JPH04235282A - Optical cvd method and optical cvd apparatus - Google Patents

Optical cvd method and optical cvd apparatus

Info

Publication number
JPH04235282A
JPH04235282A JP91991A JP91991A JPH04235282A JP H04235282 A JPH04235282 A JP H04235282A JP 91991 A JP91991 A JP 91991A JP 91991 A JP91991 A JP 91991A JP H04235282 A JPH04235282 A JP H04235282A
Authority
JP
Japan
Prior art keywords
reaction
substrate
gas
reaction chamber
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP91991A
Other languages
Japanese (ja)
Inventor
Hisanori Ihara
久典 井原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP91991A priority Critical patent/JPH04235282A/en
Publication of JPH04235282A publication Critical patent/JPH04235282A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To form thin film having excellent characteristic on a substrate to be coated by mixing hydrogen radical generated by thermal decomposition reaction of a metal with raw material gas and utilizing photochemical reaction. CONSTITUTION:SiH4 as the raw material gas is introduced into a vessel 11 charging Hg 10 and introduced into a reaction chamber 18 as the mixed gas with Hg vapor and also H2 gas is introduced into a catalyst flange 22 and the hydrogen radical is generated by thermal catalytic reaction by using W-made heater 21 and introduced into the reaction chamber 18 and mixed. Optical energy from a low pressure mercury lamp 13 irradiates this mixed gas through a qualtz glass window 14 to decompose SiH4 gas, and amorphous hydrogenized Si film having excellent characteristic is formed on the substrate 5 heated with a heater 17.

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] [Purpose of the invention]

【0001】0001

【産業上の利用分野】本発明は、半導体デバイス、感光
デバイス等に用いられる機能性の薄膜を形成する、光C
VD法及び光CVD装置に関する。
[Industrial Application Field] The present invention relates to optical C
It relates to the VD method and optical CVD equipment.

【0002】0002

【従来の技術】近年、水素化アモルファスシリコン等で
構成される機能性の薄膜を形成する方法として、光CV
D法が注目されている。これは、シランガス等の原料ガ
スを光化学反応を用いて分解し、基板上に薄膜を形成す
るという方法である。この方法は熱CVD法に比べて、
低温で薄膜形成を行うことができるので、水素が熱脱離
することのより生じる欠陥が少なく、またプラズマCV
D法に比べて、ラジカル反応のみで成膜が行われるので
被処理基板の荷電粒子損傷を与えないということから、
良好な薄膜の形成を行うことができる。
[Prior Art] In recent years, photoCVD has been used as a method for forming functional thin films made of hydrogenated amorphous silicon, etc.
Method D is attracting attention. This is a method in which a source gas such as silane gas is decomposed using a photochemical reaction to form a thin film on a substrate. Compared to the thermal CVD method, this method has
Since thin films can be formed at low temperatures, there are fewer defects caused by thermal desorption of hydrogen, and plasma CV
Compared to the D method, film formation is performed only by radical reactions, so there is no charged particle damage to the substrate to be processed.
A good thin film can be formed.

【0003】図3は、光CVD法を用いた従来の装置の
一例の概要を示す断面図であり、図中31は水銀溜め、
32はガス導入口、33は光源、34は窓ガラス、35
は被処理基板、36は基板ホルダ−、37はヒ−タ、3
8は反応室、39はガスの排気口を示している。この装
置において、原料ガスは、水銀溜め31を経て、この時
水銀310 の蒸気との混合ガスとなり反応室38に導
入される。この反応室38には、窓ガラス34を通して
光源33からの光が入射され、その光エネルギにより前
記混合ガスを反応・分解することにより、ヒ−タ37に
より加熱された基板ホルダ−36上に置かれた被処理基
板35上に薄膜を形成する。
FIG. 3 is a cross-sectional view showing an outline of an example of a conventional device using the photo-CVD method. In the figure, 31 is a mercury reservoir;
32 is a gas inlet, 33 is a light source, 34 is a window glass, 35
3 is a substrate to be processed; 36 is a substrate holder; 37 is a heater;
8 is a reaction chamber, and 39 is a gas exhaust port. In this apparatus, the raw material gas passes through the mercury reservoir 31, and at this time becomes a mixed gas with mercury 310 vapor and is introduced into the reaction chamber 38. Light from the light source 33 enters the reaction chamber 38 through the window glass 34, and the mixed gas is reacted and decomposed by the light energy, thereby placing the substrate on the substrate holder 36 heated by the heater 37. A thin film is formed on the substrate 35 to be processed.

【0004】しかしながら、このような光CVD装置で
は、例えば水素化アモルファスシリコン薄膜において、
Jpn.J.Appl.Phys. 27 (1987
) L1573に示されているように、電子スピン共鳴
法により測定される薄膜中のシリコン欠陥密度を、10
15/cm3 以下にすることができなかった。従って
、この欠陥密度に依存するキャリアの移動度を大きくす
ることができないため、この薄膜を用いたトランジスタ
等の応答性の向上を図るための障害となっていた。
However, in such a photo-CVD apparatus, for example, in a hydrogenated amorphous silicon thin film,
Jpn. J. Appl. Phys. 27 (1987
) As shown in L1573, the silicon defect density in a thin film measured by electron spin resonance method is
15/cm3 or less. Therefore, carrier mobility, which depends on the defect density, cannot be increased, which has been an obstacle to improving the responsiveness of transistors and the like using this thin film.

【0005】[0005]

【発明が解決しようとする課題】このように、従来の光
CVD装置では、形成された薄膜において、欠陥密度が
大きいため、キャリアの移動度が小さいという問題があ
った。
As described above, the conventional photo-CVD apparatus has a problem in that the formed thin film has a high defect density and thus has a low carrier mobility.

【0006】本発明は、上記事情を考慮してなされたも
ので、その目的とするところは、良好な特性を持つ薄膜
を形成することができる光CVD法及び光CVD装置を
提供することにある。 [発明の構成]
The present invention has been made in consideration of the above circumstances, and its purpose is to provide a photo-CVD method and a photo-CVD apparatus that can form a thin film with good characteristics. . [Structure of the invention]

【0007】[0007]

【課題を解決するための手段】本発明の骨子は、金属の
熱分解反応により水素ラジカルを生成し、この水素ラジ
カルを原料ガスと混合し、光化学反応を利用して被処理
基板上に被薄膜を形成することにある。
[Means for Solving the Problems] The gist of the present invention is to generate hydrogen radicals through a thermal decomposition reaction of a metal, mix the hydrogen radicals with a raw material gas, and apply a photochemical reaction to a thin film on a substrate to be processed. The goal is to form a

【0008】[0008]

【作用】本発明によれば、水素ラジカルを生成し、これ
を薄膜形成の際利用することにより、欠陥の少ない良好
な薄膜を形成することができる。
[Operation] According to the present invention, hydrogen radicals are generated and used in forming a thin film, thereby making it possible to form a good thin film with few defects.

【0009】水素ラジカルを生成する方法として金属の
熱分解反応を利用しているため、水素イオン等の高エネ
ルギ粒子が発生しない。従って、プラズマダメ−ジを受
けることなく薄膜形成を行うことができる。
[0009] Since the thermal decomposition reaction of metal is used as a method for generating hydrogen radicals, high-energy particles such as hydrogen ions are not generated. Therefore, thin film formation can be performed without plasma damage.

【0010】また、この水素ラジカルは、例えば、水素
化アモルファスシリコン薄膜を、原料ガスシラン(Si
H4 )より生成する場合、SiH4 +H(水素ラジ
カル)→SiH3 (ラジカル)+H2 という反応を
起こし、欠陥の少ないシリコンネットワ−クを形成する
のに最適とされているSiH3 ラジカルを形成する。 本発明により生成される水素ラジカルにより、SiH3
 ラジカルが従来より豊富に得られることになり、より
良好な薄膜を形成することができる。
[0010] Furthermore, these hydrogen radicals can, for example, cover a hydrogenated amorphous silicon thin film with a raw material gas, silane (Si).
When generated from H4), a reaction of SiH4 + H (hydrogen radical) → SiH3 (radical) + H2 occurs to form SiH3 radicals, which are considered optimal for forming a silicon network with few defects. By the hydrogen radicals generated by the present invention, SiH3
Radicals can be obtained more abundantly than before, and a better thin film can be formed.

【0011】さらに、この水素ラジカルは、薄膜にダメ
−ジを与えることなく薄膜表面での余分な水素を取り除
いたり、薄膜形成後、光エネルギを受けた場合等欠陥と
なってしまうような弱いシリコン結合を取り除くといっ
た作用を持つ。本発明により従来より多くの水素ラジカ
ルが薄膜表面に到達することから、より良好な薄膜を形
成することができる。
Furthermore, these hydrogen radicals can be used to remove excess hydrogen from the thin film surface without damaging the thin film, or to remove excess hydrogen from the thin film surface without damaging the thin film. It has the effect of removing bonds. According to the present invention, more hydrogen radicals reach the thin film surface than before, so a better thin film can be formed.

【0012】0012

【実施例】以下、本発明の詳細を図示の実施例によって
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be explained below with reference to illustrated embodiments.

【0013】図1は本発明の実施例に係わる光CVD装
置の概略構造を示す図である。図中11は水銀溜め、1
2は混合ガスの導入口、13は低圧水銀ランプ、14は
合成石英ガラス、15は被処理基板、16は基板ホルダ
−、17はヒ−タ、18は反応室、19はガスの排気口
を示している。また、20は水素ラジカルを含むガスの
導入口、21はタングステンヒ−タ、22は触媒フラン
ジを示している。
FIG. 1 is a diagram showing a schematic structure of a photo-CVD apparatus according to an embodiment of the present invention. In the figure, 11 is a mercury reservoir, 1
2 is a mixed gas inlet, 13 is a low-pressure mercury lamp, 14 is synthetic quartz glass, 15 is a substrate to be processed, 16 is a substrate holder, 17 is a heater, 18 is a reaction chamber, and 19 is a gas exhaust port. It shows. Further, 20 indicates an inlet for gas containing hydrogen radicals, 21 indicates a tungsten heater, and 22 indicates a catalyst flange.

【0014】この装置において、原料ガスとして用いた
シランは、80度に暖められた水銀溜め11内を経て、
この時水銀10蒸気との混合ガスとなり反応室18に導
入される。水素ガスは、触媒フランジ22内に導入され
、加熱されたタングステンヒ−タ21と熱触媒反応を起
こす。この反応により水素分子は分解され水素ラジカル
を生成する。この後、この水素ラジカルを含むガスは反
応室18に導入される。前記混合ガスと水素ラジカルを
含むガスは、反応室18内で混合される。この反応室1
8には合成石英ガラス14を通して低圧水銀ランプ13
からの光が反応室内に入射され、被処理基板15は、ヒ
−タ17により加熱された基板ホルダ−上に置かれ20
0 度に暖められる。そのエネルギ−により、反応室1
8内で混合されたガスを反応・分解することにより、被
処理基板15上に水素化アモルファスシリコン膜を形成
した。
In this apparatus, the silane used as the raw material gas passes through the mercury reservoir 11 heated to 80 degrees.
At this time, it becomes a mixed gas with mercury vapor and is introduced into the reaction chamber 18. Hydrogen gas is introduced into the catalyst flange 22 and causes a thermal catalytic reaction with the heated tungsten heater 21. This reaction decomposes hydrogen molecules and generates hydrogen radicals. Thereafter, this gas containing hydrogen radicals is introduced into the reaction chamber 18. The mixed gas and the gas containing hydrogen radicals are mixed in the reaction chamber 18. This reaction chamber 1
8 is a low pressure mercury lamp 13 passed through a synthetic quartz glass 14.
The light from
Warmed to 0 degrees. Due to the energy, reaction chamber 1
A hydrogenated amorphous silicon film was formed on the substrate 15 to be processed by reacting and decomposing the gas mixed in the chamber 8 .

【0015】図2に、本発明によりタングステンヒ−タ
の電流値を変えて作成した水素化アモルファスシリコン
膜のシリコン欠陥密度を示す。シリコン欠陥密度は、電
子スピン共鳴法により測定した。タングステンヒ−タの
電流値を増やすことによりシリコン欠陥密度は減少し、
タングステンヒ−タ電流6A以上で2×1014cm−
3の水素化アモルファスシリコン膜が得られた。ここで
、タングステン電流3A以上、すなわち、水素ラジカル
生成量 (mol)/SiH4 ガス供給量 (mol
)>0.1 となるようにすることで、シリコン欠陥密
度1015cm−3以下の良好な水素化アモルファスシ
リコン膜を生成することができる。
FIG. 2 shows the silicon defect density of hydrogenated amorphous silicon films prepared by varying the current value of the tungsten heater according to the present invention. Silicon defect density was measured by electron spin resonance method. By increasing the current value of the tungsten heater, the silicon defect density decreases,
2 x 1014cm- with tungsten heater current 6A or more
A hydrogenated amorphous silicon film of No. 3 was obtained. Here, the tungsten current is 3 A or more, that is, hydrogen radical generation amount (mol)/SiH4 gas supply amount (mol)
)>0.1, a good hydrogenated amorphous silicon film with a silicon defect density of 1015 cm-3 or less can be produced.

【0016】尚、本発明は上述した実施例に限定される
ものではない。例えば、原料ガスをシランとしたが、ジ
シラン等、他のガスでも良い。また、水素ラジカルをフ
ランジ中で発生させ、反応室中に導入したが、水素ラジ
カルを被処理基板表面近傍に導入できれば良い。また、
水素ラジカルを得る方法として、熱触媒反応を用いたが
、光分解反応等、イオンを生じない反応であれば良い。 さらに、熱触媒反応に用いた金属を、タングステンとし
たが、Ta,Mo,Ti,Zr,Fe,Ca,Ba,N
i,Pt,Rh,Pd等、水素化触媒となり得る高融点
金属ならば良い。その他、本発明の要旨を逸脱しない範
囲で、種々変形して実施することができる。
It should be noted that the present invention is not limited to the embodiments described above. For example, although silane was used as the raw material gas, other gases such as disilane may be used. Moreover, although hydrogen radicals were generated in the flange and introduced into the reaction chamber, it is sufficient if the hydrogen radicals can be introduced near the surface of the substrate to be processed. Also,
Although a thermal catalytic reaction was used as a method for obtaining hydrogen radicals, any reaction that does not produce ions, such as a photolysis reaction, may be used. Furthermore, the metal used in the thermal catalytic reaction was tungsten, but Ta, Mo, Ti, Zr, Fe, Ca, Ba, N
Any metal with a high melting point that can serve as a hydrogenation catalyst may be used, such as Pt, Rh, Pd, etc. In addition, various modifications can be made without departing from the gist of the present invention.

【0017】[0017]

【発明の効果】以上詳述したように、本発明によれば、
欠陥密度の小さい、良好な特性を持つ薄膜を形成するこ
とが可能となる。
[Effects of the Invention] As detailed above, according to the present invention,
It becomes possible to form a thin film with low defect density and good characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明の実施例に係わる光CVD装置の概
略構造を示す断面図
[Fig. 1] A cross-sectional view showing a schematic structure of a photo-CVD apparatus according to an embodiment of the present invention.

【図2】  本発明の実施例において作製された、水素
化アモルファスシリコン膜の欠陥密度と、タングステン
ヒータに流した電流の関係を示した図
[Fig. 2] A diagram showing the relationship between the defect density of a hydrogenated amorphous silicon film produced in an example of the present invention and the current passed through a tungsten heater.

【図3】  従来の光CVD装置の概略構造を示す断面
[Figure 3] Cross-sectional view showing the schematic structure of a conventional optical CVD device

【符号の説明】[Explanation of symbols]

10,30 …水銀 11,31 …水銀溜め 12,32 …混合ガス導入口 13    …低圧水銀ランプ 14    …合成石英ガラス 15,35 …被処理基板 16,36 …基板ホルダー 17,37 …ヒータ 18,38 …反応室 19,39 …ガス排気口 20    …水素ラジカルを含むガスの導入口21 
   …タングステンヒータ 22    …触媒フランジ 33    …光源 34    …窓ガラス
10, 30...Mercury 11, 31...Mercury reservoir 12, 32...Mixed gas inlet 13...Low pressure mercury lamp 14...Synthetic quartz glass 15, 35...Substrate to be processed 16, 36...Substrate holder 17, 37...Heater 18, 38 ...Reaction chambers 19, 39 ...Gas exhaust port 20 ...Inlet port 21 for gas containing hydrogen radicals
...Tungsten heater 22 ...Catalyst flange 33 ...Light source 34 ...Window glass

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】  光化学反応により被処理基板上に薄膜
を形成する際、水素分子を分解して得られる水素ラジカ
ルを含むガスを、前記被処理基板が設置されている反応
室に導入することを特徴とする光CVD法。
1. When forming a thin film on a substrate to be processed by a photochemical reaction, a gas containing hydrogen radicals obtained by decomposing hydrogen molecules is introduced into a reaction chamber in which the substrate to be processed is installed. Features of optical CVD method.
【請求項2】  前記水素ラジカルを含むガスを、前記
反応室中の前記被処理基板表面近傍に導入することを特
徴とする請求項1記載の光CVD法。
2. The photo-CVD method according to claim 1, wherein the gas containing the hydrogen radicals is introduced into the reaction chamber near the surface of the substrate to be processed.
【請求項3】  薄膜形成時に水銀増感反応を利用する
ことを特徴とする請求項1記載の光CVD法。
3. The photo-CVD method according to claim 1, wherein a mercury sensitization reaction is utilized during thin film formation.
【請求項4】  水素ラジカル生成時に、金属の熱触媒
反応、光分解反応のうち少なくともいずれかを利用する
ことを特徴とする請求項1記載の光CVD法。
4. The photo-CVD method according to claim 1, wherein at least one of a thermal catalytic reaction and a photodecomposition reaction of a metal is utilized when hydrogen radicals are generated.
【請求項5】  熱触媒反応に使用する金属に、W.T
a.Mo.Ti,Zr,Fe,Ca,Ba,Ni,Pt
,Rh,Pdのうちの少なくともいずれかを用いること
を特徴とする請求項4記載の光CVD法。
5. The metal used in the thermal catalytic reaction contains W. T
a. Mo. Ti, Zr, Fe, Ca, Ba, Ni, Pt
5. The photoCVD method according to claim 4, wherein at least one of , Rh, and Pd is used.
【請求項6】  被処理基板が設置され、膜形成に供さ
れる原料ガスが導入される反応室と、この反応室内の被
処理基板上に光を照射するための光源と、前記反応室に
導入される水素ラジカルを含むガスを生成する手段とを
具備することを特徴とする光CVD装置。
6. A reaction chamber in which a substrate to be processed is installed and into which a raw material gas for film formation is introduced, a light source for irradiating light onto the substrate to be processed in the reaction chamber, and a light source in the reaction chamber. A photo-CVD apparatus comprising means for generating a gas containing hydrogen radicals to be introduced.
JP91991A 1991-01-09 1991-01-09 Optical cvd method and optical cvd apparatus Pending JPH04235282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP91991A JPH04235282A (en) 1991-01-09 1991-01-09 Optical cvd method and optical cvd apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP91991A JPH04235282A (en) 1991-01-09 1991-01-09 Optical cvd method and optical cvd apparatus

Publications (1)

Publication Number Publication Date
JPH04235282A true JPH04235282A (en) 1992-08-24

Family

ID=11487093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP91991A Pending JPH04235282A (en) 1991-01-09 1991-01-09 Optical cvd method and optical cvd apparatus

Country Status (1)

Country Link
JP (1) JPH04235282A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994008354A1 (en) * 1992-10-05 1994-04-14 Tadahiro Ohmi Method for drying wafer
WO1995018880A1 (en) * 1994-01-11 1995-07-13 Tadahiro Ohmi Method and apparatus for solid surface treatment, and apparatus for forming passivation film, and process apparatus
EP0784337A3 (en) * 1996-01-10 1998-06-03 Nec Corporation Method of removing a carbon-contaminated layer from a silicon substrate surface for subsequent selective silicon epitaxial growth thereon and apparatus for selective silicon epitaxial growth
KR100311893B1 (en) * 1991-03-20 2001-12-15 엔도 마코토 Vapor phase growth method and vapor growth apparatus
US6706648B2 (en) 1995-09-08 2004-03-16 Semiconductor Energy Laboratory Co., Ltd APCVD method of forming silicon oxide using an organic silane, oxidizing agent, and catalyst-formed hydrogen radical
JP2004296926A (en) * 2003-03-27 2004-10-21 Kyocera Corp Semiconductor thin film and photoelectric conversion device using the same
JP2005298851A (en) * 2004-04-07 2005-10-27 Ulvac Japan Ltd Catalyst housing container for thin film manufacturing apparatus and method for supplying reaction gas from the catalyst housing container

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100311893B1 (en) * 1991-03-20 2001-12-15 엔도 마코토 Vapor phase growth method and vapor growth apparatus
WO1994008354A1 (en) * 1992-10-05 1994-04-14 Tadahiro Ohmi Method for drying wafer
EP0664558A1 (en) * 1992-10-05 1995-07-26 OHMI, Tadahiro Method for drying wafer
EP0664558A4 (en) * 1992-10-05 1997-02-19 Tadahiro Ohmi Method for drying wafer.
WO1995018880A1 (en) * 1994-01-11 1995-07-13 Tadahiro Ohmi Method and apparatus for solid surface treatment, and apparatus for forming passivation film, and process apparatus
US6706648B2 (en) 1995-09-08 2004-03-16 Semiconductor Energy Laboratory Co., Ltd APCVD method of forming silicon oxide using an organic silane, oxidizing agent, and catalyst-formed hydrogen radical
US7491659B2 (en) 1995-09-08 2009-02-17 Semiconductor Energy Laboratory Co., Ltd. APCVD method of forming silicon oxide using an organic silane, oxidizing agent, and catalyst-formed hydrogen radical
EP0784337A3 (en) * 1996-01-10 1998-06-03 Nec Corporation Method of removing a carbon-contaminated layer from a silicon substrate surface for subsequent selective silicon epitaxial growth thereon and apparatus for selective silicon epitaxial growth
US6107197A (en) * 1996-01-10 2000-08-22 Nec Corporation Method of removing a carbon-contaminated layer from a silicon substrate surface for subsequent selective silicon epitaxial growth thereon and apparatus for selective silicon epitaxial growth
JP2004296926A (en) * 2003-03-27 2004-10-21 Kyocera Corp Semiconductor thin film and photoelectric conversion device using the same
JP2005298851A (en) * 2004-04-07 2005-10-27 Ulvac Japan Ltd Catalyst housing container for thin film manufacturing apparatus and method for supplying reaction gas from the catalyst housing container

Similar Documents

Publication Publication Date Title
JPH04235282A (en) Optical cvd method and optical cvd apparatus
JPH02258689A (en) Method for forming crystalline thin film
JPH0518796B2 (en)
JPS59207621A (en) Formation of thin film
JPS616199A (en) Process and apparatus for synthesizing diamond in gaseous phase
JPH03274275A (en) Device for forming thin film utilizing organometallic gas
JPH03139824A (en) Depositing method for semiconductor device
Fujimura et al. Formation of self-assembled nanocrystalline silicon dots by SiCl4/H2 RF plasma-enhanced chemical vapor deposition
US4628862A (en) Photochemical vapor deposition apparatus
JPS634454B2 (en)
JPS61236691A (en) Vapor phase synthesis of diamond
JPS60137898A (en) Production of thin diamond film
JPH04173976A (en) Thin film forming device
JP3240305B2 (en) Solid growth method
JPH04154970A (en) Method for synthesizing cubic boron nitride
JPH08100264A (en) Formation of thin film and device therefor
JPH05243214A (en) Equipment for forming silicon oxide film on semiconductor substrate
JPS63301518A (en) Formation of deposited film
JPH05279183A (en) Production of diamond
JPS63260015A (en) Manufacture of amorphous silicon/carbon hydride film
JPH04324628A (en) Manufacture of silicon thin film
JPS60218473A (en) Formation of deposited film
JPH0741950A (en) Production of amorphous metallic alloy thin film using chemical vapor deposition method and its device
JPS6075328A (en) Process and device for photo gaseous phase reaction
JPS6355928A (en) Manufacture of amorphous thin film