JPH02270928A - Aluminum foil for anode of chemical condenser and its manufacture - Google Patents

Aluminum foil for anode of chemical condenser and its manufacture

Info

Publication number
JPH02270928A
JPH02270928A JP9120089A JP9120089A JPH02270928A JP H02270928 A JPH02270928 A JP H02270928A JP 9120089 A JP9120089 A JP 9120089A JP 9120089 A JP9120089 A JP 9120089A JP H02270928 A JPH02270928 A JP H02270928A
Authority
JP
Japan
Prior art keywords
aluminum foil
foil
anode
less
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9120089A
Other languages
Japanese (ja)
Inventor
Kenji Yamamoto
兼滋 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Foil Manufacturing Co Ltd
Original Assignee
Nippon Foil Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Foil Manufacturing Co Ltd filed Critical Nippon Foil Manufacturing Co Ltd
Priority to JP9120089A priority Critical patent/JPH02270928A/en
Publication of JPH02270928A publication Critical patent/JPH02270928A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the foil in which etching progresses in parallel to the thickness direction even if Al purity is regulated to about 99.98% at relatively low cost by manufacturing Al foil having specified range of compsn. under specified conditions and regulating the cubic azimuthal ratio of crystals to the specified value or above. CONSTITUTION:An ingot constituted of 0.0040 to 0.0100% Si, 0.0035 to 0.0085% Fe, 0.0025 to 0.0100% Cu, 0.0010 to 0.0150% Zn, 0.0010 to 0.0150% Ga, <=0.0010% Ti, <=0.0050% inevitable elements and the balance Al is used. The ingot is subjected to homogenizing treatment and hot rolling, is thereafter subjected to process annealing at 250 to 350 deg.C, is then cold-rolled at 10 to 35% rolling reduction and is thereafter subjected to final annealing at >=500 deg.C. In this way, the Al foil for the anode of a chemical condenser having >=85% cubic azimuthal ratio of crystals can be obtd. At the time of subjecting the Al foil to etching treatment, it can be executed deeply in parallel to the thickness direction of the foil to increase the surface area of the foil surface, by which anode foil having high electrostatic capacity can be obtd.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、ストロボ用等に用いる高圧用電解コンデンサ
陽極箔を得るのに適したアルミニウム箔及びその製造方
法に関するものである。
The present invention relates to an aluminum foil suitable for obtaining a high-voltage electrolytic capacitor anode foil used for strobes, etc., and a method for manufacturing the same.

【従来の技術】[Conventional technology]

従来より、高圧用電解コンデンサ陽極箔を得るのに、A
l純度99.99%のアルミニウム箔を用いている。こ
のアルミニウム箔にエツチング処理を施すと、箔の厚さ
方向に平行に奥深くエツチングが進行し、高静電容量の
陽極箔が得られ、好ましいものである。しかし、Al純
度99.99%のアルミニウム箔は高価であるという欠
点があった。 このため、A1純度99.99%未満、例えばAl純度
99.98%程度の比較的安価なアルミニウム箔を用い
て、高圧用電解コンデンサ陽極箔を得ることが試みられ
ている。しかしながら、Al純度99.98%程度のア
ルミニウム箔にエツチング処理を施しても、箔の厚さ方
向に平行に奥深くエツチングが進行せず、Al純度99
.99%のアルミニウム箔を用いた場合と同等の高静電
容量の陽極箱を得ることばできなかった。
Conventionally, to obtain high voltage electrolytic capacitor anode foil, A
l Aluminum foil with a purity of 99.99% is used. When this aluminum foil is subjected to etching treatment, the etching progresses deeply parallel to the thickness direction of the foil, resulting in an anode foil with high capacitance, which is preferable. However, aluminum foil with an Al purity of 99.99% has the drawback of being expensive. For this reason, attempts have been made to obtain a high-voltage electrolytic capacitor anode foil using a relatively inexpensive aluminum foil with an Al purity of less than 99.99%, for example, an Al purity of about 99.98%. However, even when etching is performed on aluminum foil with an Al purity of about 99.98%, the etching does not proceed deeply parallel to the thickness direction of the foil, and the etching process does not proceed deeply parallel to the thickness direction of the foil.
.. It was not possible to obtain an anode box with a high capacitance equivalent to that obtained using 99% aluminum foil.

【発明が解決しようとする課題】[Problem to be solved by the invention]

本発明者は、Al純度99.98%程変のノ′ルミニウ
ノ、箔が、箔の厚さ方向に平行に奥深くエツチングが進
行しない理由は、このアルミニウム箔中の結晶が、種々
の方向を向い°ζいるためであると考えた。これは、A
l純度99.98%程度のアルミニウム箔には1、比較
的多量のΔ1以外の元素が含有されているからである。 ぞして、どれをゴ・ソチング処理すると、結晶の向きに
沿っ′でエツチングが進行するので、箔の厚さ方向に平
行に進まないのである。 そこで、本発明者はある特定の条件で特定の組成範囲の
アルミニウム箔を製造すれば、Al純度99゜9)3%
程度としても、エツチングが箔の厚さ方向に平行に進む
ことを見出し、本発明に到ったのである。
The inventor of the present invention found that the reason why etching does not proceed deeply parallel to the thickness direction of aluminum foil with Al purity of about 99.98% is that the crystals in this aluminum foil are oriented in various directions. I thought it was because there was a This is A
This is because aluminum foil with a purity of about 99.98% contains a relatively large amount of elements other than Δ1. Therefore, when etching is performed on any of the foils, the etching progresses along the direction of the crystals and does not proceed parallel to the thickness direction of the foil. Therefore, the inventor proposed that if aluminum foil with a specific composition range is manufactured under certain conditions, the Al purity will be 99°9) 3%.
It was discovered that the etching progresses parallel to the thickness direction of the foil, and this led to the present invention.

【課題を解決するだめの手段及び作用】即ち、本発明は
、Si0.0040〜0.(月(〕00%Fed、 0
035〜0.0085%、Cu0.0025”0.01
00%、Zn0.0010”□0.0150%、Ga0
.0010”−0,Ol、50%、Ti0.0010%
以ド、不可避元素0.0050%以−ト、残部Alより
なるアルミニうム箔であって、該アルミニウム箔中の結
晶のイ1プノ体方位比が85%以七であることを特徴と
する電解コンデンサ陽極用アルミニウム箔及びその製造
方法に関するものである。 本発明に係る電解コンデンサ陽極用アルミf−“、ラム
箔には、SiがQ、0040−0.0100%含有され
ζいる。 Siが0.0100%を超えると、Al中に析出物が多
くイトしユ、結晶が一定の方位をとるのを妨げるため、
好ましくない。また、Siを0.0040%未満にする
と、Al線純度高くしなければならず、本発明の目的と
する^l純度99.99%未満のアルミニウム箔・i得
ることができないので、好まし2くない。 Feは、アルミニウム箔中に0.0035−0.008
5%庁もされている。Feが0.0085%を超えると
、Ill中(ご析出物が多く生じ、結晶が一定の方位を
とるのを妨げるため、好ましくない。また、Feを0.
0035%未満にすると、Al線純度高くしなければな
らず、本発明の目的とするAl純度99.99%未満の
アルミニウム箔を得ることができないので、好ましくな
い。 Cuは、アルミニウム箔中に0.0025〜0.010
0%含有されている。Cuが0.0100%を超えると
、エツチング時に過溶解が生じるので、好まし2くない
。また、Cuを0.0025%未満にすると、A1純度
を高くしなければならず、本発明の目的とするA1純度
99゜99%未満のアルミニウム箔を得ることができな
いので、好まし2くない。 Znは、アルミニウム箔中6ご0.0010〜0.01
50%含有されている。Znが0.0150%を超える
と、エツチング時に過溶解が生じるので、好ましくない
。また、Znを060010%未満に4゛ると、Al線
純度高くしなければならず、本発明の目的とする月純度
99゜99%未満のアルミニウム箔を得ることができな
いので、好ましくない。 Gaは、アルミニウム箔中に0.0010〜0.0+、
50%含イラされ′Cいる。Gaが0.0150%を超
えると、アルミニウム箔の強度が低下するので好ましく
ない。また、Gaを0.0010%未満にすると、A1
純度を高くしなければならず、本発明の目的どするAu
純度99゜99%未満のアルミニウム箔を得ることがで
きないので、好ましくない。 Tiは、アルミニウム箔中に0.0010%未満含有さ
れ゛ている。Tiが0.0010%を超えると、Al中
にTiが固溶し7なくなり、結晶の成長を妨げるので好
まし。 くない。 不可避元素としては、MB+ Mn、Cr等が挙げられ
るが、これらはアルミニウム箔中に0.0050%未満
し5、か混入し、ではならない。不可避元素が0 、0
050%を超えると、エツチング時に過溶解が生じたり
、結晶が充分に成長しないので、好まし7くない。 上記の元素成分を含有するアルミニラA 7A中におい
て、本発明では結晶の立方体方位比が85%以トとなっ
ている。立方体方位比は、一般的に言えば、アルミニウ
ム箔中における立方体結晶の結晶面が、どの程度アルミ
ニウム箔の表面と平行になりCいるかということである
6即ち、立方体結晶の結晶向は、正負を無視すれば、そ
れぞれ(1,00)。 (010)、 (001)で表される。そして、これら
をまとめて(1001で表される。従って、立方体方位
比はアルミニウム箔の表面に、どの程度(1001面が
観察されるかによって決定される。本発明における立方
体方位比は、llCl :llN0+:HF=50ml
:47m1:3mlの容積比の化学腐蝕液に、アルミニ
ウム箔を浸漬し、結晶組織を顕出させた後、光学顕微鏡
観察写真によって、全視野に対する(100)面の面積
の比を求め、百分率で表したものである。 本発明に係る電解コンデンサ陽極用アルミニウム箔の立
方体方位比は、85%以上であることが必要である。立
方体方位比が、85%未満であると、(100)以外の
結晶面が多くなるので、エツチング処理を施しても、箔
の厚さ方向に平行に奥深くエツチングが進行しないから
である。 このような電解コンデンサ用アルミニウム箔は、以下の
如き方法で製造することができる。 まず、Si0.0040〜0.0100%、Fe0.0
035〜0.0085%、Cu0.0025〜0.01
00%、Zn0.0010〜0.0150%、Ga0.
0010=0.0150%、Ti0.0O10%以下、
不可避元素0.0050%以下、残部Alよりなる鋳塊
を準備する。 そして、この鋳塊に均質化処理を施す。均質化処理は、
Al以外の元素をAl中に固溶させるために行うもので
ある。このため、比較的高温で長時間均質化処理を施す
のがよい。具体的には、600℃以上で5時間以上程度
が好ましい。 均質化処理の後、熱間圧延を施して、鋳塊を板状にする
。この際、再結晶を促進させるため、熱間圧延温度は3
30℃程度以上が好ましい。具体的には、熱間圧延の開
始温度を550℃程度以上とし、熱間圧延終了温度を3
30℃程度以上とする。 熱間圧延終了後、中間焼鈍を行う。なお、中間焼鈍を施
す前に、所望のアルミニウム板厚とするため、冷間圧延
を施しても良いことは勿論である。 この中間焼鈍において、温度は250〜350℃で行う
必要がある。温度が250℃未満であると、結晶粒の核
生成が十分でなく、板表面と平行な結晶面が成長しない
ので好ましくない。また、温度が350℃を超えると、
得られるアルミニウム箔の強度が低下し、好ましくない
。 中間焼鈍終了後、仕上げ圧延を行う。仕上げ圧延は、冷
間圧延によって行われる。しかし、この際、中間焼鈍で
成長した結晶面が破壊されたり又は立方体方位が変更さ
れたりする条件で、仕上げ圧延を行ってはならない。こ
のためには、アルミニウム板の圧下率を10〜35%に
しなければならない。圧下率とは、〔(仕上げ圧延前の
アルミニウム板厚−仕上げ圧延後のアルミニウム箔厚)
/仕上げ圧延前のアルミニウム板厚〕×100で表され
るものである。圧下率が35%を超えると、結晶面の変
更等が起こり、立方体方位比が85%以上のアルミニウ
ム箔を得ることができない。また、圧下率が10%未満
では、最終焼鈍時における(100)結晶面の成長のた
めの駆動力が少なくなるので、好ましくない。 仕上げ圧延終了後、最終焼鈍を行う。この最終焼鈍は、
アルミニウム箔中の結晶の成長を促進させるものである
。本発明において、最終焼鈍は500℃以上で行う必要
がある。500℃未満で最終焼鈍を行うと、結晶の成長
が十分でなく、アルミニウム箔表面と平行な結晶面が増
加しないので、好ましくない。 以上の如き方法で、本発明に係る電解コンデンサ陽極用
アルミニウム箔が得られるのである。
[Means and effects for solving the problems] That is, the present invention provides Si0.0040 to 0.000. (month()00%Fed, 0
035-0.0085%, Cu0.0025”0.01
00%, Zn0.0010”□0.0150%, Ga0
.. 0010"-0, Ol, 50%, Ti0.0010%
Hereinafter, an aluminum foil consisting of 0.0050% or more of unavoidable elements and the balance Al, characterized in that the i1-plane orientation ratio of the crystals in the aluminum foil is 85% or more. The present invention relates to an aluminum foil for electrolytic capacitor anodes and a method for manufacturing the same. The aluminum foil for electrolytic capacitor anodes according to the present invention contains Si in an amount of 0.040% to 0.0100%. In order to prevent the crystal from taking a certain orientation,
Undesirable. Furthermore, if Si is less than 0.0040%, the purity of the Al wire must be increased, and it is impossible to obtain an aluminum foil with a purity of less than 99.99%, which is the objective of the present invention. Not. Fe is 0.0035-0.008 in aluminum foil
The 5% Agency has also been established. If Fe exceeds 0.0085%, a large amount of precipitates will form in the Ill, which will prevent the crystal from taking a certain orientation, which is not preferable.
If it is less than 0.035%, the purity of the Al wire must be increased, and it is not possible to obtain an aluminum foil with an Al purity of less than 99.99%, which is the object of the present invention. Cu is 0.0025 to 0.010 in aluminum foil
Contains 0%. If Cu exceeds 0.0100%, excessive dissolution will occur during etching, which is not preferred. Further, if Cu is less than 0.0025%, the A1 purity must be increased, and it is not possible to obtain an aluminum foil with an A1 purity of less than 99°99%, which is the object of the present invention, which is not preferable. . Zn is 0.0010 to 0.01 in aluminum foil
Contains 50%. If Zn exceeds 0.0150%, excessive dissolution will occur during etching, which is not preferable. Furthermore, if the Zn content is less than 0.600.10%, the purity of the Al wire must be increased, and it is not possible to obtain an aluminum foil with a purity of less than 99.99%, which is the object of the present invention. Ga is present in the aluminum foil from 0.0010 to 0.0+,
It is 50% irritated. If Ga exceeds 0.0150%, the strength of the aluminum foil decreases, which is not preferable. Moreover, when Ga is less than 0.0010%, A1
Au must have high purity and is the object of the present invention.
This is not preferred because aluminum foil with a purity of less than 99.99% cannot be obtained. Ti is contained in the aluminum foil in an amount of less than 0.0010%. If Ti exceeds 0.0010%, Ti becomes a solid solution in Al and disappears, inhibiting crystal growth, which is preferable. Not. Unavoidable elements include MB+ Mn, Cr, etc., but these must not be mixed in the aluminum foil in an amount of less than 0.0050%. Unavoidable elements are 0, 0
If it exceeds 0.050%, excessive dissolution occurs during etching and crystals do not grow sufficiently, which is not preferable. In the Aluminum A 7A containing the above elemental components, the cubic orientation ratio of the crystal is 85% or more in the present invention. Generally speaking, the cubic orientation ratio refers to the degree to which the crystal planes of the cubic crystals in the aluminum foil are parallel to the surface of the aluminum foil.6 In other words, the crystal orientation of the cubic crystals has positive and negative If ignored, they are (1,00) respectively. It is represented by (010) and (001). These are collectively expressed as (1001). Therefore, the cubic orientation ratio is determined by how much (1001 plane) is observed on the surface of the aluminum foil. The cubic orientation ratio in the present invention is llCl: llN0+:HF=50ml
After immersing the aluminum foil in a chemical etching solution with a volume ratio of 47ml and 1:3ml to reveal the crystal structure, the ratio of the area of the (100) plane to the entire field of view was determined using an optical microscope photograph, and expressed as a percentage. It is expressed. The cubic orientation ratio of the aluminum foil for an electrolytic capacitor anode according to the present invention needs to be 85% or more. If the cubic orientation ratio is less than 85%, there will be many crystal planes other than (100), so even if etching is performed, etching will not proceed deeply parallel to the thickness direction of the foil. Such aluminum foil for electrolytic capacitors can be manufactured by the following method. First, Si0.0040~0.0100%, Fe0.0
035-0.0085%, Cu0.0025-0.01
00%, Zn0.0010-0.0150%, Ga0.
0010=0.0150%, Ti0.0O10% or less,
An ingot containing 0.0050% or less of unavoidable elements and the remainder Al is prepared. Then, this ingot is subjected to homogenization treatment. The homogenization process is
This is done to dissolve elements other than Al into Al. For this reason, it is preferable to perform homogenization treatment at a relatively high temperature for a long time. Specifically, the heating time is preferably about 5 hours or more at 600° C. or higher. After the homogenization treatment, hot rolling is performed to form the ingot into a plate shape. At this time, in order to promote recrystallization, the hot rolling temperature was set at 3.
The temperature is preferably about 30°C or higher. Specifically, the hot rolling start temperature is set to about 550°C or higher, and the hot rolling end temperature is set to 3.
The temperature should be about 30℃ or higher. After hot rolling, intermediate annealing is performed. Note that, of course, before performing intermediate annealing, cold rolling may be performed in order to obtain a desired aluminum plate thickness. In this intermediate annealing, the temperature needs to be 250 to 350°C. If the temperature is less than 250°C, nucleation of crystal grains will not be sufficient and crystal planes parallel to the plate surface will not grow, which is not preferable. Also, when the temperature exceeds 350℃,
The strength of the resulting aluminum foil decreases, which is not preferable. After the intermediate annealing, finish rolling is performed. Finish rolling is performed by cold rolling. However, at this time, finish rolling must not be performed under conditions where the crystal planes grown during intermediate annealing are destroyed or the cubic orientation is changed. For this purpose, the rolling reduction ratio of the aluminum plate must be 10 to 35%. The rolling reduction ratio is [(aluminum plate thickness before finish rolling - aluminum foil thickness after finish rolling)]
/aluminum plate thickness before finish rolling]×100. When the rolling reduction exceeds 35%, changes in crystal planes occur, making it impossible to obtain an aluminum foil with a cubic orientation ratio of 85% or more. Further, if the rolling reduction ratio is less than 10%, the driving force for growth of the (100) crystal plane during final annealing will be reduced, which is not preferable. After finish rolling, final annealing is performed. This final annealing is
This promotes the growth of crystals in aluminum foil. In the present invention, final annealing must be performed at 500°C or higher. If the final annealing is performed at a temperature lower than 500°C, crystal growth will not be sufficient and the number of crystal planes parallel to the aluminum foil surface will not increase, which is not preferable. By the method described above, the aluminum foil for electrolytic capacitor anodes according to the present invention can be obtained.

【実施例】【Example】

実施例1〜7及び比較例1〜4 まず、第1表に示す組成の鋳塊(ア〜つ)を準備した。 第1表 この鋳塊(ア〜つ)を第2表に示す条件で、均質化処理
、熱間圧延、中間焼鈍、仕上げ圧延及び最終焼鈍を行っ
た・。ぞして、このようにして得られたj!z−さ10
4μのノ°ルミニウム箔のfrブ2体方(O佳及び静電
容量を第2表に示した。 なお、静電容量は、’15℃のJツチング溶液(5,0
%塩酸と7.0%硫酸の混合水溶液)中に、得られたア
ルミニウム箔を浸漬し7、直流電流8A/dボを与えな
がら、8分20秒間エツチングした後、4Lツチングさ
れたノ′ルミニウム箔を85℃の化成溶液(13%硼酸
及び0.07%硼砂の混合水溶液)に浸漬して375v
で化成(、た後、キャパシタンスメークを用いζ測定し
2だ。 (以下余白) 第2表(その1) 第2表(その2) (以ト余白) 第2表(その3) (以1:、余・白) 第2表(その4) 以上の結果より明らかなとおり、実施例に係るアルミニ
ウム箔は立方体方位比が85%以上であり、そのため静
電容量が高められていることが判る。 これに対し、比較例に係るアルミニウム箔は立方体方位
比が85%未満であり、静電容量も実施例に係るものに
比べて低いことが判る。 参考例1 実施例5に係る方法に*mして、仕上げ圧延時の圧下率
のみを種々変化させて、得られたアルミニウム箔の立方
体方位比を測定した。この結果を第1図の線分Aで表し
た。 また、比較例4に係る方法に準拠して、仕上げ圧延時の
圧下率のみを種々変化させて、得られたアルミニウム箔
の立方体方位比を測定した。この結果を第1図の線分B
で表した。 参考例2 実施例5に係る方法に準拠して、最終焼鈍温度のみを種
々変化させて、得られたアルミニウム箔の立方体方位比
を測定した。この結果を第2図の線分Aで表した。 また、比較例4に係る方法に準拠して、最終焼鈍温度の
みを種々変化させて、得られたアルミニウム箔の立方体
方位比を測定した。この結果を第2図の線分Bで表した
。 更に、実施例5に係る方法に準拠して、中間焼鈍を行う
ことなく、最終焼鈍温度のみを種々変化させて、得られ
たアルミニウム箔の立方体方位比を測定した。この結果
を第2図の線分Cで表した。 以上から判るように、一定の温度で中間焼鈍を行い、ま
た− 定の圧下率で仕上げ圧延を行い、また一定の温度
以上で最終焼鈍を行うことにより、一定の立方体方位比
を持つアルミニウム箔が得られるのであり、このアルミ
ニウム箔は箔の厚さ方向に平行に奥深くエツチング処理
することができ、静電容量が高められるのである。
Examples 1 to 7 and Comparative Examples 1 to 4 First, ingots having the compositions shown in Table 1 were prepared. Table 1 This ingot was subjected to homogenization treatment, hot rolling, intermediate annealing, finish rolling and final annealing under the conditions shown in Table 2. Therefore, the j obtained in this way! z-sa10
Table 2 shows the capacitance and capacitance of two frames made of 4μ aluminum foil.
The obtained aluminum foil was immersed in a mixed aqueous solution of 7.0% hydrochloric acid and 7.0% sulfuric acid, and etched for 8 minutes and 20 seconds while applying a DC current of 8 A/d. The foil was immersed in a chemical solution (mixed aqueous solution of 13% boric acid and 0.07% borax) at 85°C and heated to 375V.
After chemical formation, ζ was measured using a capacitance make. :, margin/white) Table 2 (Part 4) As is clear from the above results, the aluminum foil according to the example has a cubic orientation ratio of 85% or more, which indicates that the capacitance is increased. On the other hand, it can be seen that the aluminum foil according to the comparative example has a cubic orientation ratio of less than 85%, and the capacitance is also lower than that according to the example.Reference Example 1 In the method according to Example 5* m, the cubic orientation ratio of the obtained aluminum foil was measured by varying only the rolling reduction during finish rolling.The results are represented by line segment A in Fig. 1.In addition, in Comparative Example 4 In accordance with this method, the cubic orientation ratio of the aluminum foil obtained was measured by varying only the rolling reduction during finish rolling.The results were expressed as line segment B in Figure 1.
It was expressed as Reference Example 2 Based on the method according to Example 5, only the final annealing temperature was varied, and the cubic orientation ratio of the obtained aluminum foil was measured. This result is represented by line segment A in FIG. Further, according to the method according to Comparative Example 4, only the final annealing temperature was varied, and the cubic orientation ratio of the obtained aluminum foil was measured. This result is represented by line segment B in FIG. Further, in accordance with the method of Example 5, only the final annealing temperature was varied without performing intermediate annealing, and the cubic orientation ratio of the obtained aluminum foil was measured. This result is represented by line segment C in FIG. As can be seen from the above, aluminum foil with a constant cubic orientation ratio can be produced by performing intermediate annealing at a constant temperature, finishing rolling at a constant rolling reduction, and final annealing at a constant temperature or higher. This aluminum foil can be etched deeply parallel to the thickness direction of the foil, increasing its capacitance.

【発明の効果】【Effect of the invention】

以上説明したとおり、本発明に係る電解コンデンサ陽極
用アルミニウム箔は、At純度が99.99%未満であ
るにも拘わらず、立方体方位比が85%以上であるので
、エツチング処理すると、箔の厚さ方向に平行に奥深く
エツチングを施すことができ、箔表面の表面積の増大が
図れ、依って静電容量の高いコンデンサ陽極箔が得られ
るのである。 また、本発明に係る方法を採用すれば、A1純度が99
.99%未満の鋳塊であっても、立方体方位比が85%
以上のアルミニウム箔を得ることができ、上記したよう
に静電容量の高い陽極箔を得ることができるのである。 即ち、本発明によれば、屓純度が99.99%未満であ
っても、耐純度99.99%以上のアルミニウム箔の場
合と同様の性能を持つ電解コンデンサ陽極用アルミニウ
ム箔が得られるのである。従って、高性能の電解コンデ
ンサ陽極用アルミニウム箔を安価に提供しうるという効
果を奏するのである。
As explained above, the aluminum foil for electrolytic capacitor anodes according to the present invention has a cubic orientation ratio of 85% or more even though the At purity is less than 99.99%. It is possible to perform deep etching parallel to the width direction, increasing the surface area of the foil surface, and thus obtaining a capacitor anode foil with high capacitance. Moreover, if the method according to the present invention is adopted, the A1 purity will be 99.
.. Even if the ingot is less than 99%, the cubic orientation ratio is 85%.
The above aluminum foil can be obtained, and as described above, an anode foil with high capacitance can be obtained. That is, according to the present invention, even if the purity is less than 99.99%, an aluminum foil for electrolytic capacitor anodes can be obtained that has the same performance as aluminum foil with a purity resistance of 99.99% or more. . Therefore, it is possible to provide a high-performance aluminum foil for an anode of an electrolytic capacitor at a low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、仕上げ圧延時の圧下率と得られたアルミニウ
ム箔の立方体方位比との関係を示したグラフである。第
2図は、最終焼鈍温度と得られたアルミニウム箔の立方
体方位比との関係を示したグラフである。
FIG. 1 is a graph showing the relationship between the rolling reduction during finish rolling and the cubic orientation ratio of the obtained aluminum foil. FIG. 2 is a graph showing the relationship between the final annealing temperature and the cubic orientation ratio of the obtained aluminum foil.

Claims (2)

【特許請求の範囲】[Claims] (1)Si0.0040〜0.0100%、Fe0.0
035〜0.0085%、Cu0.0025〜0.01
00%、Zn0.0010〜0.0150%、Ga0.
0010〜0.0150%、Ti0.0010%以下、
不可避元素0.0050%以下、残部Alよりなるアル
ミニウム箔であって、該アルミニウム箔中の結晶の立方
体方位比が85%以上であることを特徴とする電解コン
デンサ陽極用アルミニウム箔。
(1) Si0.0040-0.0100%, Fe0.0
035-0.0085%, Cu0.0025-0.01
00%, Zn0.0010-0.0150%, Ga0.
0010 to 0.0150%, Ti 0.0010% or less,
An aluminum foil for an anode of an electrolytic capacitor, characterized in that the aluminum foil is composed of 0.0050% or less of unavoidable elements and the balance is Al, and the cubic orientation ratio of crystals in the aluminum foil is 85% or more.
(2)Si0.0040〜0.0100%、Fe0.0
035〜0.0085%、Cu0.0025〜0.01
00%、Zn0.0010〜0.0150%、Ga0.
0010〜0.0150%、Ti0.0010%以下、
不可避元素0.0050%以下、残部Alよりなる鋳塊
に、均質化処理及び熱間圧延を施した後、温度250〜
350℃で中間焼鈍を行い、次いで圧下率10〜35%
の範囲内で冷間圧延を行い、その後500℃以上で最終
焼鈍を行うことを特徴とする請求項(1)記載の電解コ
ンデンサ陽極用アルミニウム箔の製造方法。
(2) Si0.0040-0.0100%, Fe0.0
035-0.0085%, Cu0.0025-0.01
00%, Zn0.0010-0.0150%, Ga0.
0010 to 0.0150%, Ti 0.0010% or less,
After homogenizing and hot rolling an ingot consisting of 0.0050% or less of unavoidable elements and the balance Al, the ingot was heated to a temperature of 250~250%.
Intermediate annealing is performed at 350°C, followed by a rolling reduction of 10 to 35%.
The method for manufacturing an aluminum foil for an electrolytic capacitor anode according to claim 1, characterized in that cold rolling is carried out within the range of 500°C or higher, and then final annealing is carried out at 500°C or higher.
JP9120089A 1989-04-11 1989-04-11 Aluminum foil for anode of chemical condenser and its manufacture Pending JPH02270928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9120089A JPH02270928A (en) 1989-04-11 1989-04-11 Aluminum foil for anode of chemical condenser and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9120089A JPH02270928A (en) 1989-04-11 1989-04-11 Aluminum foil for anode of chemical condenser and its manufacture

Publications (1)

Publication Number Publication Date
JPH02270928A true JPH02270928A (en) 1990-11-06

Family

ID=14019796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9120089A Pending JPH02270928A (en) 1989-04-11 1989-04-11 Aluminum foil for anode of chemical condenser and its manufacture

Country Status (1)

Country Link
JP (1) JPH02270928A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055145A (en) * 1991-06-18 1993-01-14 Showa Alum Corp Aluminum alloy for electrolytic capacitor electrode foil
JPH1150213A (en) * 1997-07-25 1999-02-23 Furukawa Electric Co Ltd:The Aluminum foil for electrode of electrolytic capacitor
WO2002027052A1 (en) * 2000-09-20 2002-04-04 Nichicon Corporation Aluminum material for electrode of electrolytic capacitor and method for producing aluminum foil for electrode of electrolytic capacitor, and electrolytic capacitor
JP2007146269A (en) * 2004-12-21 2007-06-14 Showa Denko Kk Aluminum material for electrolytic capacitor electrode, method for producing electrode material for electrolytic capacitor, and anode material for aluminum electrolytic capacitor and aluminum electrolytic capacitor
EP1841892A1 (en) * 2004-12-21 2007-10-10 Showa Denko Kabushiki Kaisha Aluminum material for electrolytic capacitor electrode, production method of electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP2008045172A (en) * 2006-08-16 2008-02-28 Showa Denko Kk Aluminum material for electrolytic capacitor electrode, method for producing electrode material for electrolytic capacitor, electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP2012144809A (en) * 2005-05-31 2012-08-02 Showa Denko Kk Aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP2014068048A (en) * 2003-06-03 2014-04-17 Showa Denko Kk Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
CN110923528A (en) * 2019-11-27 2020-03-27 新疆众和股份有限公司 Anode aluminum foil and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5479462A (en) * 1977-12-06 1979-06-25 Showa Aluminium Co Ltd Aluminium alloy foil for electrolyte capacitor anode
JPS57158352A (en) * 1981-03-27 1982-09-30 Showa Alum Corp Aluminum alloy foil for electrode of electrolytic capacitor
JPS581046A (en) * 1981-06-04 1983-01-06 Sumitomo Light Metal Ind Ltd Aluminum alloy foil for electrolytic capacitor and its rroduction
JPS63265416A (en) * 1987-04-23 1988-11-01 Showa Alum Corp Aluminum alloy foil for electrolytic capacitor electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5479462A (en) * 1977-12-06 1979-06-25 Showa Aluminium Co Ltd Aluminium alloy foil for electrolyte capacitor anode
JPS57158352A (en) * 1981-03-27 1982-09-30 Showa Alum Corp Aluminum alloy foil for electrode of electrolytic capacitor
JPS581046A (en) * 1981-06-04 1983-01-06 Sumitomo Light Metal Ind Ltd Aluminum alloy foil for electrolytic capacitor and its rroduction
JPS63265416A (en) * 1987-04-23 1988-11-01 Showa Alum Corp Aluminum alloy foil for electrolytic capacitor electrode

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055145A (en) * 1991-06-18 1993-01-14 Showa Alum Corp Aluminum alloy for electrolytic capacitor electrode foil
JPH1150213A (en) * 1997-07-25 1999-02-23 Furukawa Electric Co Ltd:The Aluminum foil for electrode of electrolytic capacitor
WO2002027052A1 (en) * 2000-09-20 2002-04-04 Nichicon Corporation Aluminum material for electrode of electrolytic capacitor and method for producing aluminum foil for electrode of electrolytic capacitor, and electrolytic capacitor
US6876541B1 (en) 2000-09-20 2005-04-05 Nichicon Corporation Aluminum material for electrode of electrolytic capacitor and method for producing aluminum foil for electrode of electrolytic capacitor, and electrolytic capacitor
KR100854202B1 (en) * 2000-09-20 2008-08-26 니치콘 가부시키가이샤 Aluminum material for electrode of electrolytic capacitor and method for producing aluminum foil for electrode of electrolytic capacitor, and electrolytic capacitor
JP2014068048A (en) * 2003-06-03 2014-04-17 Showa Denko Kk Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
EP1841892A4 (en) * 2004-12-21 2008-01-23 Showa Denko Kk Aluminum material for electrolytic capacitor electrode, production method of electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
EP1841892A1 (en) * 2004-12-21 2007-10-10 Showa Denko Kabushiki Kaisha Aluminum material for electrolytic capacitor electrode, production method of electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP2007146269A (en) * 2004-12-21 2007-06-14 Showa Denko Kk Aluminum material for electrolytic capacitor electrode, method for producing electrode material for electrolytic capacitor, and anode material for aluminum electrolytic capacitor and aluminum electrolytic capacitor
JP2012144809A (en) * 2005-05-31 2012-08-02 Showa Denko Kk Aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP2008045172A (en) * 2006-08-16 2008-02-28 Showa Denko Kk Aluminum material for electrolytic capacitor electrode, method for producing electrode material for electrolytic capacitor, electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
CN110923528A (en) * 2019-11-27 2020-03-27 新疆众和股份有限公司 Anode aluminum foil and manufacturing method thereof
CN110923528B (en) * 2019-11-27 2022-05-17 新疆众和股份有限公司 Method for manufacturing anode aluminum foil

Similar Documents

Publication Publication Date Title
JPH02270928A (en) Aluminum foil for anode of chemical condenser and its manufacture
JP2970852B2 (en) Manufacturing method of aluminum alloy foil for cathode of electrolytic capacitor
JP4521771B2 (en) Aluminum material for electrolytic capacitor electrodes
JP2651932B2 (en) Aluminum alloy foil for anode of electrolytic capacitor and method for producing the same
JPH1081945A (en) Aluminum foil for electrolytic capacitor electrode and its production
JP2803762B2 (en) Manufacturing method of aluminum foil for electrolytic capacitor
JP2826590B2 (en) Manufacturing method of aluminum alloy foil for anode of electrolytic capacitor
JP4916605B2 (en) Aluminum material for electrolytic capacitor electrode, aluminum foil, and method for producing aluminum foil
JPH06145923A (en) Manufacture of aluminum foil for electrolytic condenser anode
JP4827103B2 (en) Method for producing aluminum foil for electrolytic capacitor electrode
JP2001172754A (en) Method of manufacturing for high purity aluminum foil for electrolytic capacitor
JPH05311360A (en) Manufacture of aluminum alloy foil for electrode of electrolytic capacitor
JP2001073105A (en) Manufacture of aluminum foil for electrolytic capacitor anode
JPH05247609A (en) Manufacture of aluminum foil for cathode of electrolytic capacitor
JP4462518B2 (en) Aluminum foil for electrolytic capacitor cathode and manufacturing method thereof
JPH03165508A (en) Aluminum alloy for cathode foil of electrolytic capacitor
JPS6063359A (en) Manufacture of aluminum foil for anode of electrolytic capacitor
JP3203666B2 (en) Manufacturing method of aluminum alloy foil for anode of electrolytic capacitor
JPH0488153A (en) Manufacture of aluminum foil for electrolytic capacitor
JPH06212372A (en) Production of aluminum alloy foil for electrode of electrolytic capacitor
JPH0581164B2 (en)
JP3203678B2 (en) Method for producing aluminum alloy foil for cathode of electrolytic capacitor
JPH08100233A (en) Soft thin aluminum strip for medium-and low-voltage anode for electrolytic capacitor and its production
JPH0517856A (en) Method for reducing impurity in pure al sheet
JPH0561772B2 (en)