JPH0423534A - Transmission system for mwd - Google Patents
Transmission system for mwdInfo
- Publication number
- JPH0423534A JPH0423534A JP2127725A JP12772590A JPH0423534A JP H0423534 A JPH0423534 A JP H0423534A JP 2127725 A JP2127725 A JP 2127725A JP 12772590 A JP12772590 A JP 12772590A JP H0423534 A JPH0423534 A JP H0423534A
- Authority
- JP
- Japan
- Prior art keywords
- waveform
- code
- sequence
- signal
- wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005540 biological transmission Effects 0.000 title claims description 29
- 230000010355 oscillation Effects 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 8
- 238000011084 recovery Methods 0.000 description 7
- 230000008929 regeneration Effects 0.000 description 6
- 238000011069 regeneration method Methods 0.000 description 6
- 230000001360 synchronised effect Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 238000005314 correlation function Methods 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
Landscapes
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
- Synchronisation In Digital Transmission Systems (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- Geophysics And Detection Of Objects (AREA)
- Complex Calculations (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、通信方式におけるMWD用伝送方式に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a transmission system for MWD in a communication system.
〔従来の技術]
第4図は例えば、「デジタル衛星通信、ジャデイyり出
版、 V、 K、 BHARGAVA著、塚本賢−他訳
。[Prior Art] Figure 4 shows, for example, ``Digital Satellite Communication,'' published by Jadi Publishing, written by V. K. BHARGAVA, translated by Ken Tsukamoto et al.
昭和61年5月発行」に示された従来の衛星通信に使用
されている伝送信号のフレーム構成図であり、図におい
て、1は搬送波再生信号、2はシンボルタイミング再生
用信号、3はバースト同期用符号、4は送信データであ
る。This is a frame configuration diagram of a transmission signal used in conventional satellite communication as shown in "Published in May 1986". In the figure, 1 is a carrier wave recovery signal, 2 is a signal for symbol timing recovery, and 3 is a burst synchronization signal. 4 is the transmission data.
第5図は例えば、[衛星通信、東京電機大学出版局、宮
内・更田・山本共著、昭和60年10月発行」に示され
たBPSK復調器の構成図であり、図において、5は帯
域通過フィルタ、6は搬送波再生回路、7は乗算器、8
は低域通過フィルタ、9はクロック再生回路、10は識
別器である。Figure 5 is, for example, a block diagram of a BPSK demodulator shown in [Satellite Communications, Tokyo Denki University Press, co-authored by Miyauchi, Sarata, and Yamamoto, published October 1985], and in the figure, 5 is the band pass filter, 6 is a carrier wave regeneration circuit, 7 is a multiplier, 8
9 is a low-pass filter, 9 is a clock recovery circuit, and 10 is a discriminator.
次に動作について説明する。従来の伝送方式で送信信号
のフレームは搬送波再生信号1、シンボルタイミング再
生信号2、バースト同期符号3、送信データ4から構成
される。搬送波再生信号1は、所定の時間継続する正弦
波で構成される。シンボルタイミング再生信号2は、送
信データのシンボルと同期したタイミングで位相または
ビットを変化した波形である。バースト同期用符号3は
、既知の符号列を変調した波形である。また送信データ
4は送信するデータを変調した波形である。Next, the operation will be explained. In the conventional transmission system, a frame of a transmission signal is composed of a carrier wave reproduction signal 1, a symbol timing reproduction signal 2, a burst synchronization code 3, and transmission data 4. The carrier wave reproduction signal 1 is composed of a sine wave that continues for a predetermined period of time. The symbol timing reproduction signal 2 is a waveform in which the phase or bits are changed at a timing synchronized with the symbol of the transmission data. The burst synchronization code 3 is a waveform obtained by modulating a known code string. Further, the transmission data 4 is a waveform obtained by modulating the data to be transmitted.
送信器より送信された送信波は、伝送路の特性により歪
みを受け、さらに雑音が加わった波形として受信信号と
なる。受信信号はバンドパスフィルタ5を通過後、搬送
波再生回路6に入力される。The transmitted wave transmitted from the transmitter is distorted due to the characteristics of the transmission path, and becomes a received signal as a waveform with noise added. After passing through the bandpass filter 5, the received signal is input to the carrier recovery circuit 6.
搬送波再生回路6では、搬送波再生信号1に位相の同期
した正弦波が再生される。再生された正弦波と受信信号
は、乗算器7で乗ぜられる。乗算結果はローパスフィル
タ8通過後クロック再生回路9に入力される。クロック
再生回路9ではシンボルタイミング再生信号2より、送
信データのシンボルと同期したタイミングでクロックを
再生し、再生したクロックを用いて識別器10より再生
信号が出力される。その後バースト同期用符号3を検出
し、それにつづくデータの認識を可能にする。In the carrier wave reproducing circuit 6, a sine wave whose phase is synchronized with the carrier wave reproducing signal 1 is reproduced. The reproduced sine wave and the received signal are multiplied by a multiplier 7. The multiplication result is input to a clock recovery circuit 9 after passing through a low-pass filter 8 . The clock regeneration circuit 9 regenerates a clock from the symbol timing regeneration signal 2 at a timing synchronized with the symbol of the transmission data, and the discriminator 10 outputs a regeneration signal using the regenerated clock. Thereafter, the burst synchronization code 3 is detected, and subsequent data can be recognized.
従来の伝送は以上のような方式で行われており、搬送波
の周波数が低い場合、同期をとるために時間がかかると
いう問題がある。Conventional transmission is performed using the above method, but when the frequency of the carrier wave is low, there is a problem that it takes time to achieve synchronization.
また、同期をとるための信号の圧縮も不可能であり、信
号の圧縮による同期信号の検出精度の向上はできない。Furthermore, it is impossible to compress signals for synchronization, and it is not possible to improve the detection accuracy of synchronization signals by signal compression.
この発明は上記のような問題点を解消するためになされ
たもので、同期をとるために必要な信号が短縮されると
ともに、同期をとるために必要な信号と雑音の比も改善
される。This invention was made to solve the above-mentioned problems, and not only shortens the signal required for synchronization, but also improves the ratio of the signal necessary for synchronization to noise.
この発明に係る伝送方式では、鋭い自己相関を持つ系列
の変調波をMWD用伝送方式の同期信号に利用したもの
である。In the transmission system according to the present invention, a series of modulated waves having a sharp autocorrelation is used as a synchronization signal of the MWD transmission system.
この発明における伝送方式では、鋭い自己相関を持つ系
列の変調波を検出することで、搬送波の再生タイミング
およびビットの周期に同期したクロックの再生が同時に
行われるため、同期に必要な時間が短縮される。また鋭
い自己相関を持つ系列の変調波を遅延回路、反転回路、
加算回路により圧縮するため同期に必要な信号を対雑音
の振幅比が改善される。In the transmission method according to the present invention, by detecting a series of modulated waves with sharp autocorrelation, the regeneration timing of the carrier wave and the regeneration of the clock synchronized with the bit period are performed at the same time, thereby reducing the time required for synchronization. Ru. In addition, a delay circuit, an inversion circuit,
Since the adder circuit compresses the signal necessary for synchronization, the amplitude ratio of the signal to noise is improved.
以下、この発明の一実施例を図について説明する。第1
図(a) 、 (b)は本発明における伝送信号のフレ
ーム構造とを示す図であり、11.12はプリアンプル
、4は送信データである。さらに、11は同期検波に必
要な搬送波再生用信号とシンボルタイミング再生信号を
兼用した信号で、バーカ系列の符号を位相変調方式で変
調した波形を用いる。12は検出の精度を上げるために
、11の前後におく送信を行わない休止区間である。An embodiment of the present invention will be described below with reference to the drawings. 1st
Figures (a) and (b) are diagrams showing the frame structure of a transmission signal in the present invention, where 11.12 is a preamble and 4 is transmission data. Furthermore, 11 is a signal that serves both as a carrier wave recovery signal and a symbol timing recovery signal necessary for synchronous detection, and uses a waveform obtained by modulating a Barker sequence code using a phase modulation method. Reference numeral 12 indicates a pause period in which no transmission is performed, which is placed before and after 11 in order to improve detection accuracy.
第2図は同期に用いる検波器であり、符号列として長さ
5のパー力符号を選んだときの構成例である。図中、1
3は遅延回路、14は加算回路、15は反転回路、X(
t)は入力波形、y(t)は出力波形を示す。遅延回路
における遅延時間ではシンボル間隔である。FIG. 2 shows a detector used for synchronization, and is an example of the configuration when a parity code of length 5 is selected as the code string. In the figure, 1
3 is a delay circuit, 14 is an addition circuit, 15 is an inversion circuit,
t) indicates an input waveform, and y(t) indicates an output waveform. The delay time in the delay circuit is the symbol interval.
第3図は第2図における入力波形X(t)、および各遅
延回路の出力波形X(t−τ)、X(t−3τ)X (
v−4τ)または遅延回路の出力の波形の反転波形−X
(t−2τ)ならびに加算回路出力波形y (t)を示
す。Figure 3 shows the input waveform X(t) in Figure 2, and the output waveforms X(t-τ), X(t-3τ)X (
v-4τ) or the inverted waveform of the output waveform of the delay circuit -X
(t-2τ) and the adder circuit output waveform y (t).
次に動作について説明する。ここでは符号長5のパー力
符号「+十十−+」を本発明に利用した場合について説
明する。パー力符号の2値シンボルを位相差180°の
正弦波にそれぞれ対応させ、かつシンボル間隔を正弦波
の1周期、τに決めると、長さ5のパー力符号は第1図
の11に示す波形となる。送信点から送信データに先行
して11の波形が送信される。Next, the operation will be explained. Here, a case will be described in which the parity code "+10-+" with a code length of 5 is used in the present invention. If the binary symbols of the Parr force code are made to correspond to sine waves with a phase difference of 180°, and the symbol interval is set to one period of the sine wave, τ, then the Parr force code of length 5 is shown in 11 in Figure 1. It becomes a waveform. Eleven waveforms are transmitted from the transmission point prior to the transmission data.
受信点では第2図に示す構成の検波器で11の波形は圧
縮され、振幅の大きな正弦波が1時間出力される。圧縮
された正弦波を検出することで、同期検波に必要な搬送
波の再生とシンボルタイミングの再生を行う。At the receiving point, the 11 waveforms are compressed by a detector having the configuration shown in FIG. 2, and a sine wave with a large amplitude is output for one hour. By detecting the compressed sine wave, the carrier wave and symbol timing required for coherent detection are recovered.
次に、第2図に示す検波器の動作を第3図で説明する。Next, the operation of the detector shown in FIG. 2 will be explained with reference to FIG.
検出器にX(t)の波形が入力されると遅延回路13a
の出力波形はX(を−τ)、13bの出力波形はX<L
−2τ)、13cの出力波形はX(t−3r> 、13
d(7)出力波形ハX(t−4r)となる。各遅延回
路の出力波形は加算回路14で加算されるが、13aの
出力波形は反転回路15で符号を反転した上で加算され
る。加算回路14の出力波形はy(t)で示されるが、
検波器に最後のシンボルが入力されると、入力波の5倍
の振幅を持つ正弦波形が時間τだけ加算回路14より出
力されることになる。よって搬送波の再生およびシンボ
ルタイミングの再生は、この正弦波を検出してその検出
タイミングを用いて行う。When the waveform of X(t) is input to the detector, the delay circuit 13a
The output waveform of 13b is X (-τ), and the output waveform of 13b is X<L
-2τ), 13c output waveform is X(t-3r>, 13
d(7) The output waveform becomes CX(t-4r). The output waveforms of the respective delay circuits are added by the adder circuit 14, but the output waveforms of the delay circuit 13a are added after having their signs inverted by the inverter circuit 15. The output waveform of the adder circuit 14 is shown as y(t),
When the last symbol is input to the detector, a sine waveform having an amplitude five times that of the input wave is output from the adder circuit 14 for a time τ. Therefore, carrier wave reproduction and symbol timing reproduction are performed by detecting this sine wave and using the detected timing.
なお、上記実施例では、長さ5のパー力符号を適用した
場合について説明したが、任意の長さのパー力符号でも
実現可能である。また、送信周波数の基本周期とパー力
符号のシンボル間隔は等しい。すなわち、パー力符号の
1シンボルを送信周波数の1周期として同期信号を表現
したが、パー力符号の1シンボルを送信周波数の数周期
で符号化した場合でも実現可能である。さらにハーカ符
号以外でもたとえばPN系列(pseudo−rois
esequence)の符号やチャープ波などの鋭い相
関関数を持つ系列であれば実現可能である。In the above embodiment, a case where a Parr code with a length of 5 is applied has been described, but it is also possible to use a Parr code with an arbitrary length. Further, the fundamental period of the transmission frequency and the symbol interval of the parity code are equal. That is, although the synchronization signal is expressed using one symbol of the Parr power code as one period of the transmission frequency, it can also be realized when one symbol of the Parr power code is encoded with several periods of the transmission frequency. Furthermore, in addition to Harker codes, for example, PN sequences (pseudo-rois
This is possible if the sequence has a sharp correlation function, such as a sign of ``Esequence'' or a chirp wave.
以上のようにこの発明によれば、例えばパー力符号のよ
うな鋭い相関関数を持つ系列を用いて同期を行うため、
同期に必要な時間は短縮され受信状態の悪い条件でもよ
り精度よく同期が可能となる。As described above, according to the present invention, since synchronization is performed using a sequence with a sharp correlation function, such as a Parr code,
The time required for synchronization is shortened, allowing more accurate synchronization even under poor reception conditions.
第1図(a) 、 (b)は本発明による同期信号の波
形構成の一実施例を示す図、第2図は本発明の一実施例
における同期波形の検波器を示す図、第3図は検波器の
動作を示す波形図、第4図は従来の同期信号の構成図、
第5図は従来の伝送方式における復調器の構成例を示す
図である。
図中、4は送信データ、11はパー力系列の変調波、1
2は発振休止区間、13は遅延回路、14は加算回路、
15は反転回路である。
なお、図中、同一符号は同一、又は相当部分を示す。FIGS. 1(a) and (b) are diagrams showing an example of the waveform configuration of a synchronization signal according to the present invention, FIG. 2 is a diagram showing a synchronization waveform detector according to an embodiment of the present invention, and FIG. is a waveform diagram showing the operation of the wave detector, Figure 4 is a configuration diagram of a conventional synchronization signal,
FIG. 5 is a diagram showing an example of the configuration of a demodulator in a conventional transmission system. In the figure, 4 is the transmission data, 11 is the modulated wave of the Par power sequence, 1
2 is an oscillation pause period, 13 is a delay circuit, 14 is an addition circuit,
15 is an inverting circuit. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.
Claims (4)
用したことを特徴とするMWD用伝送方式。(1) A transmission system for MWD characterized by using a series of modulated waves having a sharp autocorrelation as a synchronization signal.
行わない休止時間で構成したことを特徴とする請求項第
1項記載のMWD用伝送方式。(2) The MWD transmission system according to claim 1, wherein the synchronization signal is composed of a Barker series phase modulated wave and a pause period during which no oscillation is performed.
したことを特徴とする請求項第1項記載のMWD用伝送
方式。(3) The transmission system for MWD according to claim 1, characterized in that a Barker sequence is used as the sequence with sharp autocorrelation.
たことを特徴とする請求項第1項記載のMWD用伝送方
式。(4) The transmission system for MWD according to claim 1, characterized in that a PN sequence is used as the sequence having sharp autocorrelation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12772590A JPH0666768B2 (en) | 1990-05-17 | 1990-05-17 | Transmission method for MWD |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12772590A JPH0666768B2 (en) | 1990-05-17 | 1990-05-17 | Transmission method for MWD |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0423534A true JPH0423534A (en) | 1992-01-27 |
JPH0666768B2 JPH0666768B2 (en) | 1994-08-24 |
Family
ID=14967161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12772590A Expired - Fee Related JPH0666768B2 (en) | 1990-05-17 | 1990-05-17 | Transmission method for MWD |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0666768B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10280739B2 (en) | 2014-12-05 | 2019-05-07 | Halliburton Energy Services, Inc. | Downhole clock calibration apparatus, systems, and methods |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55130249A (en) * | 1979-03-30 | 1980-10-08 | Sansui Electric Co | Code synchronous system for reception of spectrum diffusion signal |
JPS58135476A (en) * | 1982-02-03 | 1983-08-12 | Osaka Gas Co Ltd | Underground investigating device |
JPS62274948A (en) * | 1986-05-23 | 1987-11-28 | Ricoh Co Ltd | Frame synchronizing system |
JPS6373500A (en) * | 1986-09-17 | 1988-04-04 | 三菱電機株式会社 | Data communication from underground and underground communication apparatus therefor |
JPS63211984A (en) * | 1987-02-27 | 1988-09-05 | Canon Inc | Video signal recording and reproducing system |
-
1990
- 1990-05-17 JP JP12772590A patent/JPH0666768B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55130249A (en) * | 1979-03-30 | 1980-10-08 | Sansui Electric Co | Code synchronous system for reception of spectrum diffusion signal |
JPS58135476A (en) * | 1982-02-03 | 1983-08-12 | Osaka Gas Co Ltd | Underground investigating device |
JPS62274948A (en) * | 1986-05-23 | 1987-11-28 | Ricoh Co Ltd | Frame synchronizing system |
JPS6373500A (en) * | 1986-09-17 | 1988-04-04 | 三菱電機株式会社 | Data communication from underground and underground communication apparatus therefor |
JPS63211984A (en) * | 1987-02-27 | 1988-09-05 | Canon Inc | Video signal recording and reproducing system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10280739B2 (en) | 2014-12-05 | 2019-05-07 | Halliburton Energy Services, Inc. | Downhole clock calibration apparatus, systems, and methods |
Also Published As
Publication number | Publication date |
---|---|
JPH0666768B2 (en) | 1994-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5228055A (en) | Spread spectrum communication device | |
US5117441A (en) | Method and apparatus for real-time demodulation of a GMSK signal by a non-coherent receiver | |
US6212222B1 (en) | Initial acquisition circuit | |
JPH0423534A (en) | Transmission system for mwd | |
JP3033374B2 (en) | Data transceiver | |
JP2770965B2 (en) | Receiver for spread spectrum communication | |
JPH05344093A (en) | Demodulator for spread spectrum communication | |
JP2733774B2 (en) | Receiver demodulation circuit using surface acoustic wave matched filter. | |
JP3457099B2 (en) | Parallel combination spread spectrum transmission and reception system. | |
JPH04347944A (en) | Spectrum spread demodulator | |
JP3161117B2 (en) | Receiver | |
JP3152781B2 (en) | Communication device | |
JPH05183534A (en) | Spread spectrum communication equipment | |
JPS60224345A (en) | Data transmission system | |
KR950003667B1 (en) | Minimum shift keying modulator and demodulator using bfsk demodulating method | |
JP3518739B2 (en) | Orthogonal frequency division multiplex signal receiving apparatus and orthogonal frequency division multiplex signal receiving method | |
SU1555889A2 (en) | Adaptive device for duplex transmission of digital information | |
JPH0746222A (en) | Spread spectrum communication system | |
JPH0559624B2 (en) | ||
KR0162826B1 (en) | Transmitting receiving apparatus of spread spectrum communication system for error compensation of carrier frequency | |
JPS63196129A (en) | Spread spectrum communication receiver | |
JP3518762B2 (en) | Orthogonal frequency division multiplex signal receiving apparatus and orthogonal frequency division multiplex signal receiving method | |
SU683029A1 (en) | Communication system with time-compression of noise -like signals | |
JPH09102775A (en) | Method and device for symbol clock reproduction | |
JPH05327661A (en) | Demodulator for spread spectrum communication |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080824 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090824 Year of fee payment: 15 |
|
LAPS | Cancellation because of no payment of annual fees |