JP2001313272A - Plasma cvd method and apparatus used therefor - Google Patents

Plasma cvd method and apparatus used therefor

Info

Publication number
JP2001313272A
JP2001313272A JP2000130858A JP2000130858A JP2001313272A JP 2001313272 A JP2001313272 A JP 2001313272A JP 2000130858 A JP2000130858 A JP 2000130858A JP 2000130858 A JP2000130858 A JP 2000130858A JP 2001313272 A JP2001313272 A JP 2001313272A
Authority
JP
Japan
Prior art keywords
plasma cvd
plasma
source gas
film
cvd method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000130858A
Other languages
Japanese (ja)
Other versions
JP4172739B2 (en
Inventor
Kouichirou Shinraku
浩一郎 新楽
Hideki Shiroma
英樹 白間
Manabu Komota
学 古茂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000130858A priority Critical patent/JP4172739B2/en
Publication of JP2001313272A publication Critical patent/JP2001313272A/en
Application granted granted Critical
Publication of JP4172739B2 publication Critical patent/JP4172739B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To solve problems of a difficulty in a rapid film formation or an increase in an area, a large plasma damage in a conventional plasma CVD method, and difficulty in a temperature control of a substrate or obtaining a film of a high quality with a low defect density in a conventional catalytic CVD method. SOLUTION: A plasma CVD method comprises the steps of plasma activating a raw material gas introduced into a chamber, and depositing a component in the gas on a substrate to be coated. The method further comprises the steps of arranging a heat catalyst made of a tungsten or a tantalum at an upstream side from the plasma generating area at a route of the gas, and depositing the component in the gas on the substrate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はプラズマCVD法お
よびそれに用いる装置に関し、特に太陽電池や電界効果
トランジスタ等の薄膜多結晶Siデバイスを製造するた
めのプラズマCVD法およびそれに用いる装置に関す
る。
The present invention relates to a plasma CVD method and an apparatus used therefor, and more particularly to a plasma CVD method for manufacturing a thin film polycrystalline Si device such as a solar cell or a field effect transistor and an apparatus used therefor.

【0002】[0002]

【従来技術とその課題】薄膜多結晶Si太陽電池に代表
される薄膜多結晶Siデバイスを低コストで製造するに
は、多結晶Si膜をガラス基板等の低コスト基板上に6
00℃程度以下の比較的低温度下で、高速に形成する技
術が必要である。これに対する製膜方法としては、従来
より、主にプラズマCVD法と触媒CVD法とが研究開
発されてきている。
2. Description of the Related Art In order to manufacture a thin-film polycrystalline Si device typified by a thin-film polycrystalline Si solar cell at low cost, a polycrystalline Si film is formed on a low-cost substrate such as a glass substrate.
There is a need for a technique for forming a film at a high speed at a relatively low temperature of about 00 ° C. or less. Conventionally, as a film forming method, a plasma CVD method and a catalytic CVD method have been mainly researched and developed.

【0003】従来のプラズマCVD装置を図3に示す。
図3中、11はチャンバー、12はシャワー電極、13
は基板加熱ヒーター、14は原料ガス導入管、15は基
板、16は真空ポンプ、17は高周波発生源である。こ
のような装置を用いたプラズマCVD法では、従来より
13.5MHzの高周波電源17をプラズマ発生源に使
うことが多かったが、この周波数帯では、太陽電池用多
結晶Si膜を製膜するには大量の水素で希釈する必要が
あり、この条件では高速製膜は望めなかった。
FIG. 3 shows a conventional plasma CVD apparatus.
3, 11 is a chamber, 12 is a shower electrode, 13
Is a substrate heating heater, 14 is a raw material gas introduction pipe, 15 is a substrate, 16 is a vacuum pump, and 17 is a high frequency generation source. In the plasma CVD method using such an apparatus, a high-frequency power supply 17 of 13.5 MHz has been often used as a plasma generation source. However, in this frequency band, a polycrystalline Si film for a solar cell is formed. Must be diluted with a large amount of hydrogen, and high-speed film formation could not be expected under these conditions.

【0004】高周波パワーを上げれば製膜速度は上昇さ
せることができるが、パワー増大に応じて膜のプラズマ
ダメージが大きくなるため、欠陥密度が低い高品質な多
結晶Si膜の形成は困難であった。
[0004] If the high frequency power is increased, the film forming speed can be increased. However, plasma damage of the film increases with the increase in power, and it is difficult to form a high quality polycrystalline Si film having a low defect density. Was.

【0005】上記に対し、近年になって、40MHzや
100MHzといったVHF帯の高周波電源を用いるこ
とでプラズマダメージの少ない高品質な薄膜多結晶Si
膜が比較的高速に形成できることが見出され、薄膜多結
晶Si太陽電池への応用技術開発が活発になってきてい
る(J.Meier et al, Technical digest of 11th PVSEC
(1999) p.221, O. Vetterl et al, Technical digest o
f 11th PVSEC(1999)p.233)。
On the other hand, in recent years, a high-quality thin-film polycrystalline silicon with less plasma damage has been recently used by using a high-frequency power supply in a VHF band such as 40 MHz or 100 MHz.
It has been found that films can be formed at a relatively high speed, and application technology development for thin-film polycrystalline Si solar cells has become active (J. Meier et al, Technical digest of 11th PVSEC).
(1999) p.221, O. Vetterl et al, Technical digest o
f 11th PVSEC (1999) p.233).

【0006】しかし、高周波電源を高周波化するにつれ
て、大面積化が困難となってくるという問題があり、大
面積製膜を必要とする太陽電池製膜技術として用いるに
は依然として問題があった。
However, as the frequency of the high-frequency power supply increases, there is a problem that it is difficult to increase the area, and there is still a problem in using it as a solar cell film forming technique that requires a large area film forming.

【0007】また、従来の触媒CVD装置を図4に示
す。図4中、11はチャンバー、13は基板加熱ヒータ
ー、14は原料ガス導入管、15は基板、16は真空ポ
ンプ、18は熱触媒体である。このような装置を用いた
触媒CVD法(=Cat−CVD法;ホットワイヤーC
VD法(HW−CVD法)も同一原理)では、原料ガス
14の活性化はタングステン等の熱触媒体18によって
行うので、プラズマCVD法で問題となるプラズマダメ
ージは原理的に存在せず、また、熱触媒体18による原
料ガス14の活性化効率も高いので比較的容易に高速製
膜を行うことができ、さらに、大面積化に対しては原理
的な制約が無いので、近年になって、太陽電池用薄膜多
結晶Si膜の製膜技術として注目を集めつつある(H. M
atsumura,Jpn. J. Appl. Phys. 37(1998)3175-3187, R.
E. I. Schropp et al, Technicaldigest of 11th PVSE
C(1999)p.929-930)。
FIG. 4 shows a conventional catalytic CVD apparatus. In FIG. 4, 11 is a chamber, 13 is a substrate heater, 14 is a raw material gas introduction pipe, 15 is a substrate, 16 is a vacuum pump, and 18 is a thermal catalyst. Catalytic CVD using such an apparatus (= Cat-CVD; hot wire C)
In the VD method (HW-CVD method, the same principle), the activation of the source gas 14 is performed by the thermal catalyst 18 such as tungsten, so that plasma damage which is a problem in the plasma CVD method does not exist in principle. In addition, since the activation efficiency of the raw material gas 14 by the thermal catalyst 18 is high, high-speed film formation can be performed relatively easily, and there is no principle limitation on the enlargement of the area. Is attracting attention as a thin film polycrystalline Si film forming technology for solar cells (H. M.
atsumura, Jpn. J. Appl. Phys. 37 (1998) 3175-3187, R.
EI Schropp et al, Technicaldigest of 11th PVSE
C (1999) p.929-930).

【0008】しかし、現状では、Si膜を製膜する際の
原料ガスとなるSiH4やSi26等のSi系原料ガス
14と熱触媒体18との化合反応(シリサイド形成)を
防止するために、熱触媒体18を1600℃程度以上に
する必要があり、これに伴っての残留ガス圧の上昇や、
熱触媒体18中の不純物成分の蒸発や雰囲気ガスとの反
応気化等によって多結晶Si膜中への不純物混入が生じ
やすいという問題があった。
However, under the present circumstances, a chemical reaction (silicide formation) between the Si-based source gas 14 such as SiH 4 or Si 2 H 6 as a source gas when forming the Si film and the thermal catalyst 18 is prevented. Therefore, it is necessary to set the temperature of the thermal catalyst body 18 to about 1600 ° C. or more, and accordingly, the residual gas pressure increases,
There is a problem that impurities are likely to be mixed into the polycrystalline Si film due to evaporation of impurity components in the thermal catalyst 18 or reaction vaporization with an atmospheric gas.

【0009】また、熱触媒体18による熱輻射によって
基板15の温度が製膜中に上昇し、基板15の温度制御
が困難であるという問題もある。
Further, there is another problem that the temperature of the substrate 15 rises during the film formation due to the heat radiation from the thermal catalyst 18 and it is difficult to control the temperature of the substrate 15.

【0010】さらに、この方法では、製膜種の熱運動エ
ネルギーが大きく、比較的低温度下においても高い結晶
化率の多結晶Si膜を高速に形成できるものの、製膜種
の電子温度がプラズマCVD法でのそれよりも低いため
に、製膜種と製膜表面原子との結合反応が弱く、欠陥密
度が低い高品質な膜が得られにくいという問題もある。
Furthermore, in this method, although the thermal kinetic energy of the film-forming species is large and a polycrystalline Si film having a high crystallization rate can be formed at a high speed even at a relatively low temperature, the electron temperature of the film-forming species is limited to the plasma temperature. Since it is lower than that in the CVD method, there is also a problem that a bonding reaction between a film forming species and a film forming surface atom is weak, and it is difficult to obtain a high quality film having a low defect density.

【0011】本発明はこのような従来技術の問題点に鑑
みて案出されたものであり、高速製膜が困難であった
り、プラズマダメージが大きかったり、大面積化が困難
であるという従来のプラズマCVD法の問題点を解消す
るとともに、基板の温度制御が困難であったり、欠陥密
度が低い高品質な膜が得られにくいという従来の触媒C
VD法の問題点を解消したプラズマCVD法およびそれ
に用いる装置を提供することを目的とする。
The present invention has been devised in view of the problems of the prior art described above, and it is difficult to perform high-speed film formation, to cause large plasma damage, or to increase the area. The conventional catalyst C, which solves the problems of the plasma CVD method and has difficulty in controlling the temperature of the substrate and in obtaining a high-quality film having a low defect density.
An object of the present invention is to provide a plasma CVD method which solves the problems of the VD method and an apparatus used for the same.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に係るプラズマCVD法では、チャンバー
内に導入された原料ガスをプラズマで活性化させてこの
原料ガス中の成分を被着基板上に堆積させるプラズマC
VD法において、前記原料ガスの経路における前記プラ
ズマ発生領域よりも上流側にタングステンもしくはタン
タルからなる熱触媒体を配設して前記原料ガス中の成分
を前記被着基板上に堆積させる。
In order to achieve the above object, in the plasma CVD method according to the first aspect, the source gas introduced into the chamber is activated by plasma to remove the components in the source gas. Plasma C deposited on the destination substrate
In the VD method, a thermal catalyst made of tungsten or tantalum is disposed upstream of the plasma generation region in a path of the source gas, and components in the source gas are deposited on the substrate.

【0013】上記プラズマCVD法では、前記チャンバ
ーに前記原料ガスの導入経路を複数設け、この原料ガス
の導入経路ごとに異なる熱触媒体を配設することが望ま
しい。
In the above-mentioned plasma CVD method, it is preferable that a plurality of feed paths for the source gas be provided in the chamber, and a different thermal catalyst be provided for each feed path of the source gas.

【0014】また、上記プラズマCVD法では、前記チ
ャンバーに前記原料ガスの導入経路として水素ガスの導
入経路を設け、この水素ガスの導入経路のみに前記熱触
媒体を配設することが望ましい。
In the above-mentioned plasma CVD method, it is preferable that a hydrogen gas introduction path is provided in the chamber as an introduction path of the source gas, and the thermal catalyst is provided only in the hydrogen gas introduction path.

【0015】また、請求項4に係るプラズマCVD装置
では、チャンバー内に導入された原料ガスをプラズマで
活性化させてこの原料ガス中の成分を被着板上に堆積さ
せるプラズマCVD装置において、前記原料ガスの経路
における前記プラズマ発生領域よりも上流側にタングス
テンもしくはタンタルからなる熱触媒体を配設する。
According to a fourth aspect of the present invention, in the plasma CVD apparatus, the raw material gas introduced into the chamber is activated by plasma to deposit components in the raw material gas on the adherend plate. A thermal catalyst made of tungsten or tantalum is disposed upstream of the plasma generation region in the path of the source gas.

【0016】上記プラズマCVD装置では、前記チャン
バーに前記原料ガスの噴出孔を有するシャワー電極を設
け、このシャワー電極の下流側で前記複数の原料ガスが
混合するようにすることが望ましい。
In the above-mentioned plasma CVD apparatus, it is preferable that a shower electrode having an ejection hole for the source gas is provided in the chamber, and the plurality of source gases are mixed downstream of the shower electrode.

【0017】[0017]

【発明の実施の形態】以下、請求項1に係るプラズマC
VD法および請求項4に係るプラズマCVD装置の実施
形態を説明する。図1は請求項1に係るプラズマCVD
法に用いるプラズマCVD装置を示す図であり、1はチ
ャンバー、2はシャワー電極、3は基板加熱ヒータ、4
は原料ガス導入管、6は真空ポンプ、7は高周波発生装
置、8は熱触媒体である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a plasma C according to claim 1 will be described.
An embodiment of the VD method and the plasma CVD apparatus according to claim 4 will be described. FIG. 1 shows a plasma CVD according to claim 1.
FIG. 1 is a view showing a plasma CVD apparatus used in the method, wherein 1 is a chamber, 2 is a shower electrode, 3 is a substrate heater,
Is a source gas introduction pipe, 6 is a vacuum pump, 7 is a high frequency generator, and 8 is a thermal catalyst.

【0018】装置の基本構造は従来の平行平板型(容量
型)のプラズマCVD装置と同様であり、シャワー電極
2には原料ガス配管4と高周波電源7が接続されてお
り、排気系には真空ポンプ6が、基板ホルダー(不図
示)には基板加熱用ヒーター3が設置されている。
The basic structure of the apparatus is the same as that of a conventional parallel plate type (capacitive type) plasma CVD apparatus. A raw material gas pipe 4 and a high-frequency power source 7 are connected to a shower electrode 2, and a vacuum system is provided for an exhaust system. The pump 6 has a substrate heating heater 3 installed on a substrate holder (not shown).

【0019】原料ガス導入管4から導入される原料ガス
には、Si系ガスとしてはSiH4やSi26等を、非
Si系ガスとしての希釈ガスにはH2やCl2等を、p型
ドーピングガスにはB26等を、n型ドーピングガスに
はPH3等を用いる。
The raw material gas introduced from the raw material gas introduction pipe 4 includes SiH 4 and Si 2 H 6 as the Si-based gas, H 2 and Cl 2 as the diluent gas as the non-Si-based gas, B 2 H 6 or the like is used as a p-type doping gas, and PH 3 or the like is used as an n-type doping gas.

【0020】排気系の真空ポンプ6には膜中への排気系
からの不純物混入を抑制するためにターボ分子ポンプ等
のドライ系の真空ポンプ6を設置することが望ましい。
到達真空度は少なくとも1×10- 3Pa以下とし、1×
10-4Pa以下とすればより望ましい。製膜時の圧力は
10〜1000Pa程度の範囲とする。
It is desirable to install a dry vacuum pump 6 such as a turbo molecular pump in the vacuum pump 6 of the exhaust system in order to prevent impurities from entering the film from the exhaust system.
Ultimate vacuum of at least 1 × 10 - 3 Pa or less and then, 1 ×
It is more preferable that the pressure be 10 −4 Pa or less. The pressure during film formation is in the range of about 10 to 1000 Pa.

【0021】高周波電源7の周波数としては、メートル
角サイズ程度以上の大面積製膜を行う場合には従来から
の13.5MHzを用いるのが望ましいが、特に大面積
製膜にこだわらない限り40MHzや100MHz程度
以上のVHF帯の高周波電源7を使っても製膜は問題な
く行うことができる。
The frequency of the high-frequency power source 7 is desirably 13.5 MHz in the past when forming a large area film having a size of about a square meter or more. Even if a high frequency power supply 7 in the VHF band of about 100 MHz or more is used, film formation can be performed without any problem.

【0022】熱触媒体8には、タングステンやタンタル
といった高融点材料を用い、直流電流を流すことで発熱
高温化させる。熱触媒体8の温度はSi系原料ガスとの
低温反応を避けるために1600℃程度以上とする。熱
触媒体8の形状は線状でも面状でもよい。
The thermal catalyst 8 is made of a material having a high melting point such as tungsten or tantalum, and is heated to a high temperature by flowing a direct current. The temperature of the thermal catalyst 8 is set to about 1600 ° C. or higher to avoid a low-temperature reaction with the Si-based source gas. The shape of the thermal catalyst 8 may be linear or planar.

【0023】基板温度は基板加熱ヒーター3により10
0〜400℃程度の温度条件とし、望ましくは200〜
300℃程度とする。本装置では、熱触媒体8がシャワ
ー電極2を挟んで膜形成領域から離れた位置に設置され
ているので、製膜面への熱輻射が低く抑えられ、基板温
度の制御を容易に行うことができる。
The substrate temperature was set at 10 by the substrate heater 3.
The temperature condition is about 0 to 400 ° C., preferably 200 to 400 ° C.
It is about 300 ° C. In the present apparatus, since the thermal catalyst 8 is installed at a position away from the film formation region with the shower electrode 2 interposed therebetween, heat radiation to the film formation surface is suppressed low, and the substrate temperature can be easily controlled. Can be.

【0024】また、本装置では、熱触媒体8によって原
料ガスの活性化を効率的に行えるので、低プラズマダメ
ージとするために高周波パワーを比較的低パワーの条件
としても、高速な製膜が可能となる。
Further, in the present apparatus, the activation of the source gas can be efficiently performed by the thermal catalyst 8, so that high-speed film formation can be performed even when the high-frequency power is set to a relatively low power in order to reduce plasma damage. It becomes possible.

【0025】さらにまた、本装置では、プラズマCVD
法と触媒CVD法とを組み合わせた構成となっているの
で、それぞれの特長を活かしたより高品質で高結晶化率
の多結晶Si膜を比較的低温度下においても高速に形成
することができる。
Further, in this apparatus, the plasma CVD
Because of the combination of the CVD method and the catalytic CVD method, it is possible to form a polycrystalline Si film having a higher quality and a higher crystallization rate at a high speed even at a relatively low temperature by utilizing the respective features.

【0026】すなわち、プラズマを生成している高周波
パワーは製膜種の主に電子に吸収されてその電子温度を
高めて製膜種と製膜表面の原子との結合反応を促進し、
膜中欠陥の原因である未結合手(不対電子)密度を低減
できるので、比較的低温度下においても高品質な多結晶
Si膜を得ることができる。一方、熱触媒体8は製膜種
の熱運動エネルギーを高めて製膜種の製膜表面でのマイ
グレーションを促進するので、比較的低温度下において
も高い結晶化率の多結晶Si膜を得ることができる。
That is, the high-frequency power generating the plasma is mainly absorbed by the electrons of the film-forming species, raises the electron temperature, and promotes the bonding reaction between the film-forming species and atoms on the film-forming surface.
Since the density of dangling bonds (unpaired electrons), which is a cause of defects in the film, can be reduced, a high-quality polycrystalline Si film can be obtained even at a relatively low temperature. On the other hand, the thermal catalyst 8 increases the thermal kinetic energy of the film-forming species and promotes migration on the film-forming surface of the film-forming species, so that a polycrystalline Si film having a high crystallization rate even at a relatively low temperature is obtained. be able to.

【0027】なお、基板5とシャワー電極2との間の距
離を可変としておけば、製膜条件の自由度をさらに上げ
ることができ、例えばこの距離を2cm程度以下とする
ことにより、より高い製膜圧力でのプラズマ発生が可能
となり、より低プラズマダメージでより高速な膜形成が
可能となる。
If the distance between the substrate 5 and the shower electrode 2 is made variable, the degree of freedom in film forming conditions can be further increased. Plasma can be generated at a film pressure, and a higher-speed film can be formed with lower plasma damage.

【0028】図2には、原料ガス導入経路4を非Si系
ガス4aとSi系ガス4bとに分け、熱触媒体8を非S
i系ガス4aの導入経路のみに設置した場合の装置構成
を示す。なお、ガス導入経路4中での製膜を避けて製膜
をより効率的に行うため、非Si系ガス4aとSi系ガ
ス4bとの混合はシャワー電極2を出てから行う構造と
することが望ましい。
FIG. 2 shows that the source gas introduction path 4 is divided into a non-Si-based gas 4a and a Si-based gas 4b,
An apparatus configuration in the case where the apparatus is installed only in the introduction path of the i-system gas 4a is shown. In addition, in order to avoid film formation in the gas introduction path 4 and to perform film formation more efficiently, the non-Si-based gas 4a and the Si-based gas 4b must be mixed after exiting the shower electrode 2. Is desirable.

【0029】本装置構成では非Si系ガス4aのみを熱
触媒体8で活性化し、Si系ガス4bと熱触媒体8との
接触が避けられているので、熱触媒体8の温度条件を1
600℃程度以下にすることができ、不必要な残留ガス
圧の上昇や熱触媒体8中の不純物成分の蒸発や雰囲気ガ
スとの反応気化等を避けられ、多結晶Si膜中への不純
物混入を低減することができる。
In the present apparatus configuration, only the non-Si-based gas 4a is activated by the thermal catalyst 8, and the contact between the Si-based gas 4b and the thermal catalyst 8 is avoided.
The temperature can be set to about 600 ° C. or less, and unnecessary rise of the residual gas pressure, evaporation of impurity components in the thermal catalyst 8, reaction vaporization with an atmospheric gas, and the like can be avoided, and impurities are mixed into the polycrystalline Si film. Can be reduced.

【0030】なお、図2には、ガス導入経路4をSi系
4aと非Si系4bとに分け、熱触媒体8を非Si系4
aにのみ設置した場合を示したが、導入する複数のガス
の経路4のそれぞれに独立に熱触媒体8を設置する(あ
るいは設置しない)構造とすれば、製膜条件設定の自由
度をいっそう拡大できるので、より高品質な膜形成を期
待することができる。
In FIG. 2, the gas introduction path 4 is divided into a Si-based 4a and a non-Si-based
Although the case where the thermal catalyst 8 is installed only at the position a is shown, if the thermal catalyst 8 is independently installed (or not installed) in each of the plurality of gas paths 4 to be introduced, the degree of freedom in setting the film forming conditions is further increased. Because it can be enlarged, higher quality film formation can be expected.

【0031】また、本実施形態においては、平行平板型
のプラズマCVD装置を例にとって説明したが、それ以
外の例えばECR型等のリモートプラズマCVD装置等
に対しても同様な考え方で応用可能であることは言うま
でもない。
In this embodiment, a parallel plate type plasma CVD apparatus has been described as an example. However, the present invention can be applied to other types such as an ECR type remote plasma CVD apparatus in the same manner. Needless to say.

【0032】[0032]

【発明の効果】以上のように、請求項1に係るプラズマ
CVD法によれば、原料ガスの経路におけるプラズマ発
生領域よりも上流側にタングステンもしくはタンタルか
らなる熱触媒体を配設して原料ガス中の成分を被着基板
上に堆積させることから、原料ガスの活性化を効率的に
行うことができ、プラズマダメージの少ない高品質で高
結晶化率の薄膜多結晶Si膜を比較的低温度下で高速に
形成することができる。もって、低コストかつ高効率な
薄膜多結晶Si太陽電池の製造が可能となる。
As described above, according to the plasma CVD method according to the first aspect, the thermal catalyst made of tungsten or tantalum is disposed upstream of the plasma generation region in the path of the source gas. Since the components contained therein are deposited on the substrate to be deposited, the activation of the source gas can be performed efficiently, and a high-quality thin film polycrystalline Si film with low plasma damage and a high crystallization rate can be formed at a relatively low temperature. It can be formed under high speed. Thus, a low-cost and highly efficient thin-film polycrystalline Si solar cell can be manufactured.

【0033】また、請求項4に係るプラズマCVD装置
によれば、原料ガスの経路中におけるプラズマ発生領域
よりも上流側にタングステンもしくはタンタルからなる
熱触媒体を配設したことから、原料ガスの活性化を効率
的に行うことができ、プラズマダメージの少ない高品質
で高結晶化率の薄膜多結晶Si膜を比較的低温度下で高
速に形成することができる。もって、低コストかつ高効
率な薄膜多結晶Si太陽電池の製造が可能となる。
According to the plasma CVD apparatus of the fourth aspect, since the thermal catalyst made of tungsten or tantalum is disposed on the upstream side of the plasma generation region in the path of the source gas, the activity of the source gas can be reduced. Therefore, a high-quality thin-film polycrystalline Si film with a low degree of plasma damage and a high crystallization rate can be formed at a relatively low temperature and at a high speed. Thus, a low-cost and highly efficient thin-film polycrystalline Si solar cell can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1に係るプラズマCVD法に用いる装置
の一実施形態を示す図である。
FIG. 1 is a view showing an embodiment of an apparatus used for a plasma CVD method according to claim 1;

【図2】請求項1に係るプラズマCVD法に用いる装置
の他の実施形態を示す図である。
FIG. 2 is a view showing another embodiment of the apparatus used for the plasma CVD method according to claim 1;

【図3】従来のプラズマCVD装置を示す図である。FIG. 3 is a diagram showing a conventional plasma CVD apparatus.

【図4】従来の熱触媒体CVD装置を示す図である。FIG. 4 is a view showing a conventional thermal catalyst CVD apparatus.

【符号の説明】[Explanation of symbols]

1:チャンバー、2:シャワー電極、3:基板加熱ヒー
タ、4:原料ガス導入管、6:真空ポンプ、7:高周波
発生装置、8:熱触媒体
1: chamber, 2: shower electrode, 3: substrate heater, 4: source gas introduction pipe, 6: vacuum pump, 7: high frequency generator, 8: thermal catalyst

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K030 AA06 AA17 BA29 BB03 EA01 FA03 FA14 KA17 KA25 KA30 LA16 4M104 BB01 DD44 DD45 HH20 5F051 AA03 AA16 BA12 BA14 CB12 CB29  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K030 AA06 AA17 BA29 BB03 EA01 FA03 FA14 KA17 KA25 KA30 LA16 4M104 BB01 DD44 DD45 HH20 5F051 AA03 AA16 BA12 BA14 CB12 CB29

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 チャンバー内に導入された原料ガスをプ
ラズマで活性化させてこの原料ガス中の成分を被着基板
上に堆積させるプラズマCVD法において、前記原料ガ
スの経路における前記プラズマ発生領域よりも上流側に
タングステンもしくはタンタルからなる熱触媒体を配設
して前記原料ガス中の成分を前記被着基板上に堆積させ
ることを特徴とするプラズマCVD法。
In a plasma CVD method in which a source gas introduced into a chamber is activated by plasma to deposit a component in the source gas on a substrate to be deposited, a plasma generation region in a path of the source gas is used. A plasma CVD method, further comprising arranging a thermal catalyst made of tungsten or tantalum on the upstream side and depositing the components in the source gas on the substrate.
【請求項2】 前記チャンバーに前記原料ガスの導入経
路を複数設け、この原料ガスの導入経路ごとに異なる熱
触媒体を配設することを特徴とする請求項1に記載のプ
ラズマCVD法。
2. The plasma CVD method according to claim 1, wherein a plurality of feed paths for the source gas are provided in the chamber, and different thermal catalysts are provided for each of the feed paths for the source gas.
【請求項3】 前記チャンバーに前記原料ガスの導入経
路として水素ガスの導入経路を設け、この水素ガスの導
入経路のみに前記熱触媒体を配設することを特徴とする
請求項1に記載のプラズマCVD法。
3. The method according to claim 1, wherein a hydrogen gas introduction path is provided in the chamber as the source gas introduction path, and the thermal catalyst is disposed only in the hydrogen gas introduction path. Plasma CVD method.
【請求項4】 チャンバー内に導入された原料ガスをプ
ラズマで活性化させてこの原料ガス中の成分を被着板上
に堆積させるプラズマCVD装置において、前記原料ガ
スの経路における前記プラズマ発生領域よりも上流側に
タングステンもしくはタンタルからなる熱触媒体を配設
したことを特徴とするプラズマCVD装置。
4. A plasma CVD apparatus in which a source gas introduced into a chamber is activated by plasma to deposit a component in the source gas on an adherend plate. A plasma CVD apparatus characterized in that a thermal catalyst made of tungsten or tantalum is disposed on the upstream side.
【請求項5】 前記チャンバーに前記原料ガスの噴出孔
を有するシャワー電極を設け、このシャワー電極の下流
側で前記複数の原料ガスが混合するようにしたことを特
徴とする請求項4に記載のプラズマCVD装置。
5. The apparatus according to claim 4, wherein a shower electrode having a discharge hole for the source gas is provided in the chamber, and the plurality of source gases are mixed downstream of the shower electrode. Plasma CVD equipment.
JP2000130858A 2000-04-28 2000-04-28 Plasma CVD method and apparatus used therefor Expired - Fee Related JP4172739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000130858A JP4172739B2 (en) 2000-04-28 2000-04-28 Plasma CVD method and apparatus used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000130858A JP4172739B2 (en) 2000-04-28 2000-04-28 Plasma CVD method and apparatus used therefor

Publications (2)

Publication Number Publication Date
JP2001313272A true JP2001313272A (en) 2001-11-09
JP4172739B2 JP4172739B2 (en) 2008-10-29

Family

ID=18639868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000130858A Expired - Fee Related JP4172739B2 (en) 2000-04-28 2000-04-28 Plasma CVD method and apparatus used therefor

Country Status (1)

Country Link
JP (1) JP4172739B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003347221A (en) * 2002-05-29 2003-12-05 Kyocera Corp Cat-PECVD METHOD, FILM FORMED BY THE SAME AND THIN FILM DEVICE HAVING THE FILM
JP2004296926A (en) * 2003-03-27 2004-10-21 Kyocera Corp Semiconductor thin film and photoelectric conversion device using the same
JP2004363580A (en) * 2003-05-13 2004-12-24 Kyocera Corp Photoelectric transducer device and photovoltaic power generation device
JP2004363577A (en) * 2003-05-13 2004-12-24 Kyocera Corp Semiconductor thin film, photoelectric converter employing it, and photovoltaic generator device
US7001831B2 (en) 2002-03-12 2006-02-21 Kyocera Corporation Method for depositing a film on a substrate using Cat-PACVD
JP2006294608A (en) * 2005-04-06 2006-10-26 Samsung Sdi Co Ltd Manufacturing method for organic electroluminescent element
US7560750B2 (en) 2003-06-26 2009-07-14 Kyocera Corporation Solar cell device
WO2011037190A1 (en) 2009-09-25 2011-03-31 京セラ株式会社 Deposited film formation device and deposited film formation method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7001831B2 (en) 2002-03-12 2006-02-21 Kyocera Corporation Method for depositing a film on a substrate using Cat-PACVD
JP2003347221A (en) * 2002-05-29 2003-12-05 Kyocera Corp Cat-PECVD METHOD, FILM FORMED BY THE SAME AND THIN FILM DEVICE HAVING THE FILM
JP2004296926A (en) * 2003-03-27 2004-10-21 Kyocera Corp Semiconductor thin film and photoelectric conversion device using the same
JP2004363580A (en) * 2003-05-13 2004-12-24 Kyocera Corp Photoelectric transducer device and photovoltaic power generation device
JP2004363577A (en) * 2003-05-13 2004-12-24 Kyocera Corp Semiconductor thin film, photoelectric converter employing it, and photovoltaic generator device
US7560750B2 (en) 2003-06-26 2009-07-14 Kyocera Corporation Solar cell device
US7910916B2 (en) 2003-06-26 2011-03-22 Kyocera Corporation Multi-junction type solar cell device
JP2006294608A (en) * 2005-04-06 2006-10-26 Samsung Sdi Co Ltd Manufacturing method for organic electroluminescent element
KR100721576B1 (en) 2005-04-06 2007-05-23 삼성에스디아이 주식회사 Method for fabricating organic electroluminescence deivce
US8383208B2 (en) 2005-04-06 2013-02-26 Samsung Display Co., Ltd. Method of fabricating organic light emitting device
WO2011037190A1 (en) 2009-09-25 2011-03-31 京セラ株式会社 Deposited film formation device and deposited film formation method
US8703586B2 (en) 2009-09-25 2014-04-22 Kyocera Corporation Apparatus for forming deposited film and method for forming deposited film

Also Published As

Publication number Publication date
JP4172739B2 (en) 2008-10-29

Similar Documents

Publication Publication Date Title
WO2000044033A1 (en) Method and apparatus for film deposition
KR100797018B1 (en) Semiconductor thin film, semiconductor device employing the same, methods for manufacturing the same and device for manufacturing a semiconductor thin film
US20050233553A1 (en) Method of fabricating semiconductor by nitrogen doping of silicon film
JP5678883B2 (en) Plasma CVD apparatus and silicon thin film manufacturing method
JP2003273023A (en) Cat-PECVD METHOD, DEVICE USED FOR EXECUTING THE METHOD, FILM FORMED BY THE METHOD, AND DEVICE FORMED BY USING THE FILM
WO2009009499A1 (en) Hybrid chemical vapor deposition process combining hot-wire cvd and plasma-enhanced cvd
JP2007281156A (en) Rear-surface-electrode type semiconductor heterojunction solar battery, and manufacturing method and apparatus thereof
JP3990867B2 (en) Deposited film forming apparatus and deposited film forming method
JP2001523038A (en) Annealing method of amorphous film using microwave energy
JP3146112B2 (en) Plasma CVD equipment
JP2001313272A (en) Plasma cvd method and apparatus used therefor
KR20100037071A (en) Heating element cvd apparatus
JP2001332749A (en) Method for forming semiconductor thin film and amorphous silicon solar cell element
JP2000252218A (en) Plasma cvd system and fabrication of silicon thin film photoelectric converter
JP2000260721A (en) Cvd system, cvd method and method of cleaning the cvd system
JP2003124133A (en) Gas-separated catalyst cvd system, photoelectric conversion device manufactured by using the system, and method of manufacturing the device
JP2626701B2 (en) MIS type field effect semiconductor device
JPS6239534B2 (en)
JP2012507133A (en) Deposition apparatus for improving uniformity of material processed on a substrate and method of using the same
JP4196517B2 (en) Semiconductor device manufacturing method
JP4510242B2 (en) Thin film formation method
CN105887040A (en) Method and apparatus for depositing microcrystalline material in photovoltaic applications
JPH04355970A (en) Manufacture of solar cell
JPS58127331A (en) Plasma chemical vapor growth apparatus
JPH0891987A (en) Apparatus for plasma chemical vapor deposition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080811

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080613

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees