JPH04232233A - Production of aluminum foil for anode of electrolytic capacitor - Google Patents
Production of aluminum foil for anode of electrolytic capacitorInfo
- Publication number
- JPH04232233A JPH04232233A JP41563190A JP41563190A JPH04232233A JP H04232233 A JPH04232233 A JP H04232233A JP 41563190 A JP41563190 A JP 41563190A JP 41563190 A JP41563190 A JP 41563190A JP H04232233 A JPH04232233 A JP H04232233A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- annealing
- electrolytic capacitor
- aluminum foil
- foil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052782 aluminium Inorganic materials 0.000 title claims description 34
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims description 34
- 239000011888 foil Substances 0.000 title claims description 34
- 239000003990 capacitor Substances 0.000 title claims description 13
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000000137 annealing Methods 0.000 claims abstract description 48
- 238000000034 method Methods 0.000 claims abstract description 17
- 238000005097 cold rolling Methods 0.000 claims abstract description 13
- 238000005096 rolling process Methods 0.000 claims description 8
- 238000001816 cooling Methods 0.000 abstract description 6
- 239000013078 crystal Substances 0.000 description 9
- 239000012535 impurity Substances 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 8
- 239000002244 precipitate Substances 0.000 description 7
- 239000006104 solid solution Substances 0.000 description 7
- 238000001953 recrystallisation Methods 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000010301 surface-oxidation reaction Methods 0.000 description 4
- 238000005530 etching Methods 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/40—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling foils which present special problems, e.g. because of thinness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
- B21B2003/001—Aluminium or its alloys
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Metal Rolling (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は電解コンデンサ陽極に使
用されるアルミニウム箔の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing aluminum foil for use in electrolytic capacitor anodes.
【0002】0002
【従来の技術】中高圧用電解コンデンサ陽極用箔は、ア
ルミニウム素箔を直流エッチングして粗面化し、150
〜200V以上の電圧で化成処理して製造されている。
かかる電解コンデンサ陽極用アルミニウム箔の具備すべ
きことは静電容量の大きいことである。最終焼鈍したア
ルミニウム箔の再結晶集合組織において、(100)面
が箔の表面と平行となっており、〔001〕方向が圧延
方向と平行となっている、いわゆる立方体方位の結晶粒
が多く存在すれば、このアルミニウム箔をエッチングし
た場合に(100)面に垂直に発達成長する柱状ピット
の密度が大きくなり、静電容量が大きくなることは周知
の事実である。[Prior Art] Foil for anodes of electrolytic capacitors for medium and high voltages is made by roughening aluminum foil by direct current etching.
It is manufactured by chemical conversion treatment at a voltage of ~200V or higher. What this aluminum foil for an anode of an electrolytic capacitor should have is a large capacitance. In the recrystallized texture of the final annealed aluminum foil, there are many crystal grains with so-called cubic orientation, in which the (100) plane is parallel to the surface of the foil and the [001] direction is parallel to the rolling direction. It is a well-known fact that when this aluminum foil is etched, the density of columnar pits that grow perpendicular to the (100) plane increases, and the capacitance increases.
【0003】0003
【発明が解決しようとする課題】上記事実を利用した電
解コンデンサ陽極用アルミニウム箔の製造方法は、種々
検討されている。しかしながら、従来の方法では、純度
99.9wt%程度のアルミニウム地金を使用した場合
、不純物元素の影響により最終焼鈍後の再結晶集合組織
における立方体方位の結晶粒があまり多くならず、十分
に静電容量の大きなアルミニウム箔を得ることはできな
かった。そこで、Fe、Si、Cu等の不純物元素含有
量が極めて少ない、純度99.99wt%以上のアルミ
ニウム地金を使用し、熱間圧延、冷間圧延、最終焼鈍の
工程で電解コンデンサ陽極用アルミニウム箔を製造して
いるが、この方法では原料地金が高価であるためコスト
が高くなるという問題がある。また、従来の方法で製造
された箔は、最終焼鈍を500℃以上程度の高温で行わ
なければ、立方体方位の結晶粒の割合を多くすることが
できない。通常の大気焼鈍炉にてこのような高温での最
終焼鈍を行った場合、著しい表面酸化が生じ、エッチン
グ性が劣化してしまうという問題がある。そのため最終
焼鈍には、特殊な真空焼鈍炉あるいは不活性雰囲気焼鈍
炉を使用しなければならず、製造コストが高くなるとい
う問題がある。[Problems to be Solved by the Invention] Various methods of manufacturing aluminum foil for electrolytic capacitor anodes have been studied using the above-mentioned facts. However, in the conventional method, when an aluminum ingot with a purity of about 99.9 wt% is used, the number of cube-oriented crystal grains in the recrystallized texture after final annealing does not increase too much due to the influence of impurity elements, and it is not sufficiently static. It was not possible to obtain an aluminum foil with a large capacitance. Therefore, we use an aluminum base metal with a purity of 99.99 wt% or higher, which has extremely low content of impurity elements such as Fe, Si, and Cu, and use aluminum foil for electrolytic capacitor anodes in the hot rolling, cold rolling, and final annealing processes. However, this method has the problem of high costs because the raw metal is expensive. Further, foils produced by conventional methods cannot have a high proportion of cubic-oriented crystal grains unless final annealing is performed at a high temperature of about 500° C. or higher. When final annealing is performed at such a high temperature in a normal atmospheric annealing furnace, there is a problem that significant surface oxidation occurs and etching properties deteriorate. Therefore, a special vacuum annealing furnace or an inert atmosphere annealing furnace must be used for final annealing, which poses a problem of increasing manufacturing costs.
【0004】0004
【課題を解決するための手段】本発明は、上記問題に鑑
みなされたものであって、従来の方法に比べて、純度9
9.9wt%程度のアルミニウム箔においても最終焼鈍
後の再結晶集合組織における立方体方位の結晶が多く存
在し、したがって静電容量の大きなアルミニウム箔を提
供するとともに、大気焼鈍炉を用いても表面酸化の問題
が生じない低温での最終焼鈍で、立方体方位の結晶が多
く形成される低コストの箔を提供することを目的とする
。[Means for Solving the Problems] The present invention has been made in view of the above problems, and has a purity of 9.
Even in aluminum foil with a concentration of about 9.9 wt%, there are many crystals with cubic orientation in the recrystallized texture after final annealing, which provides an aluminum foil with a large capacitance and also prevents surface oxidation even when an atmospheric annealing furnace is used. The purpose of the present invention is to provide a low-cost foil in which many cubic-oriented crystals are formed during final annealing at a low temperature that does not cause any problems.
【0005】本発明の電解コンデンサ陽極用アルミニウ
ム箔の製造方法は、純度99.9wt%以上のアルミニ
ウム鋳塊から圧延によって、箔を製造する工程において
、450℃以上の温度で第1次中間焼鈍処理を行った後
、250℃以下まで冷却し、250〜350℃の温度範
囲で1時間以上保持する第2中間焼鈍処理を行い、さら
に加工率70%以上の冷間圧延を行った後、250〜4
00℃の温度で最終焼鈍を行うことを特徴とする方法、
および上記第1次中間焼鈍処理後、250℃以下の温度
で、加工率1〜70%の冷間圧延を行ってから、第2次
中間焼鈍処理を行うことを特徴とする方法である。[0005] The method for producing aluminum foil for electrolytic capacitor anodes of the present invention includes a step of producing foil by rolling from an aluminum ingot with a purity of 99.9 wt% or higher, which includes a first intermediate annealing treatment at a temperature of 450°C or higher. After performing a second intermediate annealing treatment in which the temperature is cooled to 250°C or lower and maintained at a temperature range of 250 to 350°C for 1 hour or more, and further cold rolling is performed at a processing rate of 70% or higher, 4
A method characterized by carrying out final annealing at a temperature of 00 ° C.
After the first intermediate annealing treatment, cold rolling is performed at a processing rate of 1 to 70% at a temperature of 250° C. or lower, and then a second intermediate annealing treatment is performed.
【0006】上記において、アルミニウム鋳塊としては
、コストの点を考慮すれば純度99.9wt%以上99
.99wt%未満のものを用いればよい。純度99.9
wt%未満の場合、本発明方法によって立方体方位の再
結晶粒増加の効果はあるが、立方体方位の占有率を80
%以上とすることが困難であり、実用には適さない。ま
た、アルミニウム材は、連続鋳造圧延法によって得られ
た連続鋳造板、通常の製法によって得られたスラブ等で
ある。これらの鋳塊を通常の手法での均質化処理、熱間
圧延、冷間圧延、中間焼鈍、箔圧延および最終焼鈍の工
程で電解コンデンサ陽極用アルミニウム箔を製造するも
のに本発明は適用される。[0006] In the above, the aluminum ingot has a purity of 99.9 wt% or more, considering the cost.
.. It is sufficient to use less than 99 wt%. Purity 99.9
If it is less than wt%, the method of the present invention has the effect of increasing recrystallized grains with cubic orientation, but the occupancy rate of cubic orientation is 80%.
% or more, and is not suitable for practical use. Further, the aluminum material is a continuous cast plate obtained by a continuous casting and rolling method, a slab obtained by a normal manufacturing method, or the like. The present invention is applied to manufacturing aluminum foil for electrolytic capacitor anodes by homogenizing these ingots using conventional methods, hot rolling, cold rolling, intermediate annealing, foil rolling, and final annealing. .
【0007】本発明において、通常の手法で均質化処理
および熱間圧延を行ったアルミニウム板を冷間圧延を行
う前あるいは10〜70%程度の冷間圧延を行った後、
450℃以上の温度で第1次中間焼鈍処理を行うと、F
e、Si等の不純物元素がアルミニウム中に完全に固溶
される。加熱温度が450℃以上に限定される理由は、
450℃未満ではFe、Si等の不純物元素の固溶が不
完全となるためである。加熱保持時間は、バッチ式の炉
を使用した場合Fe、Si等の不純物元素の固溶を完全
に行うために1時間以上とすることが好ましい。第1次
中間焼鈍処理に連続焼鈍炉を使用する場合、炉の構造上
加熱保持時間を長くすることが困難であるので、不純物
元素の固溶を完全に行うために500℃以上の温度で処
理することが好ましい。In the present invention, before cold rolling an aluminum plate that has been homogenized and hot rolled by a conventional method, or after cold rolling by about 10 to 70%,
When the first intermediate annealing treatment is performed at a temperature of 450°C or higher, F
Impurity elements such as e and Si are completely dissolved in aluminum. The reason why the heating temperature is limited to 450°C or higher is because
This is because if the temperature is lower than 450° C., solid solution of impurity elements such as Fe and Si will be incomplete. When a batch type furnace is used, the heating and holding time is preferably 1 hour or more in order to completely dissolve impurity elements such as Fe and Si. When using a continuous annealing furnace for the first intermediate annealing treatment, it is difficult to increase the heating holding time due to the structure of the furnace, so the treatment is performed at a temperature of 500°C or higher to completely dissolve the impurity elements. It is preferable to do so.
【0008】次にこれを250℃以下に冷却し、Fe、
Si等の不純物元素が過飽和固溶した状態とする。冷却
温度が250℃を越えていると、不純物元素の過飽和度
が小さいため、後の第2次加熱での析出量が少なくなり
、さらに析出した金属間化合物が粗大になってしまう。
冷却速度は、不純物元素が冷却中に析出せず過飽和に固
溶している状態が好ましいため10℃/時間以上、特に
120℃/時間以上が好ましい。Next, this is cooled to below 250°C, and Fe,
A state is created in which impurity elements such as Si are in a supersaturated solid solution. If the cooling temperature exceeds 250° C., the degree of supersaturation of impurity elements is low, so the amount of precipitation during the subsequent secondary heating will be small, and the precipitated intermetallic compounds will become coarse. The cooling rate is preferably 10° C./hour or more, particularly 120° C./hour or more, because it is preferable that the impurity elements do not precipitate during cooling and are in supersaturated solid solution.
【0009】次にこれを300〜450℃の温度範囲で
1時間以上保持する第2次中間焼鈍処理を行うと、昇温
中および加熱保持中に過飽和固溶していたFe、Si等
の溶質元素が微細均一に析出し、かつ固溶しているFe
、Si量等の溶質元素が減少する。加熱保持温度250
〜350℃の範囲に限定される理由は、下限未満ではF
e、Si等の溶質元素は十分に析出せず、逆に上限を越
えると溶質元素の固溶が進み均一に析出しなくなって最
終焼鈍において形成される立方体方位の再結晶粒が少な
くなるからである。第2次加熱における保持時間は、長
時間であるほど析出が進行するが一方、析出物の粗大化
も進行するので8〜120時間が好ましい。最終焼鈍の
際、1μm以下のサイズの析出物は立方体方位の再結晶
粒形成に影響しないが、固溶しているFe、Si等の溶
質元素および1μm以上の析出物は、立方体方位の再結
晶粒形成を阻害するため、Fe、Si等の溶質元素を微
細均一に析出させる必要がある。[0009] Next, when this is subjected to a second intermediate annealing treatment in which the material is held in a temperature range of 300 to 450°C for 1 hour or more, solutes such as Fe and Si that have been supersaturated in solid solution during heating and heating are removed. Fe in which the elements are precipitated finely and uniformly and are dissolved in solid solution.
, the amount of solute elements such as Si decreases. Heating holding temperature 250
The reason why it is limited to the range of ~350℃ is that below the lower limit, F
Solute elements such as e and Si do not precipitate sufficiently, and on the other hand, if the upper limit is exceeded, the solute elements advance into solid solution and do not precipitate uniformly, resulting in fewer cubic-oriented recrystallized grains formed in the final annealing. be. The holding time in the secondary heating is preferably 8 to 120 hours, because the longer the holding time, the more the precipitation progresses, but the coarsening of the precipitates also progresses. During the final annealing, precipitates with a size of 1 μm or less do not affect the formation of recrystallized grains with a cubic orientation, but solute elements such as Fe and Si dissolved in solid solution and precipitates with a size of 1 μm or more do not affect recrystallization with a cubic orientation. In order to inhibit grain formation, it is necessary to precipitate solute elements such as Fe and Si in a fine and uniform manner.
【0010】さらに、第1次中間焼鈍処理後、250℃
以下の温度で加工率1〜70%の冷間圧延を行い、加工
歪みを付与してから第2次焼鈍処理を行うと、第2次中
間焼鈍処理時において、加工歪みの導入によって、過飽
和固溶していたFe、Si等の溶質元素の析出が促進さ
れると共に析出物が微細均一となる。圧延加工温度が2
50℃以下、加工率が1〜70%の範囲に限定される理
由は、下限未満ではその効果が十分でなく、逆に上限を
越えると、加工中あるいは第2次焼鈍処理中において、
溶質元素が析出を開始するまえに再結晶が進行し、加工
歪みが開放されるため効果がなくなってしまうからであ
る。したがって、第1次焼鈍処理、冷却後の冷間圧延加
工は、再結晶が生じない範囲で適正な加工歪みを導入す
ることが必要であり、加工温度150℃以下、加工率3
〜30%がより好ましい。[0010] Furthermore, after the first intermediate annealing treatment, 250°C
If cold rolling is performed at a processing rate of 1 to 70% at the following temperature and a secondary annealing treatment is performed after applying a working strain, the introduction of the working strain during the second intermediate annealing will result in supersaturated The precipitation of dissolved solute elements such as Fe and Si is promoted and the precipitates become fine and uniform. Rolling temperature is 2
The reason why the processing rate is limited to 50°C or less and 1 to 70% is that below the lower limit, the effect is not sufficient, and on the other hand, when the upper limit is exceeded, during processing or secondary annealing treatment,
This is because recrystallization progresses before the solute element starts to precipitate, and the processing strain is released, resulting in no effect. Therefore, in the first annealing treatment and the cold rolling process after cooling, it is necessary to introduce appropriate processing strain within a range that does not cause recrystallization, and the processing temperature is 150°C or less and the processing rate is 3.
~30% is more preferred.
【0011】上記のように中間処理を施したアルミニウ
ム板を次に70%以上の冷間圧延を行って、最終箔とし
た後、250〜400℃の温度範囲で最終焼鈍を施すと
、立方体方位の再結晶粒が多数形成される。最終焼鈍前
の冷間加工率が70%以上に限定されるのは、加工率が
70%未満であると再結晶が円滑に進行せず、立方体方
位の結晶粒が少なくなるからである。最終焼鈍温度が2
50〜400℃の温度範囲に限定される理由は、下限未
満では、再結晶が完全に終了せず加工組織が残留するた
め立方体方位の結晶粒が少なくなり、上限を越えると表
面酸化が著しく進行してしまうためである。[0011] The aluminum plate that has been subjected to the intermediate treatment as described above is then cold-rolled by 70% or more to obtain a final foil, and then final annealed at a temperature range of 250 to 400°C, resulting in a cubic orientation. A large number of recrystallized grains are formed. The cold working rate before final annealing is limited to 70% or more because if the working rate is less than 70%, recrystallization will not proceed smoothly and the number of crystal grains with cubic orientation will decrease. Final annealing temperature is 2
The reason why the temperature range is limited to 50 to 400°C is that below the lower limit, recrystallization does not complete and the processed structure remains, resulting in fewer crystal grains with cubic orientation, while above the upper limit, surface oxidation progresses significantly. This is because you end up doing it.
【0012】そして、最終焼鈍処理が施されたアルミニ
ウム箔にエッチングを施して電解コンデンサ陽極箔とす
る。[0012] The aluminum foil that has been subjected to the final annealing treatment is then etched to form an anode foil for an electrolytic capacitor.
【0013】上記のように最終焼鈍されたアルミニウム
箔は、再結晶集合組織において立方体方位の結晶が極め
て多く存在するので、このアルミニウム箔にエッチング
を施すとその静電容量が極めて大きくなる。以下、実施
例によって本発明を詳細に説明する。[0013] Since the final annealed aluminum foil as described above has an extremely large number of crystals with cubic orientation in the recrystallized texture, when this aluminum foil is etched, its capacitance becomes extremely large. Hereinafter, the present invention will be explained in detail with reference to Examples.
【0014】[0014]
【実施例】表1に示した化学組成のアルミニウム製スラ
ブ(厚さ250mm)に第2表を600℃で10時間保
持して均質化処理を行った後、直ちに熱間圧延を施して
厚さ3mmのアルミニウム板を得た。これに表1に示す
条件で第1、第2中間焼鈍を行った。なお、第1次中間
焼鈍処理後に冷間圧延を行った場合の温度は、冷却温度
と同一とした。次いで冷間圧延を行って厚さ0.1mm
のアルミニウム箔を作成し、この箔を大気炉を用いてで
表1に示す条件で最終焼鈍処理した。得られた箔を塩酸
50%、硝酸47%、弗酸3%のエッチング液でエッチ
ングし、結晶粒を現出させ、25×25mmの視野に占
める立方体方位の割合を測定した。またX線光電子分析
装置によって、箔表面の酸化皮膜厚さを測定した。その
結果を表2に併記する。[Example] An aluminum slab (thickness: 250 mm) having the chemical composition shown in Table 1 was homogenized by holding the chemical composition shown in Table 2 at 600°C for 10 hours, and then immediately hot rolled to reduce the thickness. A 3 mm aluminum plate was obtained. This was subjected to first and second intermediate annealing under the conditions shown in Table 1. Note that the temperature when cold rolling was performed after the first intermediate annealing treatment was the same as the cooling temperature. Then cold rolled to a thickness of 0.1mm.
An aluminum foil was prepared, and this foil was subjected to a final annealing treatment under the conditions shown in Table 1 using an atmospheric furnace. The obtained foil was etched with an etching solution containing 50% hydrochloric acid, 47% nitric acid, and 3% hydrofluoric acid to expose crystal grains, and the proportion of cubic orientation in a field of view of 25 x 25 mm was measured. Furthermore, the thickness of the oxide film on the foil surface was measured using an X-ray photoelectron analyzer. The results are also listed in Table 2.
【0015】[0015]
【表1】[Table 1]
【0016】[0016]
【表2】[Table 2]
【0017】[0017]
【発明の効果】表2から明らかなように本発明方法によ
るアルミニウム箔は、他の方法で製造されたアルミニウ
ム箔に比べて、立方体方位の再結晶粒の占有率が大きく
なっており、表面酸化皮膜厚さは真空焼鈍炉を用いたも
のと殆ど差がない。Effects of the Invention As is clear from Table 2, the aluminum foil produced by the method of the present invention has a larger proportion of cubic-oriented recrystallized grains than aluminum foil produced by other methods, and has surface oxidation. The film thickness is almost the same as that obtained using a vacuum annealing furnace.
Claims (2)
ム鋳塊から圧延によって、電解コンデンサ陽極用箔を製
造する工程において、450℃以上の温度で第1次中間
焼鈍処理を行った後、250℃以下まで冷却し、250
℃〜350℃の温度範囲で1時間以上保持する第2中間
焼鈍処理を行い、さらに加工率70%以上の冷間圧延を
行った後、250〜400℃の温度で最終焼鈍を行うこ
とを特徴とする、電解コンデンサ陽極用アルミニウム箔
の製造方法。Claim 1: In the process of manufacturing electrolytic capacitor anode foil by rolling from an aluminum ingot with a purity of 99.9 wt% or higher, after performing a first intermediate annealing treatment at a temperature of 450°C or higher, the aluminum ingot has a purity of 250°C or lower. Cool to 250
It is characterized by performing a second intermediate annealing treatment held at a temperature range of ℃ to 350℃ for 1 hour or more, further performing cold rolling at a processing rate of 70% or more, and then performing final annealing at a temperature of 250 to 400℃. A method for producing aluminum foil for electrolytic capacitor anodes.
ム鋳塊から圧延によって、電解コンデンサ陽極用箔を製
造する工程において、450℃以上の温度で第1次中間
焼鈍処理を行った後、250℃以下まで冷却し、250
℃以下の温度で、加工率1〜70%の冷間圧延を行った
後、250〜350℃の温度範囲で1時間以上保持する
第2中間焼鈍処理を行い、さらに加工率70%以上の冷
間圧延を行った後、250〜400℃の温度で最終焼鈍
を行うことを特徴とする、電解コンデンサ陽極用アルミ
ニウム箔の製造方法。2. In the process of manufacturing electrolytic capacitor anode foil by rolling from an aluminum ingot with a purity of 99.9 wt % or more, after performing a first intermediate annealing treatment at a temperature of 450° C. or higher, the temperature is 250° C. or lower. Cool to 250
After performing cold rolling at a working rate of 1 to 70% at a temperature below A method for manufacturing an aluminum foil for an electrolytic capacitor anode, which comprises performing intermediate rolling and then final annealing at a temperature of 250 to 400°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP41563190A JPH04232233A (en) | 1990-12-28 | 1990-12-28 | Production of aluminum foil for anode of electrolytic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP41563190A JPH04232233A (en) | 1990-12-28 | 1990-12-28 | Production of aluminum foil for anode of electrolytic capacitor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04232233A true JPH04232233A (en) | 1992-08-20 |
Family
ID=18523968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP41563190A Pending JPH04232233A (en) | 1990-12-28 | 1990-12-28 | Production of aluminum foil for anode of electrolytic capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04232233A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115725915A (en) * | 2022-12-01 | 2023-03-03 | 乳源县立东电子科技有限公司 | Optical foil crystal grain control method and preparation method of anode foil for electrolytic capacitor |
-
1990
- 1990-12-28 JP JP41563190A patent/JPH04232233A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115725915A (en) * | 2022-12-01 | 2023-03-03 | 乳源县立东电子科技有限公司 | Optical foil crystal grain control method and preparation method of anode foil for electrolytic capacitor |
CN115725915B (en) * | 2022-12-01 | 2023-11-17 | 乳源县立东电子科技有限公司 | Optical foil grain control method and preparation method of anode foil for electrolytic capacitor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100854202B1 (en) | Aluminum material for electrode of electrolytic capacitor and method for producing aluminum foil for electrode of electrolytic capacitor, and electrolytic capacitor | |
JP2004176163A (en) | Copper alloy | |
JP3308456B2 (en) | Manufacturing method of aluminum foil for electrode of electrolytic capacitor | |
JP2945298B2 (en) | Manufacturing method of aluminum alloy foil for electrolytic capacitor cathode | |
JP2970852B2 (en) | Manufacturing method of aluminum alloy foil for cathode of electrolytic capacitor | |
JPH02270928A (en) | Aluminum foil for anode of chemical condenser and its manufacture | |
JPH04232233A (en) | Production of aluminum foil for anode of electrolytic capacitor | |
JPS6356301B2 (en) | ||
JP3203665B2 (en) | Manufacturing method of aluminum foil for anode of electrolytic capacitor | |
JP2803762B2 (en) | Manufacturing method of aluminum foil for electrolytic capacitor | |
JPH05287465A (en) | Production of aluminum foil for electrolytic capacitor | |
JPH0361333B2 (en) | ||
JPS6063359A (en) | Manufacture of aluminum foil for anode of electrolytic capacitor | |
JPH04231441A (en) | Production of aluminum foil for electrolytic condenser | |
JPH04231440A (en) | Production of aluminum foil for electrolytic condenser | |
JP3370244B2 (en) | Aluminum alloy foil for electrolytic capacitors with high mechanical strength | |
JPS634050A (en) | Manufacture of aluminum-alloy substrate for magnetic disk | |
JPH05311360A (en) | Manufacture of aluminum alloy foil for electrode of electrolytic capacitor | |
JPH0489118A (en) | Production of aluminum foil for electrolytic capacitor anode | |
JP2003119555A (en) | Aluminum foil for electrolytic capacitor electrode and manufacturing method therefor | |
JP3203666B2 (en) | Manufacturing method of aluminum alloy foil for anode of electrolytic capacitor | |
JPH04231442A (en) | Production of aluminum foil for middle-and high-voltage electrolytic condenser anode | |
JPH04179110A (en) | Aluminum alloy foil for electrolytic capacitor electrode | |
JPH0488153A (en) | Manufacture of aluminum foil for electrolytic capacitor | |
JPH04231439A (en) | Production of aluminum foil for electrolytic condenser anode |