JPH0423833B2 - - Google Patents

Info

Publication number
JPH0423833B2
JPH0423833B2 JP58016738A JP1673883A JPH0423833B2 JP H0423833 B2 JPH0423833 B2 JP H0423833B2 JP 58016738 A JP58016738 A JP 58016738A JP 1673883 A JP1673883 A JP 1673883A JP H0423833 B2 JPH0423833 B2 JP H0423833B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
gas
document reading
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58016738A
Other languages
Japanese (ja)
Other versions
JPS59143372A (en
Inventor
Mario Fuse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP58016738A priority Critical patent/JPS59143372A/en
Publication of JPS59143372A publication Critical patent/JPS59143372A/en
Publication of JPH0423833B2 publication Critical patent/JPH0423833B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings

Description

【発明の詳細な説明】 本発明は原稿読取装置およびその製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a document reading device and a manufacturing method thereof.

一般に光信号を電気信号に変換する光電変換素
子として用いられている素子の一つに長尺薄膜原
稿読取素子がある。
One type of element that is generally used as a photoelectric conversion element that converts an optical signal into an electrical signal is a long thin film original reading element.

第1図は従来の長尺薄膜原稿読取素子1の断面
図である。
FIG. 1 is a sectional view of a conventional long thin film original reading element 1. As shown in FIG.

第1図に示すように原稿読取素子1は絶縁性基
板2上に下部電極3を形成し、この電極の一部分
に重ねて水素化したアモルフアスシリコン膜4を
形成し、さらにこの上に上部透明電極5を設けた
構造となつている。
As shown in FIG. 1, the document reading element 1 includes a lower electrode 3 formed on an insulating substrate 2, a hydrogenated amorphous silicon film 4 overlaid on a portion of this electrode, and an upper transparent It has a structure in which an electrode 5 is provided.

絶縁性基板2としては、セラミツク、ガラス、
プラスチツク等が用いられているが、該基板2は
機械的強度が強く、当該原稿読取素子1の製造工
程において加わえられる温度に対して軟化せず、
しかも絶縁性が高いことが必要である。次に下部
電極3としては、クロム(Cr)、ニツケル(Ni)、
白金(Pt)、パラジウム(Pd)、チタン(Ti)、モ
リブデン(Mo)、およびタンタル(Ta)等の金
属が用いられている。この下部電極3は、例えば
上記金属を基板1に厚さ500Å乃至5000Åで着膜
し、フオトリソグラフイとエツチングによつて適
宜の大きさ、形状となるように形成する。また、
水素化したアモルフアスシリコン膜4(水素を含
まないノンドープを含む)はホウ素Bなど周期律
表第3に属する元素をドープしたP型のシリコ
ン膜などが用いられる。このアモルフアスシリコ
ン膜4の形成方法としては、例えばプラズマ
CVDによつて厚さ1μm程度に堆積する。さらに、
上部透明電極5としては、ITO膜(In2O3
SmO2)などが用いられ、この上部透明電極5
は、例えば反応性蒸着法あるいは反応性スパツタ
リング法などによつて、厚さ5000Å乃至2000Å程
度に形成する。
As the insulating substrate 2, ceramic, glass,
Although plastic or the like is used, the substrate 2 has strong mechanical strength and does not soften under the temperature applied during the manufacturing process of the document reading element 1.
Moreover, it is necessary to have high insulation properties. Next, as the lower electrode 3, chromium (Cr), nickel (Ni),
Metals such as platinum (Pt), palladium (Pd), titanium (Ti), molybdenum (Mo), and tantalum (Ta) are used. The lower electrode 3 is formed, for example, by depositing the above-mentioned metal on the substrate 1 to a thickness of 500 Å to 5000 Å, and by photolithography and etching to have an appropriate size and shape. Also,
As the hydrogenated amorphous silicon film 4 (including non-doped silicon that does not contain hydrogen), a P-type silicon film doped with an element belonging to the third group of the periodic table, such as boron B, is used. As a method for forming this amorphous silicon film 4, for example, plasma
Deposited to a thickness of approximately 1 μm by CVD. moreover,
As the upper transparent electrode 5, an ITO film (In 2 O 3 +
SmO 2 ) etc. are used, and this upper transparent electrode 5
is formed to a thickness of about 5000 Å to 2000 Å by, for example, a reactive vapor deposition method or a reactive sputtering method.

上述した積層構造を有する原稿読取素子1は、
明電流と暗電流の比(以下、明/暗比という)が
103以上という光電変換特性および光応答速度が
1ms以下という光応答性など優れた素子特性を有
している。
The document reading element 1 having the above-described laminated structure has the following features:
The ratio of bright current to dark current (hereinafter referred to as bright/dark ratio) is
Photoelectric conversion characteristics and photoresponse speed of 10 3 or more
It has excellent device characteristics such as photoresponsiveness of 1 ms or less.

なお、前記暗電流は水素化したアモルフアスシ
リコン膜4と上部透明電極5との界面に形成され
たエレクトロンバリア層(図示せず)によつて抑
制されており、該エレクトロンバリア層は明/暗
比の優劣の決定要因の一つとなつている。
Note that the dark current is suppressed by an electron barrier layer (not shown) formed at the interface between the hydrogenated amorphous silicon film 4 and the upper transparent electrode 5, and the electron barrier layer has bright/dark characteristics. This is one of the determining factors for the superiority or inferiority of the ratio.

このような原稿読取素子1の性能は、該素子1
を大気中で1時間250℃に加熱した場合、あるい
は2気圧の大気中で30分間120℃に加熱した場合
であつても劣化の生じない耐熱性および耐圧性を
有している。
The performance of such document reading element 1 is as follows.
It has heat and pressure resistance that does not deteriorate even when heated to 250°C for 1 hour in the atmosphere or 120°C for 30 minutes in 2 atm atmosphere.

しかし、当該原稿読取素子1がフアクシミリ等
の画像情報処理装置に実際に組み込まれた場合、
光を受光する上部透明電極5の汚損あるいは該素
子1に対する機械的接触および摩耗によつて上記
性能が劣化するという問題があつた。また、該素
子1に水分が付着することによつて絶縁性が低下
するという問題があつた。
However, when the document reading element 1 is actually incorporated into an image information processing device such as a facsimile,
There is a problem in that the above-mentioned performance deteriorates due to contamination of the upper transparent electrode 5 that receives light or mechanical contact and wear to the element 1. Further, there was a problem in that the insulation property deteriorated due to moisture adhering to the element 1.

本発明は上記実情に鑑みてなされたもので、原
稿読取素子などの光電変換素子の性能の劣化を防
ぐとともに、絶縁性を保持する光電変換素子およ
びその製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a photoelectric conversion element that prevents deterioration of the performance of a photoelectric conversion element such as a document reading element, and maintains insulation properties, and a method for manufacturing the same.

そこで、本発明では光電変換素子に対してシリ
コンオキシナイトライド膜による保護膜を、プラ
ズマCVD法によりシランガスと構成元素として
窒素を含むガスと構成元素として酸素を含むガス
の混合ガス雰囲気中で形成する。
Therefore, in the present invention, a protective film made of a silicon oxynitride film is formed on a photoelectric conversion element by a plasma CVD method in a mixed gas atmosphere of silane gas, a gas containing nitrogen as a constituent element, and a gas containing oxygen as a constituent element. .

以下、本発明の一実施例を添付図面を参照して
詳細に説明する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the accompanying drawings.

第2図は本発明に係る光電変換素子の製造方法
によつて製造した原稿読取素子の断面図である。
なお、第1図と同様の機能を果たす部分について
は同一の符号が用いられている。
FIG. 2 is a sectional view of a document reading element manufactured by the method for manufacturing a photoelectric conversion element according to the present invention.
Note that the same reference numerals are used for parts that perform the same functions as in FIG. 1.

第2図に示すように原稿読取素子1は、ガラス
基板2上に下部電極3を形成し、この電極の一部
に重ねて水素化したアモルフアスシリコン膜4お
よび上部透明電極5を積層し、さらに基板2の図
示しない下部電極3および下部透明電極5の接続
端子(引出線)の部分を除く全体をシリコンオキ
シナイトライド膜6で覆つた構造となつている。
As shown in FIG. 2, the document reading element 1 includes a lower electrode 3 formed on a glass substrate 2, and a hydrogenated amorphous silicon film 4 and an upper transparent electrode 5 stacked on a part of this electrode. Furthermore, the structure is such that the entire substrate 2 except for connection terminals (lead wires) of the lower electrode 3 and the lower transparent electrode 5 (not shown) is covered with a silicon oxynitride film 6.

次に当該原稿読取素子1の製造方法を詳細に説
明する。
Next, a method for manufacturing the document reading element 1 will be described in detail.

まず、ガラス基板2の上全面にわたつてクロム
を厚さ3000Åで堆積し、フオトエツチングによつ
て適宜の形状、大きさの下部電極3を形成する。
アモルフアスシリコン膜4はシランガスをグロー
放電によつて解離し、水素化したアモルフアスシ
リコンを厚さ約1μmで堆積して形成する。また、
上部透明電極5はアルゴンおよび酸素の雰囲気中
でDCスパツタリングによりITO膜を厚さ約1500
Åに堆積したものである。さらに、下部電極3お
よび上部透明電極5の外部接続端子(図示せず)
の部分をメタルマスクで覆う。
First, chromium is deposited to a thickness of 3000 Å over the entire surface of the glass substrate 2, and the lower electrode 3 of an appropriate shape and size is formed by photo-etching.
The amorphous silicon film 4 is formed by dissociating silane gas by glow discharge and depositing hydrogenated amorphous silicon to a thickness of about 1 μm. Also,
The upper transparent electrode 5 is made of an ITO film with a thickness of about 1500 mm by DC sputtering in an argon and oxygen atmosphere.
It was deposited in Å. Furthermore, external connection terminals (not shown) of the lower electrode 3 and the upper transparent electrode 5
Cover the area with a metal mask.

このようにして形成した原稿読取素子1にシリ
コンオキシナイトライド膜6を形成するが、その
方法としては、プラズマCVD法(化学蒸着)法、
常圧CVD法、あるいはスパツタリング法などが
あるが、当該原稿読取素子1などの光電交換素子
に用いられている水素化されたアモルフアスシリ
コン膜は、400℃以上に加熱されるとシリコン原
子と結合していた水素の脱離反応を生じるため、
パシベーシヨン膜着膜時に400℃以下の低温プロ
セス処理が可能なプラズマCVD法が最も望まし
い。
The silicon oxynitride film 6 is formed on the document reading element 1 formed in this manner, using a plasma CVD (chemical vapor deposition) method,
There are atmospheric pressure CVD methods, sputtering methods, etc., but the hydrogenated amorphous silicon film used in photoelectric exchange elements such as the original reading element 1 bonds with silicon atoms when heated to 400°C or higher. This causes an elimination reaction of hydrogen, which was
The most desirable method is the plasma CVD method, which allows low-temperature processing of 400°C or less when depositing the passivation film.

このプラズマCVD法は、反応室内に薄膜を形
成する基板を置き、該反応室内に膜形成に必要な
反応ガスおよび必要に応じて該反応ガスを適宜に
循環させるキヤリアガスを導入し、さらに適宜の
直流あるいは交流電圧によつてグロー放電を生じ
させ、該反応ガスの解離およびイオン化を引き起
こすことによつて該解離あるいはイオン化した反
応ガスを基板に着膜させるものである。
In this plasma CVD method, a substrate on which a thin film is to be formed is placed in a reaction chamber, a reaction gas necessary for film formation and a carrier gas for circulating the reaction gas as necessary are introduced into the reaction chamber, and an appropriate direct current is introduced into the reaction chamber. Alternatively, a glow discharge is generated using an alternating current voltage to cause dissociation and ionization of the reactive gas, thereby depositing the dissociated or ionized reactive gas on the substrate.

そこで、上記原稿読取素子1を第3図に示す反
応室10内の電極板14の上に載置する。この電
極板14に対向して配置された電極板13との距
離は40mmであり、両量電極板間には電源15から
周波数13.6MHz、出力100乃至200Wの高周波電
圧が印加されるようになつている。また、基板1
の温度は200乃至300℃、反応室10内の圧力は
0.5乃至1.5Torrとする。さらに、この反応室10
内に、シリコンオキシナイトライド膜6の形成に
必要な反応性ガスとしてシラン(SiH4)ガスと
亜酸化窒素(N2O)ガスとアンモニア(NH3
との混合ガスが吸気口11から矢印G1のように
流入し、排気口12から矢印G2のように流出す
るようになつている。なお、通常吸気口11は電
極板13と共通になつていて電極板にあけられた
多数の吸気口から反応ガスが反応室10内に流入
する。
Therefore, the document reading element 1 is placed on the electrode plate 14 in the reaction chamber 10 shown in FIG. The distance between this electrode plate 14 and the electrode plate 13 placed opposite to it is 40 mm, and a high frequency voltage with a frequency of 13.6 MHz and an output of 100 to 200 W is applied from a power source 15 between both electrode plates. ing. In addition, substrate 1
The temperature is 200 to 300℃, and the pressure inside the reaction chamber 10 is
Set to 0.5 to 1.5 Torr. Furthermore, this reaction chamber 10
Inside, silane (SiH 4 ) gas, nitrous oxide (N 2 O) gas, and ammonia (NH 3 ) are used as reactive gases necessary for forming the silicon oxynitride film 6.
The mixed gas flows in from the intake port 11 as shown by the arrow G1 and flows out from the exhaust port 12 as shown by the arrow G2. Incidentally, the intake port 11 is normally shared with the electrode plate 13, and the reaction gas flows into the reaction chamber 10 from a large number of intake ports provided in the electrode plate.

ところで、プラズマCVD法においては反応性ガ
スの多くは解離エネルギーがイオンエネ ルギー
よりも小さいので、反応を生じさせる活性種(ラ
ジカル)のうちイオンの生成速度は遅く、さら
に、正イオンは電子と再結合してしまうのでプラ
ズマ中には中性ラジカル(水素ラジカル)が多く
存在することになる。すなわち、イオンを除く活
性種は寿命が長く、プラズマCVD法による膜形
成時にはシランガスに含まれる水素ラジカルがシ
リコンオキシナイトライド膜成長の初期段階で上
部透明電極5(ITO膜)に変質を生じさせ、該透
明電極5とアモルフアスシリコン膜4との接合性
が劣化し、その結果として暗電流の増加による
明/暗比の大幅な低下の原因となる。
By the way, in the plasma CVD method, the dissociation energy of many reactive gases is lower than the ion energy, so the generation rate of ions among the active species (radicals) that cause reactions is slow, and furthermore, positive ions are difficult to recombine with electrons. Therefore, there are many neutral radicals (hydrogen radicals) in the plasma. That is, active species other than ions have a long life, and when forming a film by plasma CVD, hydrogen radicals contained in silane gas cause alteration of the upper transparent electrode 5 (ITO film) at the initial stage of silicon oxynitride film growth. The bonding property between the transparent electrode 5 and the amorphous silicon film 4 deteriorates, resulting in an increase in dark current and a significant decrease in the bright/dark ratio.

このため、本実施例では亜酸化窒素ガスとシラ
ンガスとの流量比を20対1乃至80対1として亜酸
化窒素ガスはシランガスに比べて過剰に使用し
た。これは、シランガスに含まれる水素と亜酸化
窒素ガスに含まれる酸素とを化合して水にするこ
とによつて、余分な水素ラジカルがITO膜を変質
させるのを防ぐようにした。また、シランとアン
モニアとの流量比は1対1乃至1対10とし、トー
タルガス流量は毎分200乃至300ccとする。
Therefore, in this example, the flow ratio of nitrous oxide gas to silane gas was set to 20:1 to 80:1, and nitrous oxide gas was used in excess compared to silane gas. This was done by combining hydrogen contained in silane gas and oxygen contained in nitrous oxide gas to form water, thereby preventing excess hydrogen radicals from deteriorating the ITO film. Further, the flow rate ratio of silane and ammonia is set to 1:1 to 1:10, and the total gas flow rate is set to 200 to 300 cc per minute.

なお、本実施例で使用したシランガスと亜酸化
窒素ガスとアンモニアとの混合ガスに、さらにキ
ヤリアガスとしてアルゴン(Ar)ガスあるいは
ヘリウム(He)等の不活性気体を加えてもよい。
Note that an inert gas such as argon (Ar) gas or helium (He) may be further added as a carrier gas to the mixed gas of silane gas, nitrous oxide gas, and ammonia used in this example.

以上のような温度、圧力、電圧、および混合ガ
スの条件の下にシリコンオキシナイトライド膜6
を形成した。このシリコンオキシナイトライド膜
6で被覆した原稿読取素子1に対し、120℃、
2atmの条件によるプレツシヤークツク試験を行
なつたが、本発明によるシリコンオキシナイトラ
イドのパツシベーシヨン膜で被覆した原稿読取素
子1は試験前後で暗電流はほとんど上昇せず、
明/暗比3000という高い値を維持することができ
た。
The silicon oxynitride film 6 was formed under the above conditions of temperature, pressure, voltage, and mixed gas.
was formed. The document reading element 1 coated with this silicon oxynitride film 6 was heated at 120°C.
A pressure test was conducted under the conditions of 2 atm, and the dark current of the document reading element 1 coated with the silicon oxynitride passivation film according to the present invention hardly increased before and after the test.
We were able to maintain a high light/dark ratio of 3000.

なお、また、シリコンオキシナイトライド膜は
水分およびアルカリイオンの阻止性が高いうえ、
耐熱温度が高いため、水分やアルカリイオンの侵
入によつて性能の劣化を生じやすい水素化アモル
フアスシリコンを良好に保護することができ、信
頼性を高める事ができる。特に受光面にITO膜の
透明電極を用いた素子に有効である。
Additionally, the silicon oxynitride film has high water and alkali ion blocking properties, and
Since it has a high heat resistance, hydrogenated amorphous silicon, which tends to deteriorate in performance due to moisture and alkali ions entering, can be well protected and its reliability can be improved. It is particularly effective for devices that use transparent electrodes made of ITO film on the light-receiving surface.

以上、説明したように本発明によれば、原稿読
取素子あるいは太陽電池等の光電変換素子をシリ
コンオキシナイトライド膜で被覆することによつ
て、該素子の諸特性の劣化および耐熱性、耐圧性
の低下を生ずることなく光電変換素子を製造でき
る。
As described above, according to the present invention, by coating a photoelectric conversion element such as a document reading element or a solar cell with a silicon oxynitride film, deterioration of various characteristics of the element and heat resistance and pressure resistance can be improved. A photoelectric conversion element can be manufactured without causing a decrease in .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の原稿読取素子の断面図、第2図
は本発明に係る光電変換素子の製造方法によつて
製造した原稿読取素子の断面図、第3図は本発明
に係る光電変換素子の製造方法の一工程であるパ
ツシベーシヨン膜形成の工程を示す斜視図であ
る。 1……原稿読取素子、2……絶縁性(ガラス)
基板、3……下部電極、4……アモルフアスシリ
コン膜、5……上部透明電極、6……シリコンオ
キシナイトライド膜、10……反応室、11……
吸気口、12……排気口、13,14……電極
板、15……電源。
FIG. 1 is a cross-sectional view of a conventional document reading element, FIG. 2 is a cross-sectional view of a document reading element manufactured by the method of manufacturing a photoelectric conversion element according to the present invention, and FIG. 3 is a cross-sectional view of a photoelectric conversion element according to the present invention. FIG. 3 is a perspective view showing a step of forming a passivation film, which is one step of the manufacturing method. 1... Original reading element, 2... Insulating (glass)
Substrate, 3... Lower electrode, 4... Amorphous silicon film, 5... Upper transparent electrode, 6... Silicon oxynitride film, 10... Reaction chamber, 11...
Intake port, 12...Exhaust port, 13, 14...Electrode plate, 15...Power source.

Claims (1)

【特許請求の範囲】 1 基板上に下部電極、光電変換層としての水素
化アモルフアスシリコン層、および上部透明電極
を順次積層してなるサンドイツチ形の光電変換部
と、 この光電変換部を被覆する保護膜としてのシリ
コンオキシナイトライド膜とを具備してなる原稿
読取り装置。 2 基板上に下部電極、光電変換層としての水素
化アモルフアスシリコン層、および上部透明電極
を順次積層し、サンドイツチ形の光電変換部を形
成する素子形成工程と、 この上層にプラズマCVD法によりシリコンオ
キシナイトライド膜を積層し前記光電変換部を被
覆する保護膜形成工程とを含むことを特徴とする
原稿読取り装置の製造方法。 3 前記保護膜形成工程は、 反応ガスとして、 シランガスと、 構成元素として窒素を含有するガスと、 構成元素として酸素を含有するガス とを化学量論比よりも酸素過剰となるように混合
してなるガスを用いたプラズマCVD工程である
ことを特徴とする特許請求の範囲第2項記載の原
稿読取り装置の製造方法。
[Scope of Claims] 1. A sandwich-shaped photoelectric conversion section formed by sequentially laminating a lower electrode, a hydrogenated amorphous silicon layer as a photoelectric conversion layer, and an upper transparent electrode on a substrate, and a method for covering this photoelectric conversion section. A document reading device comprising a silicon oxynitride film as a protective film. 2. An element formation step in which a lower electrode, a hydrogenated amorphous silicon layer as a photoelectric conversion layer, and an upper transparent electrode are sequentially laminated on a substrate to form a sandwich-shaped photoelectric conversion section, and silicon is deposited on this upper layer by plasma CVD. A method for manufacturing a document reading device, comprising the step of forming a protective film by laminating an oxynitride film to cover the photoelectric conversion section. 3 In the protective film forming step, silane gas, a gas containing nitrogen as a constituent element, and a gas containing oxygen as a constituent element are mixed as a reactive gas so that oxygen is in excess of the stoichiometric ratio. 3. The method for manufacturing a document reading device according to claim 2, wherein the method is a plasma CVD process using a gas such as:
JP58016738A 1983-02-03 1983-02-03 Photoelectric conversion element and manufacture thereof Granted JPS59143372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58016738A JPS59143372A (en) 1983-02-03 1983-02-03 Photoelectric conversion element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58016738A JPS59143372A (en) 1983-02-03 1983-02-03 Photoelectric conversion element and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS59143372A JPS59143372A (en) 1984-08-16
JPH0423833B2 true JPH0423833B2 (en) 1992-04-23

Family

ID=11924604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58016738A Granted JPS59143372A (en) 1983-02-03 1983-02-03 Photoelectric conversion element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS59143372A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3139031B2 (en) * 1991-02-21 2001-02-26 日本板硝子株式会社 Heat shielding glass
JP5409007B2 (en) * 2005-11-08 2014-02-05 エルジー・エレクトロニクス・インコーポレーテッド High efficiency solar cell and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5143090A (en) * 1974-10-09 1976-04-13 Sony Corp

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5143090A (en) * 1974-10-09 1976-04-13 Sony Corp

Also Published As

Publication number Publication date
JPS59143372A (en) 1984-08-16

Similar Documents

Publication Publication Date Title
EP0117980B1 (en) Process for forming passivation film on photoelectric conversion device and the device produced thereby
EP1320134B1 (en) Photovoltaic device and manufacturing method thereof
US4196438A (en) Article and device having an amorphous silicon containing a halogen and method of fabrication
EP0475666B1 (en) Method of Manufacturing an Amorphous Silicon Solar Cell
KR100336252B1 (en) Microcrystalline Semiconductor Film Manufacturing Method
US4587171A (en) Process for forming passivation film on photoelectric conversion device and the device produced thereby
KR100659044B1 (en) Solar cell with zinc oxide thin film and fabricating method thereof
US4781765A (en) Photovoltaic device
US4358782A (en) Semiconductor device
JPH0423833B2 (en)
JPS61159771A (en) Photovoltaic device
JPH01201968A (en) Photoelectric conversion device
JPS60210825A (en) Solar battery
JPH0312973A (en) Amorphous thin film solar cell
JPH10200143A (en) Amorphous silicon solar battery
JP3649948B2 (en) Photovoltaic device and manufacturing method thereof
JPH05175529A (en) Amorphous silicon solar cell
JP2000243987A (en) Solar cell device and its manufacture
JP2815688B2 (en) Manufacturing method of thin film solar cell
JPS6258675B2 (en)
JPH06181330A (en) Amorphous semiconductor solar cell and manufacture thereof
EP0465026B1 (en) Method of manufactoring a photoelectric device made of hydrogenated amorphous silicon
JPH04369870A (en) Photovoltaic device and manufacture thereof
JP2014007302A (en) Method of manufacturing interface passivation structure and solar cell
GB2067834A (en) Semiconductor Device