP4297277B2 (en) Injection molding method
JPH0477224A (en) Injection molding method
JP2627047B2 (en) Injection molding machine molding condition setting method
JP3292629B2 (en) Injection molding machine metering control device
JP5410663B2 (en) Injection molding machine
JPH02252517A (en) Purging method for injection molding machine
JP3967306B2 (en) Control method of injection molding machine
JP2628753B2 (en) Screw retreat speed control device for injection molding machine
JPH04263917A (en) Measuring method of back-flow rate in injection molding machine
JP3008366B2 (en) Injection molding machine
JP3746992B2 (en) Injection press release method of injection molding machine
JP3037932B2 (en) Control method of injection molding machine
JPH09254220A (en) Injection control method of electromotive injection molding machine
JP3359142B2 (en) Check ring opening and closing device in injection molding machine
JP3312019B2 (en) Injection equipment
JP4502669B2 (en) Injection molding machine and control method thereof
JPH03118130A (en) Method of controlling injection molding machine
JP4443373B2 (en) Injection molding machine
JP2001191374A (en) Method for measurement of screw type injection unit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees