JPH04233110A - Manufacture of bismuth-based oxide superconductive wire - Google Patents

Manufacture of bismuth-based oxide superconductive wire

Info

Publication number
JPH04233110A
JPH04233110A JP2418444A JP41844490A JPH04233110A JP H04233110 A JPH04233110 A JP H04233110A JP 2418444 A JP2418444 A JP 2418444A JP 41844490 A JP41844490 A JP 41844490A JP H04233110 A JPH04233110 A JP H04233110A
Authority
JP
Japan
Prior art keywords
powder
based oxide
tube
sintering
low oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2418444A
Other languages
Japanese (ja)
Inventor
Junichi Kai
純一 甲斐
Keisuke Yamamoto
啓介 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2418444A priority Critical patent/JPH04233110A/en
Publication of JPH04233110A publication Critical patent/JPH04233110A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To provide a superconductive wire excellent in superconductivity without sintering inflation by filling powder of a bismuth-based oxide superconductor calcinated under a low oxygen atmosphere into a noble-metal tube, and sintering it after flattening if necessary. CONSTITUTION:For example, Bi2Sr2Cu2Oy, Bi2-xPbxSr2Ca2Cu3Ox, etc., are used as powder of oxide superconductors. This powder includes a powder in which another rare earth elements are added, or a powder in which Si is substituted by another alkali earth metals, or a powder in which pinning centers are contained. This powder of the bismuth oxide superconductor is calcinated under a low oxygen atmosphere. Then, powders containing low oxygen content calcinated under the low oxygen atmosphere, or powders containing no oxygen, are filled into a noble metallic tube, or into an elongated metallic tube if necessary. The noble-metal tube, such as a silver tube, a gold tube, a platinum tube, etc., are subjected to a main sintering treatment or a drawing treatment if necessary.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、焼結膨れを防止したB
i系酸化物超電導線の製造方法に関する。
[Industrial Application Field] The present invention provides B
The present invention relates to a method for manufacturing an i-based oxide superconducting wire.

【0002】0002

【従来の技術】従来、図2に例示の如く、大気中等の酸
素がリッチな雰囲気下で仮焼したBi系酸化物超電導体
の粉末を充填してなる貴金属チューブ、ないしその偏平
体1を加熱処理してBi系酸化物超電導体の粉末を焼結
させて焼結体2とする超電導線の製造方法が知られてい
た。しかしながら、加熱焼結時に膨れ11(膨張部)を
生じる問題点があつた。かかる膨れは、超電導特性の低
下原因や、コイル等に加工する際の障害となる。
[Prior Art] Conventionally, as shown in FIG. 2, a noble metal tube or a flat body 1 thereof is heated, which is filled with Bi-based oxide superconductor powder that has been calcined in an oxygen-rich atmosphere such as the air. A method for manufacturing a superconducting wire in which a sintered body 2 is obtained by processing and sintering Bi-based oxide superconductor powder has been known. However, there was a problem that a bulge 11 (expansion part) was generated during heating and sintering. Such bulges cause deterioration of superconducting properties and become an obstacle when processed into coils and the like.

【0003】0003

【発明が解決しようとする課題】本発明は、焼結膨れな
く加熱処理できるBi系酸化物超電導線の製造方法の開
発を課題とする。
SUMMARY OF THE INVENTION An object of the present invention is to develop a method for manufacturing a Bi-based oxide superconducting wire that can be heat-treated without sintering blisters.

【0004】0004

【課題を解決するための手段】本発明は、低酸素雰囲気
下で仮焼したBi系酸化物超電導体の粉末を充填してな
る貴金属チューブ、ないしその偏平体を加熱処理してB
i系酸化物超電導体の粉末を焼結させることを特徴とす
るBi系酸化物超電導線の製造方法を提供するものであ
る。
[Means for Solving the Problems] The present invention provides a noble metal tube filled with Bi-based oxide superconductor powder calcined in a low-oxygen atmosphere, or a flat body thereof, which is heated to produce a B
The present invention provides a method for manufacturing a Bi-based oxide superconducting wire, which is characterized by sintering powder of an i-based oxide superconductor.

【0005】[0005]

【作用】低酸素雰囲気下で仮焼して得たBi系酸化物超
電導体の粉末を用いることにより、焼結膨れを防止する
ことができる。本発明者らは、その理由を次のように考
えている。すなわち低酸素雰囲気下で仮焼処理すること
より、酸素の吸収量が少ない仮焼体が形成され、その結
果、かかる粉末を加熱焼結させた場合に、酸素の放出が
防止、ないし抑制され、焼結膨れが防止されるものと考
えている。
[Operation] By using the Bi-based oxide superconductor powder obtained by calcining in a low oxygen atmosphere, sintering blisters can be prevented. The present inventors believe that the reason is as follows. That is, by performing the calcining treatment in a low oxygen atmosphere, a calcined body is formed that absorbs less oxygen, and as a result, when such powder is heated and sintered, the release of oxygen is prevented or suppressed. We believe that this prevents sintering blisters.

【0006】[0006]

【実施例】図1に、本発明の製造方法により得られるB
i系酸化物超電導線を例示した。1が貴金属チューブ、
ないしその偏平体、2がBi系酸化物超電導体の粉末を
焼結処理してなる焼結体である。
[Example] Figure 1 shows B obtained by the production method of the present invention.
An i-based oxide superconducting wire is illustrated. 1 is a precious metal tube,
The flat body 2 is a sintered body obtained by sintering Bi-based oxide superconductor powder.

【0007】本発明においては、Bi系酸化物超電導体
の粉末が用いられる。その種類については特に限定はな
く、例えば、Bi2Sr2CaCu2Oy、Bi2−x
PbxSr2Ca2Cu3Ozなどがあげられる。
[0007] In the present invention, a powder of Bi-based oxide superconductor is used. There is no particular limitation on the type, for example, Bi2Sr2CaCu2Oy, Bi2-x
Examples include PbxSr2Ca2Cu3Oz.

【0008】また、前記のBiを他の希土類元素で置換
したもの、Srを他のアルカリ土類金属で置換したもの
などもあげられる。さらに、ピンニングセンターを含有
させたものなどもあげられる。ピンニングセンター含有
のBi系酸化物超電導体は、そのピンニングセンターに
よる磁束のピン止め効果により、高い磁場下においても
大きな臨界電流密度を示す利点を有する。ピンニングセ
ンター含有のBi系酸化物超電導体は、例えばMPMG
法(Melt Powdering Melt Gro
wth)などにより得ることができる。
[0008] Further, examples include those in which Bi is replaced with another rare earth element, and those in which Sr is replaced with another alkaline earth metal. Further, examples include those containing pinning centers. A Bi-based oxide superconductor containing a pinning center has the advantage of exhibiting a large critical current density even under a high magnetic field due to the pinning effect of the magnetic flux by the pinning center. Bi-based oxide superconductors containing pinning centers are, for example, MPMG.
Law (Melt Powdering Melt Gro
wth) etc.

【0009】本発明において用いるBi系酸化物超電導
体の粉末は、低酸素雰囲気下で仮焼処理したものである
。すなわち、本発明において貴金属チューブに充填する
Bi系酸化物超電導体の粉末は、低酸素雰囲気下で仮焼
した酸素含有量の少ないもの、ないし含有しないもので
ある。かかるBi系酸化物超電導体の粉末は、例えば大
気中等で焼結処理したものの粉砕物を窒素ガス雰囲気や
、酸素分圧が0.1atm以下の雰囲気で仮焼処理し、
それを粉砕することにより得ることができる。仮焼温度
は、Bi系酸化物超電導体の種類に応じて適宜に決定し
てよい。一般には、700〜900℃の温度である。
The Bi-based oxide superconductor powder used in the present invention is calcined in a low oxygen atmosphere. That is, in the present invention, the Bi-based oxide superconductor powder filled into the noble metal tube is one that has been calcined in a low oxygen atmosphere and has a low oxygen content, or one that contains no oxygen. Such a Bi-based oxide superconductor powder can be obtained by calcining a pulverized product that has been sintered in the atmosphere or the like in a nitrogen gas atmosphere or an atmosphere with an oxygen partial pressure of 0.1 atm or less, and
It can be obtained by crushing it. The calcination temperature may be determined as appropriate depending on the type of Bi-based oxide superconductor. Generally, the temperature is 700-900°C.

【0010】貴金属チューブに充填するBi系酸化物超
電導体の粉末の粒径は、100μm以下、就中0.1〜
10μmが適当である。貴金属チューブとしては、銀、
金、白金、かかる金属を含有する合金、就中、銀・白金
合金、銀・パラジウム合金の如き高融点合金などからな
るものが用いられる。
[0010] The particle size of the Bi-based oxide superconductor powder to be filled into the noble metal tube is 100 μm or less, especially 0.1 to 0.1 μm.
10 μm is appropriate. Precious metal tubes include silver,
Gold, platinum, alloys containing such metals, and especially high melting point alloys such as silver-platinum alloys and silver-palladium alloys are used.

【0011】Bi系酸化物超電導体の粉末を充填した貴
金属チューブは、必要に応じピンチロール等を介した圧
延処理や、ダイス等を介した伸線処理などによりテープ
状や、細線等の所定の形態に加工したのち、本焼結処理
に供される。その際、本焼結処理に先立ってプレス処理
を施してもよい。プレス処理は、品質の安定化、ないし
向上に有効である。また、プレス処理は複数回繰り返し
てもよく、その場合には前後のプレス処理間に加熱工程
が設けられる。
[0011] The noble metal tube filled with Bi-based oxide superconductor powder is rolled into a tape shape or into a predetermined shape such as a thin wire by rolling using pinch rolls, etc., or wire drawing using a die, etc., as necessary. After processing into a shape, it is subjected to main sintering treatment. At that time, pressing treatment may be performed prior to the main sintering treatment. Pressing treatment is effective for stabilizing or improving quality. Further, the press treatment may be repeated multiple times, in which case a heating step is provided between the previous and subsequent press treatments.

【0012】本焼結処理は、貴金属チューブやその偏平
体中のBi系酸化物超電導体の粉末をバルク化して一体
化させるためのものである。本発明では、コイル等の二
次形態としたものに対して本焼結処理を施してもよい。 本焼結の温度は、貴金属チューブの融点未満の温度で行
われる。一般には、800〜900℃である。
This sintering process is for bulking and integrating the Bi-based oxide superconductor powder in the noble metal tube and its flat body. In the present invention, a secondary form such as a coil may be subjected to the main sintering treatment. The main sintering is performed at a temperature below the melting point of the noble metal tube. Generally, the temperature is 800 to 900°C.

【0013】ちなみに、大気中で形成したBi2Sr2
CaCu2Oy系酸化物超電導体の粉末を、窒素雰囲気
下、800〜850℃で約10時間掛けて仮焼処理した
のち粉砕し、得られた粒径0.1〜10μmの粉末を、
肉厚1.0mm、直径7.0mmの銀チューブに充填し
、それをピンチロールで圧延して幅3mm、厚さ0.2
mm(超電導部の厚さ100μm)のテープに加工した
By the way, Bi2Sr2 formed in the atmosphere
CaCuOy-based oxide superconductor powder is calcined at 800 to 850°C for about 10 hours in a nitrogen atmosphere, and then pulverized, and the resulting powder with a particle size of 0.1 to 10 μm is
Fill a silver tube with a wall thickness of 1.0 mm and a diameter of 7.0 mm, and roll it with pinch rolls to a width of 3 mm and a thickness of 0.2 mm.
mm (thickness of the superconducting part: 100 μm).

【0014】ついで、前記のテープにプレス処理を施し
たのち、850〜890℃で約50時間掛けて本焼結処
理し、酸化物超電導線を得た。得られた酸化物超電導線
に焼結膨れは認められなかった。また、その臨界温度は
85Kであり、臨界電流密度は6000A/cm2(7
7.3K)であった。
[0014] Next, the tape was subjected to a press treatment, and then subjected to a main sintering treatment at 850 to 890°C for about 50 hours to obtain an oxide superconducting wire. No sintering blisters were observed in the obtained oxide superconducting wire. In addition, its critical temperature is 85K, and its critical current density is 6000A/cm2 (7
7.3K).

【0015】一方、比較のために、前記の大気中で形成
したBi2Sr2CaCu2Oy系酸化物超電導体の粉
末(仮焼物)を銀チューブに充填し、上記に準じて酸化
物超電導線を得た。しかし、得られた酸化物超電導線に
は焼結膨れが多数の個所に認められた。また、その臨界
温度は80Kであり、臨界電流密度は2000A/cm
2(77.3K)であった。
On the other hand, for comparison, a silver tube was filled with the Bi2Sr2CaCu2Oy-based oxide superconductor powder (calcined product) formed in the atmosphere, and an oxide superconducting wire was obtained in the same manner as above. However, sintering blisters were observed in many places in the obtained oxide superconducting wire. In addition, its critical temperature is 80K, and its critical current density is 2000A/cm.
2 (77.3K).

【0016】なお前記において、臨界温度は0.1A/
cm2の電流密度下、液体窒素で冷却しながら4端子法
で電気抵抗の温度変化を測定し、電圧端子間の発生電圧
が0となったときの温度である。
[0016] In the above, the critical temperature is 0.1A/
The temperature change in electrical resistance was measured by the four-terminal method under a current density of cm2 while cooling with liquid nitrogen, and this is the temperature when the voltage generated between the voltage terminals becomes 0.

【0017】また臨界電流密度は、パワーリードと共に
液体窒素で冷却しながら徐々に電流値を上げて、4端子
法により電圧端子間の電圧の印加電流による変化を測定
し、X−Yレコーダにおいて1μv/cmの電圧が出現
したときの電流値を超電導体の断面積で除した値である
The critical current density was determined by gradually increasing the current value while cooling the power lead with liquid nitrogen, and measuring the change in voltage between the voltage terminals due to the applied current using the four-terminal method. This is the value obtained by dividing the current value when a voltage of /cm appears by the cross-sectional area of the superconductor.

【0018】[0018]

【発明の効果】本発明によれば、焼結膨れのないBi系
酸化物超電導線を、超電導特性に優れる状態で安定して
得ることができる。
According to the present invention, a Bi-based oxide superconducting wire without sintering blisters can be stably obtained with excellent superconducting properties.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明によるBi系酸化物超電導線を例示した
部分断面斜視図。
FIG. 1 is a partially sectional perspective view illustrating a Bi-based oxide superconducting wire according to the present invention.

【図2】従来例の部分断面斜視図。FIG. 2 is a partially sectional perspective view of a conventional example.

【符号の説明】[Explanation of symbols]

1:貴金属チューブ、ないしその偏平体11:焼結膨れ 1: Precious metal tube or its flat body 11: Sintered bulge

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  低酸素雰囲気下で仮焼したBi系酸化
物超電導体の粉末を充填してなる貴金属チューブ、ない
しその偏平体を加熱処理してBi系酸化物超電導体の粉
末を焼結させることを特徴とするBi系酸化物超電導線
の製造方法。
[Claim 1] A noble metal tube filled with Bi-based oxide superconductor powder calcined in a low-oxygen atmosphere, or a flat body thereof, is heat-treated to sinter the Bi-based oxide superconductor powder. A method for producing a Bi-based oxide superconducting wire, characterized in that:
JP2418444A 1990-12-27 1990-12-27 Manufacture of bismuth-based oxide superconductive wire Pending JPH04233110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2418444A JPH04233110A (en) 1990-12-27 1990-12-27 Manufacture of bismuth-based oxide superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2418444A JPH04233110A (en) 1990-12-27 1990-12-27 Manufacture of bismuth-based oxide superconductive wire

Publications (1)

Publication Number Publication Date
JPH04233110A true JPH04233110A (en) 1992-08-21

Family

ID=18526280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2418444A Pending JPH04233110A (en) 1990-12-27 1990-12-27 Manufacture of bismuth-based oxide superconductive wire

Country Status (1)

Country Link
JP (1) JPH04233110A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003525189A (en) * 1999-07-30 2003-08-26 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Pb-Bi-Sr-Ca-Cu-oxide powder mixture with improved reactivity and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003525189A (en) * 1999-07-30 2003-08-26 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Pb-Bi-Sr-Ca-Cu-oxide powder mixture with improved reactivity and method for producing the same

Similar Documents

Publication Publication Date Title
US6103669A (en) Superconducting wire and method of producing the same
JPH04233110A (en) Manufacture of bismuth-based oxide superconductive wire
EP0409150B1 (en) Superconducting wire
JPH05101723A (en) Manufacture of oxide superconductive wire
JPH02207420A (en) Manufacture of superconducting wire rod
JPS63274016A (en) Oxide superconductor and its manufacture
JPS63276819A (en) Manufacture of ceramic superconductive filament
JPS63285155A (en) Oxide type superconductive material and production thereof
JPH07105765A (en) Manufacture of oxide superconducting wire raw material and oxide superconducting wire
JPH06309967A (en) Manufacture of oxide type superconducting wire
JPH05114313A (en) Superconducting current limiting wire and its manufacture
JPH05101724A (en) Manufacture of oxide superconductive wire
JPH05250938A (en) Manufacture of oxide superconductive wire
JPH06302236A (en) Manufacture of oxide superconductor wire
JP3086237B2 (en) Manufacturing method of oxide superconducting wire
JPH0757571A (en) Manufacture of bi oxide superconducting wire
JPH07130230A (en) Oxide superconducting wire and manufacture thereof
JPH04233109A (en) Manufacture of bismuth-based oxide superconductive wire
JPH04269405A (en) Manufacture of oxide superconductive wire
JPH0465034A (en) Manufacture of oxide superconducting wire
JPH04138625A (en) Manufacture of oxide superconducting wire
JPH0279310A (en) Manufacture of oxide superconductive wire
JPH05144330A (en) Tape-like oxide superconductive wire rod
JPH0676650A (en) Oxide superconducting wire material and superconducting wire made therefrom
JPH02192619A (en) Manufacture of oxide superconductor