JPH04233109A - Manufacture of bismuth-based oxide superconductive wire - Google Patents

Manufacture of bismuth-based oxide superconductive wire

Info

Publication number
JPH04233109A
JPH04233109A JP2418443A JP41844390A JPH04233109A JP H04233109 A JPH04233109 A JP H04233109A JP 2418443 A JP2418443 A JP 2418443A JP 41844390 A JP41844390 A JP 41844390A JP H04233109 A JPH04233109 A JP H04233109A
Authority
JP
Japan
Prior art keywords
based oxide
temperature
powder
oxide superconductor
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2418443A
Other languages
Japanese (ja)
Inventor
Junichi Kai
純一 甲斐
Keisuke Yamamoto
啓介 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2418443A priority Critical patent/JPH04233109A/en
Publication of JPH04233109A publication Critical patent/JPH04233109A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To stably provide an oxide superconductive wire composed of Bi2Sr2 CaCu2Oy excellent in superconductive characteristics, especially in the critical current density. CONSTITUTION:Powder of an oxide superconductor of Bi2Sr2CaCu2Oy is filled into a noble-metal tube 1. After being flattened if necessary, it is sintered by a partial fusion method while kept for more than ten hours at a temperature which is lower, to the extent of 10 to 30 deg.C, than the maximum heating temperature so as to form a sintered body 2.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、超電導特性、就中、臨
界電流密度に優れるBi系酸化物超電導線の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a Bi-based oxide superconducting wire which has excellent superconducting properties, especially critical current density.

【0002】0002

【従来の技術】従来、Bi2Sr2CaCu2Oy系酸
化物超電導線の製造方法としては、当該酸化物超電導体
の粉末を銀チューブに充填し、それを必要に応じて偏平
化したのち加熱し、3〜5時間掛けて冷却することによ
り当該粉末を焼結させる方法が知られていた。しかしな
がら、得られるBi系酸化物超電導線が超電導特性、就
中、臨界電流密度に劣る問題点が有った。
[Prior Art] Conventionally, the method for producing Bi2Sr2CaCu2Oy-based oxide superconducting wire involves filling a silver tube with powder of the oxide superconductor, flattening it as necessary, and then heating it for 3 to 5 hours. A method was known in which the powder was sintered by cooling it. However, there was a problem that the resulting Bi-based oxide superconducting wire was inferior in superconducting properties, especially in critical current density.

【0003】一方、Y系酸化物超電導体において、その
粉末が部分的に溶融する加熱温度で焼結処理した場合に
臨界電流密度が向上することが知られており、その知見
を基にBi2Sr2CaCu2Oy系酸化物超電導体の
粉末について部分溶融法による焼結処理を従来に準じた
冷却条件で試みたが、満足できる結果は得られなかった
On the other hand, it is known that the critical current density of Y-based oxide superconductors is improved when the powder is sintered at a heating temperature that partially melts the powder, and based on this knowledge, Bi2Sr2CaCu2Oy We attempted to sinter the oxide superconductor powder using the partial melting method under conventional cooling conditions, but no satisfactory results were obtained.

【0004】0004

【発明が解決しようとする課題】本発明は、超電導特性
、就中、臨界電流密度に優れるBi2Sr2CaCu2
Oy系酸化物超電導線を得ることを課題とする。
Problem to be Solved by the Invention The present invention is directed to superconducting Bi2Sr2CaCu2 which has excellent superconducting properties, especially critical current density.
The objective is to obtain an Oy-based oxide superconducting wire.

【0005】[0005]

【課題を解決するための手段】本発明は、Bi2Sr2
CaCu2Oy系酸化物超電導体の粉末を充填してなる
貴金属チューブ、ないしその偏平体を加熱処理して当該
粉末を部分溶融下に焼結させるにあたり、最高加熱温度
よりも10〜30℃低い温度下に10時間以上保持する
ことを特徴とするBi系酸化物超電導線の製造方法を提
供するものである。
[Means for Solving the Problems] The present invention provides Bi2Sr2
When heat-treating a noble metal tube filled with CaCu2Oy-based oxide superconductor powder or its flat body to sinter the powder while partially melting, the temperature is 10 to 30°C lower than the maximum heating temperature. The present invention provides a method for manufacturing a Bi-based oxide superconducting wire, which is characterized in that the wire is maintained for 10 hours or more.

【0006】[0006]

【作用】Bi2Sr2CaCu2Oy系酸化物超電導体
の粉末を部分溶融下に焼結させるにあたり、最高加熱温
度よりも10〜30℃低い温度下に10時間以上保持す
ることにより、非超電導性粒子の生成が抑制され、かつ
超電導特性の向上に有効な2212相の生成、及びC軸
(偏平体面に垂直な方向)配向が促進される。
[Action] When sintering Bi2Sr2CaCu2Oy-based oxide superconductor powder under partial melting, the generation of non-superconducting particles is suppressed by holding the powder at a temperature 10 to 30°C lower than the maximum heating temperature for 10 hours or more. The generation of the 2212 phase and the C-axis (direction perpendicular to the plane of the flat body) which is effective for improving superconducting properties are promoted.

【0007】[0007]

【実施例】図1に、本発明の製造方法で得たBi系酸化
物超電導線を例示した。1が貴金属チューブ、ないしそ
の偏平体、2がBi2Sr2CaCu2Oy系酸化物超
電導体の粉末を焼結処理してなる焼結体である。
EXAMPLE FIG. 1 shows an example of a Bi-based oxide superconducting wire obtained by the manufacturing method of the present invention. 1 is a noble metal tube or a flat body thereof, and 2 is a sintered body obtained by sintering powder of a Bi2Sr2CaCu2Oy-based oxide superconductor.

【0008】本発明においては、Bi2Sr2CaCu
2Oy系酸化物超電導体の粉末が用いられる。その種類
については特に限定はなく、例えばBiを他の希土類元
素で置換したもの、Srを他のアルカリ土類金属で置換
したものなども用いうる。
In the present invention, Bi2Sr2CaCu
A powder of 2Oy-based oxide superconductor is used. The type thereof is not particularly limited, and for example, those in which Bi is replaced with other rare earth elements, and those in which Sr is replaced with other alkaline earth metals may also be used.

【0009】Bi2Sr2CaCu2Oy系酸化物超電
導体の粉末を充填するための貴金属チューブとしては、
銀、金、白金、かかる金属を含有する合金、就中、銀・
白金合金、銀・パラジウム合金の如き高融点合金などか
らなるものが用いられる。充填する粉末の粒径は、10
0μm以下、就中0.1〜10μmが適当である。
[0009] As a noble metal tube for filling powder of Bi2Sr2CaCu2Oy-based oxide superconductor,
Silver, gold, platinum, alloys containing such metals, especially silver,
High melting point alloys such as platinum alloys and silver/palladium alloys are used. The particle size of the powder to be filled is 10
A suitable thickness is 0 μm or less, particularly 0.1 to 10 μm.

【0010】Bi2Sr2CaCu2Oy系酸化物超電
導体の粉末を充填した貴金属チューブは、必要に応じピ
ンチロール等を介した圧延処理や、ダイス等を介した伸
線処理などによりテープ状や、細線等の所定の形態に加
工したのち、本焼結処理に供される。その際、本焼結処
理に先立ってプレス処理を施してもよい。プレス処理は
、品質の安定化、ないし向上に有効である。また、プレ
ス処理は複数回繰り返してもよく、その場合には前後の
プレス処理間に加熱工程が設けられる。
The noble metal tube filled with Bi2Sr2CaCu2Oy-based oxide superconductor powder is rolled into a tape shape or into a predetermined shape, such as a thin wire, by rolling using pinch rolls, etc., or wire drawing using a die, etc., as necessary. After processing into a shape, it is subjected to main sintering treatment. At that time, pressing treatment may be performed prior to the main sintering treatment. Pressing treatment is effective for stabilizing or improving quality. Further, the press treatment may be repeated multiple times, in which case a heating step is provided between the previous and subsequent press treatments.

【0011】本焼結処理は、貴金属チューブやその偏平
体中のBi2Sr2CaCu2Oy系酸化物超電導体の
粉末をバルク化して一体化させるためのものである。本
発明では、コイル等の二次形態としたものに対して本焼
結処理を施してもよい。
[0011] This sintering process is for bulking and integrating the powder of the Bi2Sr2CaCu2Oy based oxide superconductor in the noble metal tube and its flat body. In the present invention, a secondary form such as a coil may be subjected to the main sintering treatment.

【0012】本焼結処理は、部分溶融法により行う。そ
の例としては、貴金属チューブの融点未満の温度でBi
2Sr2CaCu2Oy系酸化物超電導体の粉末を部分
溶融させたのち冷却する方式などがあげられる。本発明
ではその際、Bi2Sr2CaCu2Oy系酸化物超電
導体の粉末が部分溶融する最高温度に加熱したのち、そ
の温度よりも10〜30℃低い温度下に10時間以上保
持する工程を設ける。
The main sintering process is performed by a partial melting method. As an example, Bi
Examples include a method in which 2Sr2CaCu2Oy-based oxide superconductor powder is partially melted and then cooled. In the present invention, a step is provided in which the powder of the Bi2Sr2CaCu2Oy-based oxide superconductor is heated to the maximum temperature at which it partially melts, and then maintained at a temperature 10 to 30C lower than that temperature for 10 hours or more.

【0013】図2に前記した本焼結処理のパターンを例
示した。図例は、約50℃/時間の速度で約890℃の
最高温度まで昇温したのち(a工程)、約2.5℃/時
間の速度で約870℃まで降温し(b工程)、その温度
に約12時間保持する(c工程)。その後、100℃/
時間の速度で室温まで降温する(d工程)各工程からな
る焼結パターンを示している。
FIG. 2 shows an example of the pattern of the main sintering treatment described above. In the example shown, the temperature is raised to a maximum temperature of about 890°C at a rate of about 50°C/hour (step a), then lowered to about 870°C at a rate of about 2.5°C/hour (step b), and then Hold at temperature for about 12 hours (step c). After that, 100℃/
The figure shows a sintering pattern consisting of each process in which the temperature is lowered to room temperature at the rate of time (step d).

【0014】本発明では、最高温度まで加熱したのち、
その温度よりも10〜30℃低い温度で少なくとも10
時間保持する点を除き、昇温速度等の焼結条件について
は特に限定はない。処理効率の点よりは、急熱急冷方式
が好ましい。また、最高加熱温度よりも10〜30℃低
い温度での保持時間は、長いほど超電導特性の向上に有
利であるが、実用的には10〜100時間が適当である
In the present invention, after heating to the maximum temperature,
At least 10°C at a temperature 10-30°C lower than that temperature
There are no particular limitations on the sintering conditions, such as the rate of temperature increase, except for the holding time. From the point of view of processing efficiency, the rapid heating and cooling method is preferable. Further, the longer the holding time at a temperature 10 to 30° C. lower than the maximum heating temperature, the more advantageous it is to improving the superconducting properties, but 10 to 100 hours is practically appropriate.

【0015】ちなみに、Bi2Sr2CaCu2Oy系
酸化物超電導体からなる粒径0.1〜10μmの粉末を
、肉厚1.0mm、直径7.0mmの銀チューブに充填
し、それをピンチロールで圧延して幅3mm、厚さ0.
2mm(超電導部の厚さ100μm)のテープに加工し
たのち、それを図2に示したパターン(保持時間12時
間)に従って本焼結処理し、Bi系酸化物超電導線を得
た。
Incidentally, a powder made of Bi2Sr2CaCu2Oy-based oxide superconductor with a particle size of 0.1 to 10 μm is filled into a silver tube with a wall thickness of 1.0 mm and a diameter of 7.0 mm, and the tube is rolled with pinch rolls to give a width of 0.1 to 10 μm. 3mm, thickness 0.
After processing into a tape of 2 mm (thickness of superconducting part 100 μm), it was subjected to main sintering treatment according to the pattern shown in FIG. 2 (holding time 12 hours) to obtain a Bi-based oxide superconducting wire.

【0016】得られたBi系酸化物超電導線の臨界温度
は82Kであった。また、臨界電流密度は3000A/
cm2(77.3K)であった。また、保持時間を40
時間とした場合の臨界温度は85Kであり、臨界電流密
度は6000A/cm2(77.3K)であった。
The critical temperature of the obtained Bi-based oxide superconducting wire was 82K. In addition, the critical current density is 3000A/
cm2 (77.3K). Also, the retention time is 40
The critical temperature in terms of time was 85K, and the critical current density was 6000A/cm2 (77.3K).

【0017】なお比較のため、870℃での保持時間を
5時間としたほかは上記に準じて得たBi系酸化物超電
導線は、その臨界温度が80Kであり、臨界電流密度は
1300A/cm2(77.3K)であった。
For comparison, a Bi-based oxide superconducting wire obtained according to the above procedure except that the holding time at 870° C. was changed to 5 hours had a critical temperature of 80 K and a critical current density of 1300 A/cm2. (77.3K).

【0018】なお前記において、臨界温度は0.1A/
cm2の電流密度下、液体窒素で冷却しながら4端子法
で電気抵抗の温度変化を測定し、電圧端子間の発生電圧
が0となったときの温度である。
[0018] In the above, the critical temperature is 0.1A/
The temperature change in electrical resistance was measured by the four-terminal method under a current density of cm2 while cooling with liquid nitrogen, and this is the temperature when the voltage generated between the voltage terminals becomes 0.

【0019】また臨界電流密度は、パワーリードと共に
液体窒素で冷却しながら徐々に電流値を上げて、4端子
法により電圧端子間の電圧の印加電流による変化を測定
し、X−Yレコーダにおいて1μv/cmの電圧が出現
したときの電流値を超電導体の断面積で除した値である
The critical current density is determined by gradually increasing the current value while cooling the power lead with liquid nitrogen, and measuring the change in voltage between the voltage terminals due to the applied current using the four-terminal method. This is the value obtained by dividing the current value when a voltage of /cm appears by the cross-sectional area of the superconductor.

【0020】[0020]

【発明の効果】本発明によれば、超電導特性、就中、臨
界電流密度に優れるBi2Sr2CaCu2Oy系の酸
化物超電導線を安定して得ることができる。
According to the present invention, a Bi2Sr2CaCu2Oy-based oxide superconducting wire having excellent superconducting properties, especially critical current density, can be stably obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明によるBi系酸化物超電導線を例示した
部分断面斜視図。
FIG. 1 is a partially sectional perspective view illustrating a Bi-based oxide superconducting wire according to the present invention.

【図2】本発明における本焼結処理のパターン例を示し
たグラフ。
FIG. 2 is a graph showing an example of a pattern of the main sintering process in the present invention.

【符号の説明】[Explanation of symbols]

1:貴金属チューブ、ないしその偏平体2:Bi2Sr
2CaCu2Oy系酸化物超電導体の粉末の焼結体
1: Precious metal tube or its flat body 2: Bi2Sr
Sintered body of powder of 2CaCu2Oy-based oxide superconductor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  Bi2Sr2CaCu2Oy系酸化物
超電導体の粉末を充填してなる貴金属チューブ、ないし
その偏平体を加熱処理して当該粉末を部分溶融下に焼結
させるにあたり、最高加熱温度よりも10〜30℃低い
温度下に10時間以上保持することを特徴とするBi系
酸化物超電導線の製造方法。
Claim 1: When heating a noble metal tube filled with Bi2Sr2CaCu2Oy-based oxide superconductor powder or its flat body to sinter the powder with partial melting, the temperature is 10 to 30°C higher than the maximum heating temperature. A method for producing a Bi-based oxide superconducting wire, the method comprising maintaining the wire at a temperature as low as 10° C. for 10 hours or more.
JP2418443A 1990-12-27 1990-12-27 Manufacture of bismuth-based oxide superconductive wire Pending JPH04233109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2418443A JPH04233109A (en) 1990-12-27 1990-12-27 Manufacture of bismuth-based oxide superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2418443A JPH04233109A (en) 1990-12-27 1990-12-27 Manufacture of bismuth-based oxide superconductive wire

Publications (1)

Publication Number Publication Date
JPH04233109A true JPH04233109A (en) 1992-08-21

Family

ID=18526279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2418443A Pending JPH04233109A (en) 1990-12-27 1990-12-27 Manufacture of bismuth-based oxide superconductive wire

Country Status (1)

Country Link
JP (1) JPH04233109A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996019417A1 (en) * 1994-12-20 1996-06-27 Siemens Aktiengesellschaft Process for producing an elongate superconductor with a bismuth phase having a high transition temperature and superconductor produced according to this process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996019417A1 (en) * 1994-12-20 1996-06-27 Siemens Aktiengesellschaft Process for producing an elongate superconductor with a bismuth phase having a high transition temperature and superconductor produced according to this process
US6074991A (en) * 1994-12-20 2000-06-13 Siemens Aktiengesellschaft Process for producing an elongated superconductor with a bismuth phase having a high transition temperature and a superconductor produced according to this process

Similar Documents

Publication Publication Date Title
EP0456927A1 (en) Superconducting wire and method of production thereof
US5075285A (en) Silver alloy sheathing material for ceramic superconducting wires
US3838503A (en) Method of fabricating a composite multifilament intermetallic type superconducting wire
US3509622A (en) Method of manufacturing composite superconductive conductor
US6246007B1 (en) Oxide superconductive wire and process for manufacturing the same
US3504105A (en) Electrically conductive tape of normally conductive metal with a superconductor therein
JPH04233109A (en) Manufacture of bismuth-based oxide superconductive wire
US3857173A (en) Method of producing a composite superconductor
US6471785B1 (en) Process for producing a strip-shaped, multi-core superconductor with high-Tc superconducting material and superconductor produced by this process
JPH06158212A (en) Nb3al superconductor, its production, nb3al superconducting precursor composition and high magnetic field generating superconducting magnet
US4321749A (en) Method for producing superconductors
JP3273953B2 (en) Method for producing niobium-tin superconducting wire
JPH0251807A (en) Manufacture of nb3al superconducting wire rod with extremely fine multiplex structure
JP2000200518A (en) Oxide superconducting wire and its manufacture
JPH05101724A (en) Manufacture of oxide superconductive wire
JPH05101723A (en) Manufacture of oxide superconductive wire
Hemachalam et al. Studies on filamentary Nb 3 Sn wires fabricated by the infiltration method
JP3078857B2 (en) Manufacturing method of oxide superconducting wire
JPH04233110A (en) Manufacture of bismuth-based oxide superconductive wire
JPH03102717A (en) Manufacture of conductor for current lead
JPH07105765A (en) Manufacture of oxide superconducting wire raw material and oxide superconducting wire
Tachikawa et al. Method of producing a composite superconductor
JPH05114313A (en) Superconducting current limiting wire and its manufacture
JPH04269405A (en) Manufacture of oxide superconductive wire
JPH08167336A (en) Manufacture of nb3sn superconducting wire