JP2004296926A - Semiconductor thin film and photoelectric conversion device using the same - Google Patents

Semiconductor thin film and photoelectric conversion device using the same Download PDF

Info

Publication number
JP2004296926A
JP2004296926A JP2003089269A JP2003089269A JP2004296926A JP 2004296926 A JP2004296926 A JP 2004296926A JP 2003089269 A JP2003089269 A JP 2003089269A JP 2003089269 A JP2003089269 A JP 2003089269A JP 2004296926 A JP2004296926 A JP 2004296926A
Authority
JP
Japan
Prior art keywords
thin film
semiconductor thin
film
amorphous
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003089269A
Other languages
Japanese (ja)
Other versions
JP4836398B2 (en
Inventor
Manabu Komota
学 古茂田
Kouichirou Shinraku
浩一郎 新楽
Hideki Shiroma
英樹 白間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003089269A priority Critical patent/JP4836398B2/en
Publication of JP2004296926A publication Critical patent/JP2004296926A/en
Application granted granted Critical
Publication of JP4836398B2 publication Critical patent/JP4836398B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor thin film which has a high quality and an excellent optical stability, and also a photoelectric conversion device using the thin film. <P>SOLUTION: In the semiconductor thin film containing at least silicon and hydrogen, a ratio of a scattering peak intensity I<SB>TA</SB>of a TA mode to a scattering peak intensity I<SB>TO</SB>of a TO mode obtained from a Raman scattering spectrum is not larger than 0.35. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、少なくともシリコン(以下、Siともいう)および水素(H)を含有する半導体薄膜、およびこの半導体薄膜を利用した太陽電池等の光電変換素子に関する。
【0002】
【従来技術とその課題】
非晶質系Si等の半導体薄膜を利用したデバイスは、今日では非常に多岐にわたって存在するが、近年環境問題への世間の関心が高まるに連れて注目を集めているのが太陽電池である。本来、非晶質系Siは結晶Siに比して吸収係数が大きく、生産性に優れていることから、同デバイスの光活性層材料としても非常に有望な材料として広く認知されている。しかしながら一方で、非晶質系Siは一般にStaebler−Wronski効果と呼ばれる光誘起特性劣化が存在しており、これに起因して光照射後の素子特性が大幅に低下するといった問題を抱えている。
【0003】
従来、この光誘起特性劣化を抑制する手段としては、膜中の含有水素量低減を目的として、膜の堆積と水素プラズマ処理を交互に繰り返しながら製膜を行う手法が提案されている(例えば、特許文献1、2、3参照)。しかしながら、該手法では結果として大幅な含有水素量低減効果が見られない上、高速製膜が非常に困難であるといった問題を抱えている。
【0004】
また、他にはセミアモルファスSiや微結晶Siといった非晶質相と結晶相とを含んだ半導体Si膜を形成する試みも行われている(例えば、特許文献4、5参照)。しかしながら、これらの半導体Si膜においては光劣化自体は抑制されるものの、結晶化率が充分小さくないために光吸収係数が小さくなってしまい(例えば特許文献5では30〜45%の結晶化率)、光活性層として用いる際には非晶質系Siの場合に比して数倍の膜厚を必要とし、生産性において大きな問題を有している。
【0005】
〔特許文献1〕
特開平5−166733号公報
〔特許文献2〕
特開平6−120152号公報
〔特許文献3〕
特開2002−9317号公報
〔特許文献4〕
特開平5−62919号公報
〔特許文献5〕
特開2002−110550号公報
【0006】
【課題を解決するための手段】
本発明は上述の問題点に鑑みてなされたものであり、高品質で光安定性に優れた半導体薄膜およびこれを用いた光電変換素子を提供することを目的とする。
【0007】
本発明において特徴とするところは、少なくともシリコン(Si)および水素(H)を含有する半導体薄膜において、ラマン散乱スペクトルより得られるTO(横型光学振動)モードの散乱ピーク強度ITOとTA(横型音響振動)モードの散乱ピーク強度ITAの比(=ITA/ITO)が0.35以下となることである。
【0008】
また、前記半導体薄膜において、ラマン散乱スペクトルより得られるTOモードの散乱ピーク強度ITOとTAモードの散乱ピーク強度ITAの比(=ITA/ITO)が0.25以下であることが望ましい。
【0009】
また、少なくともSiおよび水素を含有する半導体薄膜において、ラマン散乱スペクトルより得られるTOモードの散乱ピークの半値幅が65cm−1以下であることを特徴とするものである。
【0010】
また、前記半導体薄膜中の電子スピン共鳴法により評価される初期スピン密度が5×1015cm−3以下であることを特徴とする。
【0011】
また、前記半導体薄膜中のSi−H結合量のSi−H結合量およびSi−H結合量の総和に対する割合が0.95以上であることを特徴とする。
【0012】
また、前記半導体薄膜の膜中水素量が7原子%以下であることが好ましい。
【0013】
また、前記半導体薄膜の光学的バンドギャップが1.7eV以下であることを特徴とする。
【0014】
また、前記半導体薄膜が化学気相蒸着法により形成されることを特徴とする。
【0015】
このとき、前記半導体薄膜が基板温度350℃以下で形成されることが望ましい。
【0016】
また、前記半導体薄膜はGe、Sn、C、N、Oの少なくとも一種を含有してもよい。
【0017】
また、少なくとも電極および半導体により形成される光電変換素子において、前記半導体の一部が前記半導体薄膜により構成される光電変換素子は優れた変換効率と光安定性を有する。
【0018】
【発明の実施の形態】
以下、本発明の半導体薄膜およびそれを用いた光電変換素子の実施形態について詳細に説明する。
【0019】
半導体薄膜において、非晶質あるいは結晶性の低い薄膜(以下、あわせて非晶質系という)の構造を記述する場合には秩序度を取り扱う場合が多く、その品質、安定性については、特に短距離秩序(short range order,以下、SROという)との相関が多くの機関から指摘されている。
【0020】
SROが反映されるアモルファスネットワークの振動ダイナミクスを評価する手法として代表的なものに、ラマン散乱分光法が挙げられる。図1は従来および本発明の非晶質系Si膜のラマン散乱スペクトルである。なお、本発明例1は非晶質Si膜、本発明例2は微結晶成分をわずかに含んだ非晶質系Si膜、従来例は非晶質Si膜である。それぞれのスペクトルは、480cm−1付近にピークをもつTO(横型光学振動)帯、385cm−1付近にピークをもつLO(縦型光学振動)帯、305cm−1付近にピークをもつLA(縦型音響振動)帯、および160cm−1付近にピークをもつTA(横型音響振動)帯のエネルギー帯から成る。表1はスペクトル波形をGaussian+Lorenzian型近似曲線によって4つのエネルギー帯に分離し、それぞれのモードのピーク強度および半値幅を示したものである。なお、ピーク強度についてはTOモードのピーク強度を1として規格化した値を示す。
【0021】
【表1】

Figure 2004296926
【0022】
ここで、Siの結合角θの分布幅Δθは、TOモードの散乱ピーク強度ITOとTAモードの散乱ピーク強度ITAの比=ITA/ITOと正の相関関係を有していることが知られており、本発明例1のSi膜はITA/ITO=0.16、例2のSi膜はITA/ITO=0.25と、従来のITA/ITO=0.41に比して1/3〜1/2程度に減少していることがわかる。一般にプラズマCVD法で得られる非晶質Si膜のITA/ITO比は0.35より大きく、この物性値を有する非晶質Si膜を太陽電池素子の光活性層等に用いた場合には、同素子の特性に大きな光劣化が見られる。
【0023】
同様に、Siの結合角θの分布幅Δθと正の相関を有するTOモードの散乱ピークの半値幅HWTOも従来のものより本発明の方が狭幅化しており、一般にプラズマCVD法で得られる非晶質Si膜の半値幅65〜75cm−1よりも小さな値となっている。
【0024】
以上のことは、結合角のばらつきΔθが小さくなっていることを表しており、即ちSROが改善されていることを示すものである。これが、後述する光安定性の向上結果に大きく関係しているものと考えられる。
【0025】
また、本発明例1、2のSi膜は電子スピン共鳴法によって計測されるスピン密度が光照射前(初期)において、それぞれ、3.5×1015cm−3および2.6×1015cm−3であり、5.0×1015cm−3以下の低欠陥密度であることも確認された。スピン密度が前記より大きい値では、活性層に適用した場合に同層での再結合電流が増大し、高い素子特性が得られない。
【0026】
一方、本発明例1、2のSi膜はFT−IR(フーリエ変換赤外分光)法によって評価されるSi−H結合量の、Si−H結合量およびSi−H結合量の総和に対する割合がそれぞれ0.990、および0.985であった。このSi−H結合量は非晶質Si膜においては光劣化と大きな相関を有していることが知られており、一般的にSi−H結合が支配的な膜ほど光劣化が小さい。近年では、膜中のSi−H結合量が7×1018cm−3程度に抑えられれば、光劣化が無くなるという報告もある。本発明のSi膜においては、従来のプラズマCVD法で得られているSi−H結合比0.90を大きく上回り、さらに光劣化抑制効果が顕著に現れる0.95以上の値が得られている。従来の様にSi−H結合比が0.95より小さい場合には素子特性の光劣化が大きくなり、好ましくない。
【0027】
また、同様に光劣化と大きな相関を有しているとされている膜中水素量についても、本発明例1、2のSi膜についてそれぞれ6.9原子%および5.3原子%であることがFT−IRにより評価算出された。なお、膜中水素量の算出は630cm−1付近の吸収ピーク面積とA value=1.6×1019cm−2を用いて行った。上記例においてはともに7原子%以下の低含有水素量となっており、後述する素子特性の安定性に大きく寄与しているものと思われる。含有水素量が前記より大きい場合には膜中のSi−H結合量の絶対値が増大し、光劣化が顕著となる。
【0028】
また、光学特性としては、本発明例1、2のSi膜の光学的バンドギャップがそれぞれ1.60および1.55eVであり、1.7eV以下に狭ギャップ化していることが確認された。光学的バンドギャップが前記より大きい場合には、これをシングルセルの光活性層等に適用した際に、長波長光を充分に吸収できず、結果として素子特性が低下するといった恐れがある。
【0029】
また、本発明例1、2のSi膜は、ともに結晶化率が少なくとも10%以下であることがラマン散乱スペクトルから確認された。このように、本発明例1、2のSi膜は結晶化率が充分小さいために、光吸収係数が非晶質相を反映した充分大きな値となり、従来の非晶質Si膜と同等の膜厚で充分な光吸収を行うことができる。ここで、結晶化率が30%程度以上になると光吸収係数の低下が無視できなくなるため、同等な光吸収量を確保しようとすると膜厚を非常に厚くしなければならなくなり、光電変換素子製造時の生産性を大きく低下させてしまう。なお、ここでいう結晶化率は、ラマン散乱分光法によって得られたスペクトルにおける結晶相ピーク強度/(結晶相ピーク強度+非晶質相ピーク強度)で定義されるものとし、ピーク強度は、結晶相ピーク強度=500〜510cm−1でのピーク強度+520cm−1でのピーク強度、また、非晶質相ピーク強度=480cm−1でのピーク強度、で定義するものとする。
【0030】
次に、本発明のSi膜を化学気相蒸着法の一種であるCat−PECVD法(熱触媒体内蔵カソード型プラズマCVD法)(特開2001−313272号、特願2001−293031号、等を参照)を用いて形成した例について説明する。具体的には、プラズマ励起周波数を40M〜80MHz、カソード内部に設けられたTa、WまたはC等の高融点材料から成る触媒体の温度を1400〜1900℃、H/SiH流量比を2〜20、基板温度を200〜350℃、ガス圧力を0.1〜5torr、VHFプラズマパワー密度を0.01〜0.5W/cmとそれぞれ設定した条件下で得られる。上記の製膜手法および製膜条件下では、製膜雰囲気中に存在する高次シラン系分子の密度が低く、Si−H結合を主とした高品質非晶質系Si薄膜が高製膜速度で形成されやすいと考えられる。
【0031】
ここで、基板温度を350℃より高温とした場合には、膜成長面からの水素の脱離が顕著となり、ダングリングボンドが充分に水素終端されなくなり、結果として高欠陥密度となるため好ましくない。
【0032】
一方、バンドギャップの異なる非晶質系Si系薄膜を得るにはバンドギャップ調整元素を添加してもよい。具体的には、ナローギャップ化に対してはGeまたはSn等、ワイドギャップ化に対してはC、NまたはO等を含有させてもよい。プラズマCVD法および触媒CVD法等の化学気相蒸着法を用いる場合には例えば以下の原料ガスを導入する。即ち、Geを含有させるにはGeH(Hは重水素Dを含む)、Ge2n+2(nは正の整数、以下同様)、GeX(Xはハロゲン元素)等が挙げられる。また、Snを含有させるにはSnH(Hは重水素Dを含む)、Sn2n+2、SnX(Xはハロゲン元素)、SnR(Rはアルキル基)等が挙げられる。一方、Cを含有させるにはCH(Hは重水素Dを含む)、C、C2n+2、C2n、CX(Xはハロゲン元素)等が挙げられる。また、Nを含有させるにはN、NO、NO、NH等が挙げられる。また、Oを含有させるにはO、CO、CO、NO、NO、HO等が挙げられる。
【0033】
次に本発明のSi膜を光電変換素子の光活性層に適用した例について詳細に説明する。
【0034】
図2に示す光電変換素子はスーパーストレート型(透光性基板1側から光を入射させることが可能なタイプ)のタンデム素子である。構成は、透光性基板1、透明電極2、p型の非晶質SiC層3、本発明の実質的にi型の非晶質Si光活性層4、n型の非晶質Si層5、p型の非単結晶Si層6、実質的にi型の非単結晶Si光活性層7、n型の非単結晶Si層8及び裏面電極9を順次積層して成る。同図中の10は透明電極2の上面に形成された取り出し電極である。なお、非晶質SiC層3と非晶質Si層5、および非単結晶Si層6と非単結晶Si層8の導電型はそれぞれ反転してもよい。また、非晶質Si層5および非単結晶Si層6の間にトンネル接合を形成し得る中間層を挿入してもよい。また、非晶質SiC層3は窓層としての機能を有するが、この機能を同じく有するSiOおよびSiN等のワイドギャップ材料に置き換えることが可能である。
【0035】
このような光電変換素子を作製するには、まず、ガラス基板に透明電極となる金属酸化物層を熱CVD法、スパッタリング法、スプレー熱分解法等の手法により形成する。このとき、透明電極形成前にRIE処理またはブラスト処理等の方法によりガラス基板表面に凹凸構造を形成してもよい。
【0036】
次に、導電型決定元素をドープしたワイドギャップを有するp型の非晶質SiC層3を前記透明電極2上に形成する。具体的には、プラズマCVD法、スパッタリング法等の薄膜形成技術にて膜厚10nm程度で形成する。このとき、非晶質SiC層3を触媒CVD法等の手法により形成する場合には、少なくとも透明電極の表面に耐還元性に優れた薄膜層を被覆させることが望ましい。たとえば、上記薄膜層としては酸化亜鉛等をスパッタリングにより形成するとよい。また、非晶質SiC層3は非晶質Si光活性層4とのバンドオフセットを緩和するため、膜中のC濃度を非晶質Si光活性層4との界面付近で低減させてもよい。
【0037】
次に、前記非晶質SiC層3上に実質的にi型の非晶質Si光活性層4となる本発明の非晶質Si層を、熱触媒体内蔵カソード型プラズマCVD法により厚さ100〜300nmの範囲内で形成する。このとき、製膜条件は前記の条件内で選定することが好ましく、特にプラズマ励起周波数を60MHz、触媒体温度を1800℃、H/SiH流量比を5、基板温度を200℃、ガス圧力を1〜1.5torr、RFパワー密度を0.1〜0.2W/cmと設定した条件下では、先の例1で示したITA/ITO=0.16、初期スピン密度3.5×1015cm−3なる高品質非晶質Si膜を2.0nm/secという高製膜速度で形成することができる。ここでITA/ITO比については、その値が0.25以下となる膜質を有するSi膜を活性層に用いると、後述の結果のように特に光劣化抑制に対して大きな効果があることが明らかとなっている。本実施例のように、該値が0.20よりもさらに小さい値となる場合はさらに大きな効果を得ることができる。
【0038】
次に、非晶質Si光活性層4上に非晶質SiC層3とは反対の導電型(すなわちn型)の非晶質Si層5をプラズマCVD法やスパッタ法等の真空製膜法により厚さ50nm以下に形成する。
【0039】
その後、非晶質Si層5上にこれと反対の導電型(すなわちp型)の非単結晶Si層6をプラズマCVD法等によって厚さ50nm以下に形成する。
【0040】
次に、前記非単結晶Si層6上に実質的にi型の非単結晶Si光活性層7を、プラズマCVD法等によって厚さ0.3〜3μm程度に形成する。
【0041】
次に、非単結晶Si光活性層7上に非単結晶Si層6と反対の導電型(すなわちn型)の非単結晶Si層8をプラズマCVD法等によって厚さ50nm以下に形成する。
【0042】
次に、裏面電極9を電子ビーム蒸着法、スパッタリング法等の真空製膜法によりシート抵抗が1Ω/□程度以下となるように適当な膜厚に堆積する。具体的には、Ag膜を1μm程度成膜するとシート抵抗0.1Ω/□以下が実現される。この際、非単結晶Si層8およびAg膜の間に透明導電膜などのバッファ層を介在させてもよい。また、Ag膜は他の工程で問題のない限り他の金属等に置き換えてもよい。
【0043】
裏取り出し電極10については、透明電極2上に真空製膜技術、プリント及び焼成技術、さらにメッキ技術等を用いて形成することができる。
【0044】
以上の方法よって作製された素子の明特性を表2に示す。なお、比較として本発明例2および従来のSi膜を光活性層4に適用した場合の特性についても示す。本発明例2は先に記述したように吸収係数が低減しない範囲内で微結晶成分をわずかに含有させている。
【0045】
【表2】
Figure 2004296926
【0046】
表から分かるように、高製膜速度でSi光活性層を形成したにも関わらず、高い初期変換効率を有しており、光劣化率も従来の14.3%に比して、本発明例1,2においてはそれぞれ6.6%、5.0%と極めて低いことがわかる。このことから、本発明のSi膜が高品質、且つ高光安定性を有していることがデバイス特性からも実証された。なお、表2において示した光照射後の特性は、AM1.5、100mW/cmの擬似太陽光をサンプル温度48℃において200時間連続照射した後に測定したものである。
【0047】
なお、以上ではスーパーストレート型タンデム素子のトップセルへの適用例について説明したが、同型素子のボトムセル、または図1において裏面電極側から光を入射させることが可能なサブストレート型素子の各セルに適用した場合においても同様の効果が得られる。また、板状もしくは球状のSi材料を用いた光電変換素子において、本発明のSi薄膜をヘテロ接合部等に適用させた場合についても、同様の効果が期待できる。
【0048】
【発明の効果】
以上のように、本発明の半導体薄膜及びそれを用いた光電変換素子によれば、従来に比してSROが大幅に改善され、高品質且つ高光安定性の半導体薄膜及びそれを有した光電変換素子を実現できる。
【0049】
また、光電変換素子の光活性層に本発明の半導体薄膜を用いることにより、特性の安定した高効率の光電変換素子を実現させることができる。
【0050】
さらに、光電変換素子の光活性層に本発明の半導体薄膜を用いることにより、該光電変換素子の製造において高い生産性を実現することができる。
【図面の簡単な説明】
【図1】非晶質系Si膜のラマン散乱スペクトルを示す線図である。
【図2】本発明に係る光電変換素子を模式的に説明する断面図である。
【符号の説明】
1:透光性基板
2:透明電極
3:p型の非晶質SiC層
4:実質的にi型の非晶質Si光活性層
5:n型の非晶質Si層
6:p型の非単結晶Si層
7:実質的にi型の非単結晶Si光活性層
8:n型の非単結晶Si層
9:裏面電極
10:取り出し電極[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor thin film containing at least silicon (hereinafter, also referred to as Si) and hydrogen (H), and a photoelectric conversion element such as a solar cell using the semiconductor thin film.
[0002]
[Prior art and its problems]
Devices using semiconductor thin films such as amorphous Si are present in a very wide variety, but in recent years, solar cells have attracted attention as public interest in environmental issues has increased. Originally, amorphous Si has a larger absorption coefficient than crystalline Si and is superior in productivity, and is widely recognized as a very promising material as a photoactive layer material of the device. However, on the other hand, amorphous Si has light-induced characteristic degradation generally called the Staebler-Wronski effect, which causes a problem that the element characteristics after light irradiation are significantly reduced.
[0003]
Conventionally, as a means for suppressing the deterioration of the light-induced characteristics, a method of forming a film while alternately repeating film deposition and hydrogen plasma processing for the purpose of reducing the hydrogen content in the film has been proposed (for example, Patent Documents 1, 2, and 3). However, this method has a problem that a large effect of reducing the content of hydrogen cannot be seen as a result, and that high-speed film formation is very difficult.
[0004]
In addition, attempts have been made to form a semiconductor Si film containing an amorphous phase such as semi-amorphous Si or microcrystalline Si and a crystalline phase (for example, see Patent Documents 4 and 5). However, although the photodegradation itself is suppressed in these semiconductor Si films, the light absorption coefficient is reduced because the crystallization rate is not sufficiently small (for example, a crystallization rate of 30 to 45% in Patent Document 5). When used as a photoactive layer, the film needs to be several times as thick as that of amorphous Si, and there is a major problem in productivity.
[0005]
[Patent Document 1]
JP-A-5-166733 [Patent Document 2]
JP-A-6-120152 [Patent Document 3]
JP 2002-9317 A [Patent Document 4]
JP-A-5-62919 [Patent Document 5]
JP, 2002-110550, A
[Means for Solving the Problems]
The present invention has been made in view of the above problems, and has as its object to provide a semiconductor thin film having high quality and excellent light stability and a photoelectric conversion element using the same.
[0007]
A feature of the present invention is that, in a semiconductor thin film containing at least silicon (Si) and hydrogen (H), scattering peak intensities I TO and TA (horizontal acoustic) in a TO (horizontal optical vibration) mode obtained from a Raman scattering spectrum. The ratio of the scattering peak intensity I TA in the (vibration) mode (= I TA / I TO ) is 0.35 or less.
[0008]
Further, in the semiconductor thin film, the ratio (= I TA / I TO ) of the scattering peak intensity I TO of the TO mode and the scattering peak intensity I TA of the TA mode obtained from the Raman scattering spectrum is desirably 0.25 or less. .
[0009]
Further, in the semiconductor thin film containing at least Si and hydrogen, the half width of the scattering peak of the TO mode obtained from the Raman scattering spectrum is 65 cm −1 or less.
[0010]
Further, the semiconductor thin film has an initial spin density evaluated by an electron spin resonance method of 5 × 10 15 cm −3 or less.
[0011]
Further, the ratio of the amount of Si—H bonds in the semiconductor thin film to the total amount of Si—H bonds and Si—H 2 bonds is 0.95 or more.
[0012]
Further, it is preferable that the amount of hydrogen in the semiconductor thin film is 7 atomic% or less.
[0013]
The semiconductor thin film has an optical band gap of 1.7 eV or less.
[0014]
Further, the semiconductor thin film is formed by a chemical vapor deposition method.
[0015]
At this time, it is preferable that the semiconductor thin film is formed at a substrate temperature of 350 ° C. or less.
[0016]
Further, the semiconductor thin film may contain at least one of Ge, Sn, C, N, and O.
[0017]
Further, in a photoelectric conversion element formed of at least an electrode and a semiconductor, a photoelectric conversion element in which a part of the semiconductor is formed of the semiconductor thin film has excellent conversion efficiency and light stability.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a semiconductor thin film of the present invention and a photoelectric conversion element using the same will be described in detail.
[0019]
In semiconductor thin films, when describing the structure of an amorphous or low-crystalline thin film (hereinafter collectively referred to as an amorphous type), the degree of order is often handled, and the quality and stability are particularly short. Correlation with distance order (hereinafter, referred to as SRO) has been pointed out by many organizations.
[0020]
A typical technique for evaluating the vibration dynamics of an amorphous network in which SRO is reflected is Raman scattering spectroscopy. FIG. 1 shows Raman scattering spectra of the amorphous Si films of the prior art and the present invention. It should be noted that Example 1 of the present invention is an amorphous Si film, Example 2 of the present invention is an amorphous Si film slightly containing a microcrystalline component, and the conventional example is an amorphous Si film. Each spectrum, TO (horizontal optical vibration) band having a peak near 480cm -1, 385cm -1 LO (longitudinal optical vibrations) having a peak near zone, LA (vertical type with a peak near 305 cm -1 And a TA (horizontal acoustic vibration) band having a peak near 160 cm −1 . Table 1 shows the peak intensity and the half width of each mode by dividing the spectrum waveform into four energy bands by a Gaussian + Lorenzian type approximate curve. The peak intensity is a value normalized by setting the peak intensity in the TO mode to 1.
[0021]
[Table 1]
Figure 2004296926
[0022]
Here, the distribution width Δθ of the bonding angle θ of Si has a positive correlation with the ratio of the scattering peak intensity I TO in the TO mode to the scattering peak intensity I TA in the TA mode = ITA / ITO . It is known that the Si film of Example 1 of the present invention has ITA / ITO = 0.16, the Si film of Example 2 has ITA / ITO = 0.25, and the conventional ITA / ITO = 0. It can be seen that it is reduced to about 1 / to 1 / compared to .41. In general, the I TA / I TO ratio of an amorphous Si film obtained by a plasma CVD method is larger than 0.35, and when an amorphous Si film having this physical property value is used for a photoactive layer or the like of a solar cell element. Shows a large light deterioration in the characteristics of the device.
[0023]
Similarly, the half-width HW TO of the scattering peak of the TO mode having a positive correlation with the distribution width Δθ of the bonding angle θ of Si is smaller in the present invention than in the conventional one, and is generally obtained by the plasma CVD method. This value is smaller than the half width 65 to 75 cm -1 of the resulting amorphous Si film.
[0024]
The above indicates that the variation Δθ of the coupling angle is small, that is, the SRO is improved. This is considered to be largely related to the result of improving light stability described later.
[0025]
The spin densities of the Si films of Examples 1 and 2 measured by the electron spin resonance method were 3.5 × 10 15 cm −3 and 2.6 × 10 15 cm before light irradiation (initial stage), respectively. -3, that is, a low defect density of 5.0 × 10 15 cm −3 or less. When the spin density is higher than the above value, the recombination current in the active layer increases when applied to the active layer, and high device characteristics cannot be obtained.
[0026]
On the other hand, the Si films of Examples 1 and 2 of the present invention have a ratio of the amount of Si—H bonds evaluated by FT-IR (Fourier transform infrared spectroscopy) to the sum of the amounts of Si—H bonds and Si—H 2 bonds. Were 0.990 and 0.985, respectively. It is known that the amount of the Si—H bond has a large correlation with light degradation in an amorphous Si film. Generally, the more the Si—H bond is dominant, the smaller the light degradation. In recent years, it has been reported that if the amount of Si—H 2 bonds in the film is suppressed to about 7 × 10 18 cm −3 , photodeterioration is eliminated. In the Si film of the present invention, a value of 0.95 or more, which is significantly higher than the Si—H bond ratio of 0.90 obtained by the conventional plasma CVD method, and furthermore has a remarkable effect of suppressing light deterioration. . If the Si—H bond ratio is smaller than 0.95 as in the conventional case, the optical characteristics of the device are greatly deteriorated, which is not preferable.
[0027]
Similarly, the amount of hydrogen in the film, which is also considered to have a great correlation with light degradation, is 6.9 atomic% and 5.3 atomic% for the Si films of Examples 1 and 2 of the present invention, respectively. Was evaluated and calculated by FT-IR. The calculation of the amount of hydrogen in the film was performed using the absorption peak area near 630 cm −1 and A value = 1.6 × 10 19 cm −2 . In each of the above examples, the hydrogen content is as low as 7 atomic% or less, and it is considered that this greatly contributes to the stability of element characteristics described later. If the hydrogen content is larger than the above, the absolute value of the amount of Si—H 2 bonds in the film increases, and light degradation becomes remarkable.
[0028]
As for the optical characteristics, the optical band gaps of the Si films of Examples 1 and 2 of the present invention were 1.60 and 1.55 eV, respectively, and it was confirmed that the gap was narrowed to 1.7 eV or less. When the optical band gap is larger than the above, when the optical band gap is applied to a photoactive layer of a single cell or the like, long wavelength light cannot be sufficiently absorbed, and as a result, device characteristics may be deteriorated.
[0029]
Further, it was confirmed from the Raman scattering spectrum that the Si films of Examples 1 and 2 of the present invention both had a crystallization ratio of at least 10% or less. As described above, since the crystallization ratios of the Si films of Examples 1 and 2 of the present invention are sufficiently small, the light absorption coefficient has a sufficiently large value reflecting the amorphous phase, and is a film equivalent to the conventional amorphous Si film. Thick enough light absorption can be achieved. Here, when the crystallization ratio is about 30% or more, the decrease in the light absorption coefficient cannot be ignored, and in order to secure the same amount of light absorption, the film thickness must be extremely large, and the production of the photoelectric conversion element is difficult. The productivity at the time is greatly reduced. Note that the crystallization ratio here is defined as crystal phase peak intensity / (crystal phase peak intensity + amorphous phase peak intensity) in a spectrum obtained by Raman scattering spectroscopy. peak intensity of a peak intensity + 520 cm -1 in the phase peak intensity = 500~510cm -1, also intended to peak intensity in the definition of an amorphous phase peak intensity = 480 cm -1.
[0030]
Next, Cat-PECVD (cathode plasma CVD with a built-in thermal catalyst), which is a kind of chemical vapor deposition, is applied to the Si film of the present invention (Japanese Patent Application Laid-Open No. 2001-313272, Japanese Patent Application No. 2001-293031, etc.). (See Reference Example). Specifically, the plasma excitation frequency is 40 MHz to 80 MHz, the temperature of the catalyst body provided inside the cathode and made of a high melting point material such as Ta, W or C is 1400 to 1900 ° C., and the flow rate ratio of H 2 / SiH 4 is 2 To 20, a substrate temperature of 200 to 350 ° C., a gas pressure of 0.1 to 5 torr, and a VHF plasma power density of 0.01 to 0.5 W / cm 2 . Under the above-mentioned film forming method and film forming conditions, the density of the high-order silane-based molecules existing in the film forming atmosphere is low, and the high-quality amorphous Si thin film mainly composed of Si—H bonds has a high film forming rate. It is thought that it is easy to form.
[0031]
Here, when the substrate temperature is higher than 350 ° C., desorption of hydrogen from the film growth surface becomes remarkable, and dangling bonds are not sufficiently terminated with hydrogen, resulting in a high defect density, which is not preferable. .
[0032]
On the other hand, to obtain an amorphous Si-based thin film having a different band gap, a band gap adjusting element may be added. Specifically, Ge or Sn may be contained for narrowing the gap, and C, N or O may be contained for widening the gap. When using a chemical vapor deposition method such as a plasma CVD method and a catalytic CVD method, for example, the following source gases are introduced. That, GeH 4 to be contained Ge (H contains deuterium D), Ge n H 2n + 2 (n is a positive integer, hereinafter the same), GeX 4 (X is a halogen element), and the like. In order to contain Sn, SnH 4 (H includes deuterium D), Sn n H 2n + 2 , SnX 4 (X is a halogen element), SnR 4 (R is an alkyl group), and the like. On the other hand, in order to contain C, CH 4 (H includes deuterium D), C 2 H 2 , C n H 2n + 2 , C n H 2n , CX 4 (X is a halogen element) and the like can be mentioned. Further, N can be contained by N 2 , NO n , N 2 O, NH 3 and the like. Moreover, O 2 , CO, CO 2 , NO n , N 2 O, H 2 O and the like can be used for containing O.
[0033]
Next, an example in which the Si film of the present invention is applied to a photoactive layer of a photoelectric conversion element will be described in detail.
[0034]
The photoelectric conversion element shown in FIG. 2 is a tandem element of a super straight type (a type in which light can enter from the light transmitting substrate 1 side). It comprises a light-transmitting substrate 1, a transparent electrode 2, a p-type amorphous SiC layer 3, a substantially i-type amorphous Si photoactive layer 4 of the present invention, and an n-type amorphous Si layer 5. , A p-type non-single-crystal Si layer 6, a substantially i-type non-single-crystal Si photoactive layer 7, an n-type non-single-crystal Si layer 8, and a back electrode 9 are sequentially laminated. In the figure, reference numeral 10 denotes an extraction electrode formed on the upper surface of the transparent electrode 2. The conductivity types of the amorphous SiC layer 3 and the amorphous Si layer 5 and the non-single-crystal Si layer 6 and the non-single-crystal Si layer 8 may be reversed. Further, an intermediate layer capable of forming a tunnel junction between the amorphous Si layer 5 and the non-single-crystal Si layer 6 may be inserted. Further, although the amorphous SiC layer 3 has a function as a window layer, it can be replaced with a wide gap material having the same function, such as SiO and SiN.
[0035]
In order to manufacture such a photoelectric conversion element, first, a metal oxide layer serving as a transparent electrode is formed on a glass substrate by a method such as a thermal CVD method, a sputtering method, or a spray pyrolysis method. At this time, an uneven structure may be formed on the surface of the glass substrate by a method such as RIE processing or blast processing before forming the transparent electrode.
[0036]
Next, a p-type amorphous SiC layer 3 having a wide gap and doped with a conductivity type determining element is formed on the transparent electrode 2. Specifically, it is formed to a thickness of about 10 nm by a thin film forming technique such as a plasma CVD method or a sputtering method. At this time, when the amorphous SiC layer 3 is formed by a method such as the catalytic CVD method, it is desirable that at least the surface of the transparent electrode is coated with a thin film layer having excellent reduction resistance. For example, as the thin film layer, zinc oxide or the like may be formed by sputtering. In addition, the amorphous SiC layer 3 may reduce the C concentration in the film near the interface with the amorphous Si photoactive layer 4 in order to reduce the band offset with the amorphous Si photoactive layer 4. .
[0037]
Next, the amorphous Si layer of the present invention, which becomes the i-type amorphous Si photoactive layer 4, is formed on the amorphous SiC layer 3 by a cathode plasma CVD method with a built-in thermal catalyst. It is formed within a range of 100 to 300 nm. At this time, the film forming conditions are preferably selected within the above-mentioned conditions. In particular, the plasma excitation frequency is 60 MHz, the catalyst temperature is 1800 ° C., the H 2 / SiH 4 flow ratio is 5, the substrate temperature is 200 ° C., and the gas pressure is the 1~1.5Torr, under the conditions to set the RF power density 0.1~0.2W / cm 2, I TA / I tO = 0.16 shown in the previous example 1, the initial spin density 3. A high quality amorphous Si film of 5 × 10 15 cm −3 can be formed at a high film formation rate of 2.0 nm / sec. Here, as for the I TA / I TO ratio, when a Si film having a film quality with a value of 0.25 or less is used for the active layer, a great effect is particularly exerted on suppression of light deterioration as the result described later. Is evident. As in this embodiment, when the value is smaller than 0.20, a greater effect can be obtained.
[0038]
Next, an amorphous Si layer 5 of a conductivity type opposite to that of the amorphous SiC layer 3 (that is, an n-type) is formed on the amorphous Si photoactive layer 4 by a vacuum deposition method such as a plasma CVD method or a sputtering method. To a thickness of 50 nm or less.
[0039]
Thereafter, a non-single-crystal Si layer 6 of the opposite conductivity type (ie, p-type) is formed on the amorphous Si layer 5 to a thickness of 50 nm or less by a plasma CVD method or the like.
[0040]
Next, a substantially i-type non-single-crystal Si photoactive layer 7 is formed on the non-single-crystal Si layer 6 to a thickness of about 0.3 to 3 μm by a plasma CVD method or the like.
[0041]
Next, on the non-single-crystal Si photoactive layer 7, a non-single-crystal Si layer 8 of the opposite conductivity type (ie, n-type) to the non-single-crystal Si layer 6 is formed to a thickness of 50 nm or less by a plasma CVD method or the like.
[0042]
Next, the back electrode 9 is deposited to a suitable thickness by a vacuum film forming method such as an electron beam evaporation method or a sputtering method so that the sheet resistance becomes about 1 Ω / □ or less. Specifically, when an Ag film is formed to a thickness of about 1 μm, a sheet resistance of 0.1 Ω / □ or less is realized. At this time, a buffer layer such as a transparent conductive film may be interposed between the non-single-crystal Si layer 8 and the Ag film. The Ag film may be replaced with another metal or the like as long as there is no problem in another step.
[0043]
The back extraction electrode 10 can be formed on the transparent electrode 2 by using a vacuum film forming technique, a printing and baking technique, a plating technique, or the like.
[0044]
Table 2 shows the light characteristics of the device manufactured by the above method. For comparison, the characteristics when the present invention example 2 and the conventional Si film are applied to the photoactive layer 4 are also shown. Inventive Example 2 contains a small amount of a microcrystalline component within a range where the absorption coefficient does not decrease as described above.
[0045]
[Table 2]
Figure 2004296926
[0046]
As can be seen from the table, despite the fact that the Si photoactive layer was formed at a high film formation rate, it had a high initial conversion efficiency, and the light deterioration rate of the present invention was higher than that of the conventional 14.3%. It can be seen that in Examples 1 and 2, 6.6% and 5.0%, respectively, were extremely low. From this, it was proved from the device characteristics that the Si film of the present invention had high quality and high light stability. In addition, the characteristics after light irradiation shown in Table 2 were measured after simulated irradiation of AM1.5, 100 mW / cm 2 simulated sunlight at a sample temperature of 48 ° C. for 200 hours.
[0047]
In the above description, the application example of the superstrate type tandem element to the top cell has been described. The same effect can be obtained even when applied. Similar effects can also be expected when a Si thin film of the present invention is applied to a heterojunction or the like in a photoelectric conversion element using a plate-like or spherical Si material.
[0048]
【The invention's effect】
As described above, according to the semiconductor thin film of the present invention and the photoelectric conversion element using the same, the SRO is significantly improved as compared with the conventional semiconductor thin film, and the semiconductor thin film of high quality and high photostability and the photoelectric conversion device having the same An element can be realized.
[0049]
In addition, by using the semiconductor thin film of the present invention for a photoactive layer of a photoelectric conversion element, a highly efficient photoelectric conversion element having stable characteristics can be realized.
[0050]
Further, by using the semiconductor thin film of the present invention for the photoactive layer of the photoelectric conversion element, high productivity can be realized in the production of the photoelectric conversion element.
[Brief description of the drawings]
FIG. 1 is a diagram showing a Raman scattering spectrum of an amorphous Si film.
FIG. 2 is a cross-sectional view schematically illustrating a photoelectric conversion element according to the present invention.
[Explanation of symbols]
1: translucent substrate 2: transparent electrode 3: p-type amorphous SiC layer 4: substantially i-type amorphous Si photoactive layer 5: n-type amorphous Si layer 6: p-type amorphous Si layer Non-single-crystal Si layer 7: substantially i-type non-single-crystal Si photoactive layer 8: n-type non-single-crystal Si layer 9: back surface electrode 10: extraction electrode

Claims (11)

少なくともシリコンおよび水素を含有する半導体薄膜において、ラマン散乱スペクトルより得られるTOモードの散乱ピーク強度ITOに対するTAモードの散乱ピーク強度ITAの比が0.35以下であることを特徴とする半導体薄膜。A semiconductor thin film containing at least silicon and hydrogen, wherein a ratio of a TA mode scattering peak intensity I TA to a TO mode scattering peak intensity I TO obtained from a Raman scattering spectrum is 0.35 or less. . 前記半導体薄膜において、ラマン散乱スペクトルより得られるTOモードの散乱ピーク強度ITOに対するTAモードの散乱ピーク強度ITAの比が0.25以下であることを特徴とする請求項1に記載の半導体薄膜。2. The semiconductor thin film according to claim 1, wherein a ratio of a TA mode scattering peak intensity I TA to a TO mode scattering peak intensity I TO obtained from a Raman scattering spectrum is 0.25 or less in the semiconductor thin film. 3. . 少なくともシリコンおよび水素を含有する半導体薄膜において、ラマン散乱スペクトルより得られるTOモードの散乱ピークの半値幅が65cm−1以下であることを特徴とする半導体薄膜。A semiconductor thin film containing at least silicon and hydrogen, wherein a half-width of a scattering peak of a TO mode obtained from a Raman scattering spectrum is 65 cm -1 or less. 前記半導体薄膜中の電子スピン共鳴法により評価される初期スピン密度が5×1015cm−3以下であることを特徴とする請求項1乃至3に記載の半導体薄膜。The semiconductor thin film according to claim 1, wherein an initial spin density of the semiconductor thin film evaluated by an electron spin resonance method is 5 × 10 15 cm −3 or less. 前記半導体薄膜中のSi−H結合量およびSi−H結合量の総和に対するSi−H結合量の割合が0.95以上であることを特徴とする請求項1乃至3に記載の半導体薄膜。4. The semiconductor thin film according to claim 1, wherein a ratio of a Si—H bond amount to a total sum of a Si—H bond amount and a Si—H 2 bond amount in the semiconductor thin film is 0.95 or more. 5. 前記半導体薄膜の膜中水素量が7原子%以下であることを特徴とする請求項1乃至3に記載の半導体薄膜。4. The semiconductor thin film according to claim 1, wherein the amount of hydrogen in the semiconductor thin film is 7 atomic% or less. 前記半導体薄膜の光学的バンドギャップが1.7eV以下であることを特徴とする請求項1乃至3に記載の半導体薄膜。4. The semiconductor thin film according to claim 1, wherein an optical band gap of the semiconductor thin film is 1.7 eV or less. 前記半導体薄膜が化学気相蒸着法により形成されることを特徴とする請求項1乃至3に記載の半導体薄膜。4. The semiconductor thin film according to claim 1, wherein the semiconductor thin film is formed by a chemical vapor deposition method. 前記半導体薄膜が350℃以下の基板上で形成されることを特徴とする請求項1乃至3に記載の半導体薄膜。The semiconductor thin film according to claim 1, wherein the semiconductor thin film is formed on a substrate at 350 ° C. or lower. 前記半導体薄膜がGe、Sn、C、N、Oの少なくとも一種を含有することを特徴とする請求項1乃至3に記載の半導体薄膜。4. The semiconductor thin film according to claim 1, wherein the semiconductor thin film contains at least one of Ge, Sn, C, N, and O. 少なくとも電極および半導体により形成される光電変換素子において、前記半導体の少なくとも一部が請求項1〜10のいずれかに記載の半導体薄膜により構成されていることを特徴とする光電変換素子。A photoelectric conversion element formed by at least an electrode and a semiconductor, wherein at least a part of the semiconductor is formed of the semiconductor thin film according to claim 1.
JP2003089269A 2003-03-27 2003-03-27 Photoelectric conversion element Expired - Fee Related JP4836398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003089269A JP4836398B2 (en) 2003-03-27 2003-03-27 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003089269A JP4836398B2 (en) 2003-03-27 2003-03-27 Photoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2004296926A true JP2004296926A (en) 2004-10-21
JP4836398B2 JP4836398B2 (en) 2011-12-14

Family

ID=33403185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003089269A Expired - Fee Related JP4836398B2 (en) 2003-03-27 2003-03-27 Photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP4836398B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363577A (en) * 2003-05-13 2004-12-24 Kyocera Corp Semiconductor thin film, photoelectric converter employing it, and photovoltaic generator device
JP2004363580A (en) * 2003-05-13 2004-12-24 Kyocera Corp Photoelectric transducer device and photovoltaic power generation device
JP2010192870A (en) * 2009-02-18 2010-09-02 Korea Inst Of Industrial Technology Method for manufacturing silicon nano-wire, solar cell including the same, and method for manufacturing the solar cell

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310075A (en) * 1989-02-27 1991-01-17 Fujitsu Ltd Hydrogenated amorphous silicon film
JPH04235282A (en) * 1991-01-09 1992-08-24 Toshiba Corp Optical cvd method and optical cvd apparatus
JPH04342122A (en) * 1991-05-17 1992-11-27 Canon Inc Manufacture of hydrogenated amorphous silicon thin film
JPH0697070A (en) * 1992-09-11 1994-04-08 Sanyo Electric Co Ltd Manufacture of polycrystalline silicon film
JPH06204539A (en) * 1992-12-28 1994-07-22 Sanyo Electric Co Ltd Manufacture of thin film polycrystalline silicon for photovoltaic element
JP2001313272A (en) * 2000-04-28 2001-11-09 Kyocera Corp Plasma cvd method and apparatus used therefor
JP2001338885A (en) * 2000-03-23 2001-12-07 Sharp Corp Plasma film-forming device for forming thin film
JP2002110550A (en) * 2000-09-27 2002-04-12 Sharp Corp Microcrystal semiconductor thin film and thin film solar cell

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310075A (en) * 1989-02-27 1991-01-17 Fujitsu Ltd Hydrogenated amorphous silicon film
JPH04235282A (en) * 1991-01-09 1992-08-24 Toshiba Corp Optical cvd method and optical cvd apparatus
JPH04342122A (en) * 1991-05-17 1992-11-27 Canon Inc Manufacture of hydrogenated amorphous silicon thin film
JPH0697070A (en) * 1992-09-11 1994-04-08 Sanyo Electric Co Ltd Manufacture of polycrystalline silicon film
JPH06204539A (en) * 1992-12-28 1994-07-22 Sanyo Electric Co Ltd Manufacture of thin film polycrystalline silicon for photovoltaic element
JP2001338885A (en) * 2000-03-23 2001-12-07 Sharp Corp Plasma film-forming device for forming thin film
JP2001313272A (en) * 2000-04-28 2001-11-09 Kyocera Corp Plasma cvd method and apparatus used therefor
JP2002110550A (en) * 2000-09-27 2002-04-12 Sharp Corp Microcrystal semiconductor thin film and thin film solar cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363577A (en) * 2003-05-13 2004-12-24 Kyocera Corp Semiconductor thin film, photoelectric converter employing it, and photovoltaic generator device
JP2004363580A (en) * 2003-05-13 2004-12-24 Kyocera Corp Photoelectric transducer device and photovoltaic power generation device
JP2010192870A (en) * 2009-02-18 2010-09-02 Korea Inst Of Industrial Technology Method for manufacturing silicon nano-wire, solar cell including the same, and method for manufacturing the solar cell
JP2012209566A (en) * 2009-02-18 2012-10-25 Korea Inst Of Industrial Technology Method for fabricating solar cell

Also Published As

Publication number Publication date
JP4836398B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
EP1939947B1 (en) Silicon-based thin-film photoelectric converter and method of manufacturing the same
US20110126893A1 (en) Thin film silicon solar cell and manufacturing method thereof
JP5314697B2 (en) Silicon-based thin film solar cell and method for manufacturing the same
JP5222434B2 (en) Thin film photoelectric conversion device and manufacturing method thereof
CN104851931A (en) Cadmium telluride thin-film solar cell with gradient structure and manufacture method thereof
JPH11317538A (en) Photoconductive thin film and photovoltaic device
Kim et al. Effect of hydrogen dilution on intrinsic a-Si: H layer between emitter and Si wafer in silicon heterojunction solar cell
JP5400322B2 (en) Silicon-based thin film solar cell and method for manufacturing the same
Qiu et al. Function analysis of the phosphine gas flow for n-type nanocrystalline silicon oxide layer in silicon heterojunction solar cells
JP4780931B2 (en) Photoelectric conversion device and photovoltaic power generation device
WO2005109526A1 (en) Thin film photoelectric converter
JPH10242492A (en) Manufacture of amorphous silicon germanium thin film and photovoltaic element
JP4780928B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP4836398B2 (en) Photoelectric conversion element
JP6047494B2 (en) Thin film photoelectric conversion device and manufacturing method thereof
JP4780930B2 (en) Method for manufacturing photoelectric conversion device
JP4565912B2 (en) Multi-junction semiconductor element and solar cell element using the same
US20130167917A1 (en) Thin film type solar cells and manufacturing method thereof
JPH11103082A (en) Photosensor and manufacture thereof
JP4780929B2 (en) Photoelectric conversion device and photovoltaic device using the same
WO2006006368A1 (en) Method for manufacturing thin film photoelectric converter
JP2001007356A (en) Thin-film solar cell
Das et al. Effect of process parameter variation in deposited emitter and buffer layers on the performance of silicon heterojunction solar cells
JP2013536991A (en) Improved a-Si: H absorber layer for a-Si single-junction and multi-junction thin-film silicon solar cells
JP5123444B2 (en) Manufacturing method of solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4836398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees