JPH04236395A - Production method of nuclear fuel pellet - Google Patents

Production method of nuclear fuel pellet

Info

Publication number
JPH04236395A
JPH04236395A JP3003831A JP383191A JPH04236395A JP H04236395 A JPH04236395 A JP H04236395A JP 3003831 A JP3003831 A JP 3003831A JP 383191 A JP383191 A JP 383191A JP H04236395 A JPH04236395 A JP H04236395A
Authority
JP
Japan
Prior art keywords
molybdenum
nuclear fuel
oxide
dioxide
uranium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3003831A
Other languages
Japanese (ja)
Inventor
Hiroshi Obara
小原 浩史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Nuclear Fuel Development Co Ltd
Original Assignee
Nippon Nuclear Fuel Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Nuclear Fuel Development Co Ltd filed Critical Nippon Nuclear Fuel Development Co Ltd
Priority to JP3003831A priority Critical patent/JPH04236395A/en
Publication of JPH04236395A publication Critical patent/JPH04236395A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To contrive the prevention of stress corrosion cracking of a coated tube by mixing nuclear fuel powder containing a mixture of uranium oxide or uranium dioxide and plutonium dioxide with molybdenum powder to compress and mold and reducing it after sintering. CONSTITUTION:Nuclear fuel powder containing a mixture oxide of uranium oxide or uranium dioxide and plutonium dioxide is mixed with molybdenum powder to compress and mold and sintered in a reducing atmosphere. It is annealed in an oxidizing atmosphere and molybdenum is made oxide of a low melting point to continuously allow it to exist in a grain boundary. Next it is annealed in the reducing atmosphere and molybdenum oxide is reduced to metal molybdenum, which is deposited in the grain boundary. Iodine in a fission product is absorbed by deposited metal molybdenum and the stress corrosion cracking of a coated tube is prevented to improve the heat conductivity of pellets, and the temperature is lowered.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】[発明の目的][Object of the invention]

【0002】0002

【産業上の利用分野】本発明は、核燃料ペレットの製造
方法に関わり、さらに詳しくは核燃料ペレットの熱伝導
度低下や被覆管の応力腐食割れを抑制することのできる
核燃料ペレットの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing nuclear fuel pellets, and more particularly to a method for producing nuclear fuel pellets that can suppress a decrease in thermal conductivity of nuclear fuel pellets and suppress stress corrosion cracking of cladding tubes.

【0003】0003

【従来の技術】軽水炉の核燃料要素は、酸化物系の核燃
料ペレットをジルコニウム合金製被覆管内に装填し、上
下両端を端栓で密封して構成されている。図5に従来の
核燃料要素の概念図を示す。図5において、ジルコニウ
ム合金製被覆管4内には、二酸化ウランの核燃料ペレッ
ト5が装填され、被覆管4の両端は上部端栓6および下
部端栓7によって封止されている。また核燃料ペレット
5の一端は管内のプレナム8内に配置されたスプリング
9によって押さえられると共に、押圧面にゲッター10
が設けられている。なお、11はペレット5と被覆管4
の内周面とのギャップである。
2. Description of the Related Art A nuclear fuel element for a light water reactor is constructed by loading oxide-based nuclear fuel pellets into a zirconium alloy cladding tube and sealing both upper and lower ends with end plugs. FIG. 5 shows a conceptual diagram of a conventional nuclear fuel element. In FIG. 5, uranium dioxide nuclear fuel pellets 5 are loaded into a zirconium alloy cladding tube 4, and both ends of the cladding tube 4 are sealed with an upper end plug 6 and a lower end plug 7. Further, one end of the nuclear fuel pellet 5 is pressed by a spring 9 arranged in a plenum 8 inside the tube, and a getter 10 is placed on the pressing surface.
is provided. In addition, 11 indicates the pellet 5 and the cladding tube 4.
This is the gap between the inner peripheral surface of the

【0004】このように構成された核燃料要素を原子炉
内に装荷し原子炉を稼働させると、核燃料ペレットは核
分裂によって発熱する。このとき核燃料ペレットは熱伝
導が良好でないために高温となり、同時に大きな熱膨張
を呈する。そのため被覆管とペレットが接触し、ペレッ
ト・被覆管機械的相互作用(PCMI)が発生する。ま
た、核燃料ペレット内には種々の核分裂生成物が発生す
る。これらの核分裂生成物のうちヨウ素等がペレット外
へ放出され、ジルコニウム合金製被覆管内面と接触する
と、前記のPCMIの下で被覆管に応力腐食割れを発生
させ、核燃料要素としての使用ができなくなるという問
題がある。
[0004] When a nuclear fuel element configured as described above is loaded into a nuclear reactor and the reactor is operated, the nuclear fuel pellets generate heat due to nuclear fission. At this time, the nuclear fuel pellets have poor thermal conductivity, so they reach a high temperature and at the same time exhibit large thermal expansion. Therefore, the cladding tube and the pellet come into contact, and pellet-cladding mechanical interaction (PCMI) occurs. Furthermore, various fission products are generated within the nuclear fuel pellet. When iodine and other fission products are released outside the pellet and come into contact with the inner surface of the zirconium alloy cladding tube, stress corrosion cracking occurs in the cladding tube under the aforementioned PCMI, making it impossible to use it as a nuclear fuel element. There is a problem.

【0005】この問題を解決するための技術としては、
被覆管内面に純ジルコニウム金属層を冶金接合するもの
が知られている(特開昭51−69795号公報)。ま
た、ヨウ素のゲッターとなる金属モリブデンを核燃料ペ
レット中に分散させ、被覆管の応力腐食割れを低減する
方法が知られている(特開昭56−14187号公報)
。また、PCMIやペレットからの核分裂生成ガス放出
を低減するために、原子炉の出力を低く抑え、核燃料ペ
レットの温度を下げる手段もとられている。
[0005] As a technique for solving this problem,
A method is known in which a pure zirconium metal layer is metallurgically bonded to the inner surface of a cladding tube (Japanese Unexamined Patent Publication No. 1983-69795). Furthermore, a method is known in which metal molybdenum, which serves as a getter for iodine, is dispersed in nuclear fuel pellets to reduce stress corrosion cracking of cladding tubes (Japanese Patent Laid-Open No. 14187/1987).
. Furthermore, in order to reduce the release of fission product gases from PCMI and pellets, measures are being taken to keep the output of the nuclear reactor low and to lower the temperature of the nuclear fuel pellets.

【0006】しかしながら、純ジルコニウム金属層を内
面に冶金接合した被覆管を用いた核燃料要素でも、核燃
料ペレットから放出された化学的に活性な核分裂生成物
が純ジルコニウム金属層に移行し、この純ジルコニウム
層を脆化させ、被覆管に割れを発生させることがある。 また、金属モリブデンを核燃料ペレット中に分散させる
方法では、ペレット内で生成したヨウ素がモリブデンと
接触しないでペレット外へ放出することもある。また、
原子炉出力を低く抑える方法は発電コストを上昇させる
ため望ましくない。
However, even in nuclear fuel elements using a cladding tube with a pure zirconium metal layer metallurgically bonded to the inner surface, chemically active fission products released from the nuclear fuel pellet migrate to the pure zirconium metal layer, and this pure zirconium This may embrittle the layer and cause cracks in the cladding. Furthermore, in the method of dispersing metallic molybdenum into nuclear fuel pellets, iodine generated within the pellets may be released outside the pellets without coming into contact with the molybdenum. Also,
The method of keeping the reactor output low is undesirable because it increases power generation costs.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記問題点を
解決するためになされたもので、核燃料ペレットの中で
発生するヨウ素を、ペレット外へ放出する途中で吸収し
、それによって被覆管の応力腐食割れを阻止すると共に
、燃料温度を低下させるような核燃料ペレットの製造方
法を提供することを目的とするものである。 [発明の構成]
[Problems to be Solved by the Invention] The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to absorb iodine generated in nuclear fuel pellets on the way to the outside of the pellets, thereby reducing the cladding tube. It is an object of the present invention to provide a method for producing nuclear fuel pellets that prevents stress corrosion cracking and lowers fuel temperature. [Structure of the invention]

【0008】[0008]

【課題を解決するための手段】すなわち、本発明は、酸
化ウランまたは二酸化ウランと二酸化プルトニウムの混
合酸化物を含有する核燃料粉末に、モリブデン粉末を混
合して圧縮成型し、これを還元雰囲気中で焼結した後、
酸化雰囲気中で焼鈍してモリブデンを酸化物にして結晶
粒界に連続的に存在させ、次に還元雰囲気で焼鈍するこ
とにより酸化モリブデンを金属モリブデンに還元して結
晶粒界に析出させることを特徴とする核燃料ペレットの
製造方法に関する。
[Means for Solving the Problems] That is, the present invention involves mixing molybdenum powder with nuclear fuel powder containing uranium oxide or a mixed oxide of uranium dioxide and plutonium dioxide and compression molding the mixture in a reducing atmosphere. After sintering,
It is characterized by annealing in an oxidizing atmosphere to convert molybdenum into an oxide that exists continuously at the grain boundaries, and then annealing in a reducing atmosphere to reduce the molybdenum oxide to metallic molybdenum and precipitate it at the grain boundaries. The present invention relates to a method for producing nuclear fuel pellets.

【0009】[0009]

【作用】本発明の核燃料ペレットの製造方法では、二酸
化ウランまたは二酸化ウランと二酸化プルトニウムの混
合酸化物粉末に金属モリブデン粉末を添加して圧縮成型
後還元性雰囲気で焼結することにより、核燃料ペレット
中に金属モリブデンが分散する。このペレットを次に酸
化性雰囲気で焼鈍することにより、金属モリブデンが酸
化して融点の低い三酸化モリブデンとなって溶融し、ウ
ラン酸化物または混合酸化物の結晶粒界を覆う。その後
還元性雰囲気で焼鈍することにより、三酸化モリブデン
が還元され、ウラン酸化物あるいは混合酸化物の結晶粒
界に金属モリブデンが析出する。
[Operation] In the method for producing nuclear fuel pellets of the present invention, metal molybdenum powder is added to uranium dioxide or mixed oxide powder of uranium dioxide and plutonium dioxide, and after compression molding, sintering in a reducing atmosphere is performed to form nuclear fuel pellets. Metallic molybdenum is dispersed in. By annealing this pellet in an oxidizing atmosphere, the metal molybdenum is oxidized to become molybdenum trioxide with a low melting point and melted, covering the grain boundaries of the uranium oxide or mixed oxide. Thereafter, by annealing in a reducing atmosphere, molybdenum trioxide is reduced, and metal molybdenum is precipitated at the grain boundaries of the uranium oxide or mixed oxide.

【0010】このように金属モリブデンが結晶粒界に析
出した核燃料ペレットは、金属モリブデンがペレット結
晶内で発生したヨウ素のゲッターとなるので被覆管の応
力腐食割れを低減するとともに、モリブデンによりペレ
ットの熱伝導率が向上して原子炉運転中のペレットの温
度を低下させる。
In nuclear fuel pellets in which metallic molybdenum is precipitated at the grain boundaries, the metallic molybdenum acts as a getter for iodine generated within the pellet crystals, reducing stress corrosion cracking of the cladding tube, and the molybdenum also reduces the heat of the pellets. Improved conductivity reduces pellet temperature during reactor operation.

【0011】[0011]

【実施例】本発明の実施例を図面を参照して説明する。 図1は本発明の一実施例を示す工程図、図2〜図4は本
発明の製造方法における焼結および焼鈍段階でのペレッ
ト組織の拡大模式図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described with reference to the drawings. FIG. 1 is a process diagram showing an embodiment of the present invention, and FIGS. 2 to 4 are enlarged schematic diagrams of pellet structures at the sintering and annealing stages in the manufacturing method of the present invention.

【0012】図1に示すように、本実施例では二酸化ウ
ラン粉末に金属モリブデン粉末を数重量%添加して圧縮
成型し、水素雰囲気中において1600〜1800℃で
焼結して所定の密度の核燃料ペレットを製造する。この
段階におけるペレットの組織は、図2に示すように、二
酸化ウランの結晶粒1間に金属モリブデン2が分散した
構造となる。次に二酸化炭素雰囲気中において 800
℃で焼鈍する。このときの酸素分圧は 5.7×10−
7気圧で、三酸化モリブデンを形成する酸素分圧は 5
.8×10−8気圧であるから、金属モリブデンは酸化
され、二酸化モリブデンを経て三酸化モリブデンになる
。三酸化モリブデンの融点は 795℃であるため焼鈍
中に液相となり、二酸化ウランの結晶粒界に沿って侵入
する。この段階におけるペレットの組織は、図3に示す
ように二酸化ウラン1の結晶粒界に沿って三酸化モリブ
デン3が析出した構造となる。さらにこのペレットを水
素雰囲気中において500〜 800℃で焼鈍すること
により再び金属モリブデンに還元される。この段階にお
けるペレットの組織は図4に示すように二酸化ウラン1
の結晶粒界に沿って金属モリブデン2が析出した構造と
なる。
As shown in FIG. 1, in this example, several weight percent of metal molybdenum powder is added to uranium dioxide powder, compression molded, and sintered at 1,600 to 1,800°C in a hydrogen atmosphere to produce nuclear fuel with a predetermined density. Produce pellets. The structure of the pellet at this stage is, as shown in FIG. 2, a structure in which metal molybdenum 2 is dispersed between crystal grains 1 of uranium dioxide. Next, in a carbon dioxide atmosphere, 800
Anneal at ℃. The oxygen partial pressure at this time is 5.7×10-
At 7 atmospheres, the partial pressure of oxygen that forms molybdenum trioxide is 5
.. Since the pressure is 8 x 10-8 atmospheres, metal molybdenum is oxidized and becomes molybdenum trioxide via molybdenum dioxide. Since the melting point of molybdenum trioxide is 795°C, it becomes a liquid phase during annealing and penetrates along the grain boundaries of uranium dioxide. The structure of the pellet at this stage is such that molybdenum trioxide 3 is precipitated along the grain boundaries of uranium dioxide 1, as shown in FIG. Further, the pellets are annealed at 500 to 800°C in a hydrogen atmosphere to be reduced to metallic molybdenum again. The pellet structure at this stage is uranium dioxide 1 as shown in Figure 4.
The structure is such that metal molybdenum 2 is precipitated along the grain boundaries.

【0013】このように製造することによって、ペレッ
トは結晶粒界に金属モリブデンが存在するものとなり、
この金属モリブデンがヨウ素のゲッターとなると共に、
ペレットの熱伝導性を向上させてペレットの温度を低下
させることもできる。なお、以上の実施例では二酸化ウ
ラン燃料について説明したが、混合酸化物燃料について
も全く同様である。
[0013] By manufacturing in this way, the pellets have metal molybdenum present at the grain boundaries,
This metal molybdenum acts as a getter for iodine, and
The temperature of the pellet can also be lowered by improving the thermal conductivity of the pellet. In the above embodiments, uranium dioxide fuel has been described, but the same applies to mixed oxide fuel.

【0014】[0014]

【発明の効果】以上説明したように、本発明によれば、
核燃料ペレットの結晶粒界に金属モリブデンを析出させ
ることができ、ヨウ素による被覆管の応力腐食割れを低
減するとともに、燃料温度を低下させ、ペレットからの
核分裂生成ガスの放出量を低減させることができる。
[Effects of the Invention] As explained above, according to the present invention,
Metallic molybdenum can be precipitated at the grain boundaries of nuclear fuel pellets, reducing stress corrosion cracking of the cladding caused by iodine, lowering the fuel temperature, and reducing the amount of fission product gas released from the pellets. .

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例を示す工程図。FIG. 1 is a process diagram showing one embodiment of the present invention.

【図2】本発明の実施例において、還元雰囲気中で焼結
した段階での核燃料ペレット組織の拡大模式図。
FIG. 2 is an enlarged schematic diagram of a nuclear fuel pellet structure at the stage of sintering in a reducing atmosphere in an example of the present invention.

【図3】本発明にの実施例において、酸化雰囲気で焼鈍
した段階での核燃料ペレット組織の拡大模式図。
FIG. 3 is an enlarged schematic diagram of a nuclear fuel pellet structure at the stage of annealing in an oxidizing atmosphere in an example of the present invention.

【図4】本発明の実施例において、還元雰囲気で焼鈍し
た段階での核燃料ペレット組織の拡大模式図。
FIG. 4 is an enlarged schematic diagram of a nuclear fuel pellet structure at the stage of annealing in a reducing atmosphere in an example of the present invention.

【図5】従来の核燃料要素の断面図。FIG. 5 is a cross-sectional view of a conventional nuclear fuel element.

【符号の説明】[Explanation of symbols]

1…核燃料物質の結晶粒、2…金属モリブデン析出相、
3…三酸化モリブデン析出相、4…被覆管、5…核燃料
ペレット、6…上部端栓、7…下部端栓、8…プレナム
、9…スプリング、10…ゲッター、11…ギャップ。
1... Crystal grains of nuclear fuel material, 2... Metallic molybdenum precipitated phase,
3... Molybdenum trioxide precipitated phase, 4... Cladding tube, 5... Nuclear fuel pellet, 6... Upper end plug, 7... Lower end plug, 8... Plenum, 9... Spring, 10... Getter, 11... Gap.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  二酸化ウランまたは二酸化ウランと二
酸化プルトニウムの混合酸化物を含有する核燃料粉末に
、モリブデン粉末を混合して圧縮成型し、これを還元雰
囲気中で焼結した後、酸化雰囲気中で焼鈍してモリブデ
ンを酸化物にして結晶粒界に連続的に存在させ、次に還
元雰囲気で焼鈍することにより酸化モリブデンを金属モ
リブデンに還元して結晶粒界に析出させることを特徴と
する核燃料ペレットの製造方法。
Claim 1: Nuclear fuel powder containing uranium dioxide or a mixed oxide of uranium dioxide and plutonium dioxide is mixed with molybdenum powder, compression molded, sintered in a reducing atmosphere, and then annealed in an oxidizing atmosphere. A nuclear fuel pellet characterized in that molybdenum is made into an oxide and continuously present at the grain boundaries, and then annealed in a reducing atmosphere to reduce the molybdenum oxide to metal molybdenum and precipitated at the grain boundaries. Production method.
JP3003831A 1991-01-17 1991-01-17 Production method of nuclear fuel pellet Pending JPH04236395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3003831A JPH04236395A (en) 1991-01-17 1991-01-17 Production method of nuclear fuel pellet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3003831A JPH04236395A (en) 1991-01-17 1991-01-17 Production method of nuclear fuel pellet

Publications (1)

Publication Number Publication Date
JPH04236395A true JPH04236395A (en) 1992-08-25

Family

ID=11568148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3003831A Pending JPH04236395A (en) 1991-01-17 1991-01-17 Production method of nuclear fuel pellet

Country Status (1)

Country Link
JP (1) JPH04236395A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105706177A (en) * 2013-11-26 2016-06-22 阿科姆工程合资(控股)公司 Nuclear fuel pellet having enhanced thermal conductivity, and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105706177A (en) * 2013-11-26 2016-06-22 阿科姆工程合资(控股)公司 Nuclear fuel pellet having enhanced thermal conductivity, and preparation method thereof

Similar Documents

Publication Publication Date Title
KR102102977B1 (en) Method of manufacturing nuclear fuel pellet consisting of duplex grains
US20050195933A1 (en) Fuel pellet for a nuclear reactor and method for producing the fuel pellet
JPS62232595A (en) Nuclear fuel sintered body and manufacture thereof
JP5621102B2 (en) Nuclear fuel pellet manufacturing method and nuclear fuel pellet
JP3976716B2 (en) Method for producing sintered nuclear fuel containing tungsten metal mesh
KR20190098008A (en) Nuclear fuel pellet having enhanced thermal conductivity and method for manufacturing the same
JPH04236395A (en) Production method of nuclear fuel pellet
JP4099529B2 (en) Nuclear fuel pellet and manufacturing method thereof
JP3919929B2 (en) NUCLEAR PELLET, ITS MANUFACTURING METHOD, FUEL ELEMENT AND FUEL ASSEMBLY
JPH0471193B2 (en)
JPH0368898A (en) Method of manufacturing nuclear fuel pellet
JPH0694869A (en) Nuclear fuel pellet and its manufacture
KR100450711B1 (en) Method of manufacturing nuclear fuel pellet consisting of duplex grains
JP2911866B1 (en) Method for producing nuclear fuel pellets
JPH0761820A (en) Production of nuclear fuel pellet
JP4080199B2 (en) Manufacturing method of nuclear fuel pellet, fuel element using the nuclear fuel pellet, and fuel assembly
JPH0755975A (en) Producing nuclear fuel pellet
JPH0371674B2 (en)
JPH0580174A (en) Pellet of hybrid oxide fuel and its manufacture
JPH09127280A (en) Production of nuclear fuel particle
JPH04285891A (en) Manufacture of nuclear fuel pellet
JPS58147678A (en) Nuclear fuel element
JPH0448295A (en) Production of nuclear fuel pellet
JPH01253694A (en) Manufacture of nuclear fuel pellet
JPS6031089A (en) Nuclear fuel composite coated pipe and manufacture thereof