JPH0488153A - Manufacture of aluminum foil for electrolytic capacitor - Google Patents
Manufacture of aluminum foil for electrolytic capacitorInfo
- Publication number
- JPH0488153A JPH0488153A JP20258890A JP20258890A JPH0488153A JP H0488153 A JPH0488153 A JP H0488153A JP 20258890 A JP20258890 A JP 20258890A JP 20258890 A JP20258890 A JP 20258890A JP H0488153 A JPH0488153 A JP H0488153A
- Authority
- JP
- Japan
- Prior art keywords
- hot rolling
- rolling
- temperature
- foil
- aluminum foil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011888 foil Substances 0.000 title claims abstract description 41
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 36
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 36
- 239000003990 capacitor Substances 0.000 title claims abstract description 18
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 238000005098 hot rolling Methods 0.000 claims abstract description 68
- 238000005096 rolling process Methods 0.000 claims abstract description 16
- 238000001953 recrystallisation Methods 0.000 claims abstract description 14
- 238000005097 cold rolling Methods 0.000 claims abstract description 8
- 238000007796 conventional method Methods 0.000 claims abstract description 7
- 238000000265 homogenisation Methods 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 7
- 238000002425 crystallisation Methods 0.000 claims description 2
- 230000008025 crystallization Effects 0.000 claims description 2
- 239000012535 impurity Substances 0.000 abstract description 21
- 238000001556 precipitation Methods 0.000 abstract description 17
- 238000011282 treatment Methods 0.000 abstract description 11
- 238000001816 cooling Methods 0.000 abstract description 7
- 238000009826 distribution Methods 0.000 abstract description 4
- 238000005530 etching Methods 0.000 description 18
- 230000000694 effects Effects 0.000 description 8
- 239000000126 substance Substances 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000000866 electrolytic etching Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000000137 annealing Methods 0.000 description 2
- 239000010953 base metal Substances 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910005347 FeSi Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/40—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling foils which present special problems, e.g. because of thinness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
- B21B2003/001—Aluminium or its alloys
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Metal Rolling (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、主に交流によってエツチングされる電解コン
デンサ用アルミニウム箔の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method of manufacturing aluminum foil for electrolytic capacitors which is etched mainly by alternating current.
(従来技術およびその問題点)
電解コンデンサの電極に用いられるアルミニラム箔には
、有効表面積拡大のためにエツチング処理が施される。(Prior Art and its Problems) Aluminum foil used for electrodes of electrolytic capacitors is subjected to etching treatment to increase the effective surface area.
エツチングには、直流電流によるものと交流電流による
ものとに大別され。Etching can be broadly divided into those using direct current and those using alternating current.
前者は主に150■以上の化成電圧の高い高圧用陽極箔
に、後者は150■未満の化成電圧の低い低圧用陽極箔
および化成処理を行わない陰極用箔に用いられる。交流
エツチングを施されたアルミニウム箔には、直径約0.
5μmの微細なエッチビットが海綿状に形成される。静
電容量が高い電解コンデンサを得るには1電極に用いら
れるアルミニウム箔に形成されたエソチビ・7トが微細
で且つ均一であることが必要である。しかし、エツチン
グに供されるアルミニウム箔のエツチング液に対する化
学反応性が高いと、エツチング中にアルミニウム箔が過
剰に溶解し。The former is mainly used for high-voltage anode foils with a high conversion voltage of 150 Å or more, and the latter is used for low-voltage anode foils with a low conversion voltage of less than 150 Å and cathode foils that are not subjected to chemical conversion treatment. Aluminum foil that has been subjected to AC etching has a diameter of approximately 0.
Fine etch bits of 5 μm are formed in a spongy shape. In order to obtain an electrolytic capacitor with a high capacitance, it is necessary that the pores formed on the aluminum foil used for one electrode be fine and uniform. However, if the aluminum foil subjected to etching has high chemical reactivity with the etching solution, the aluminum foil will dissolve excessively during etching.
微細で且つ均一なエッチビットが得られなくなる。従っ
て、エツチング性に優れたアルミニウム箔を得るために
はその化学反応性を極力低く抑えてやる必要がある。更
にマクロ的にも不均一なエツチング分布があってはなら
ない。Fine and uniform etch bits cannot be obtained. Therefore, in order to obtain an aluminum foil with excellent etching properties, it is necessary to suppress its chemical reactivity as low as possible. Furthermore, there should be no macroscopically non-uniform etching distribution.
通常電解コンデンサ用アルミニウム箔を製造する場合、
以下の様な工程を経る。即ち、鋳造されたスラブに均質
化処理を施し、熱間圧延冷間圧延および箔圧延を行い電
解コンデンサ用アルミニウム箔を得る。また場合によっ
ては中間焼鈍、最終焼鈍等の熱処理を行う。このうち熱
間圧延工程においては、高温で加工を行うので材料中に
含まれてる微量不純物元素の拡散。When manufacturing aluminum foil for regular electrolytic capacitors,
It goes through the following steps. That is, the cast slab is homogenized, hot rolled, cold rolled and foil rolled to obtain an aluminum foil for an electrolytic capacitor. In some cases, heat treatments such as intermediate annealing and final annealing are performed. In the hot rolling process, processing is carried out at high temperatures, which causes the diffusion of trace impurity elements contained in the material.
析出が起こりやすい。すなわち、不純物元素は。Precipitation is likely to occur. In other words, the impurity elements are.
主にアルミニウム中に存在する転位、結晶粒界などの格
子欠陥にそって拡散しくパイプ拡散)。(pipe diffusion), which mainly diffuses along lattice defects such as dislocations and grain boundaries that exist in aluminum.
集積して析出する。従って、不純物元素の析出量はその
元素のアルミニウムに対する溶解度と。Accumulates and precipitates. Therefore, the amount of precipitation of an impurity element is determined by the solubility of that element in aluminum.
拡散に必要な転位密度、主な析出場所となる亜結晶粒界
の密度を決める亜結晶粒径並びに不純物元素の拡散速度
などを決定する加工温度に大きく依存する。通常の熱間
圧延は200〜600℃の範囲の温度域で行われるが、
この中には300〜500℃というアルミニウム中の不
純物元素が析出し易い温度域が含まれている。従って2
通常の熱間圧延工程とは、300〜500℃の温度域で
の不純物元素の析出工程でもある。この様に。It greatly depends on the dislocation density required for diffusion, the subgrain size that determines the density of subgrain boundaries that are the main precipitation sites, and the processing temperature that determines the diffusion rate of impurity elements. Normal hot rolling is carried out in a temperature range of 200 to 600°C,
This includes a temperature range of 300 to 500°C in which impurity elements in aluminum tend to precipitate. Therefore 2
The normal hot rolling process is also a process of precipitation of impurity elements in a temperature range of 300 to 500°C. Like this.
従来の熱間圧延工程では、加工と温度という2つの条件
が揃うために不純物元素の析出が非常に起こりやすくな
るのである。不純物元素の析出が起こると、析出物とア
ルミマトリックスとの間に電位差が生しる。後のエツチ
ング処理工程において、析出物とアルミマトリックスと
の間に電位差があると、エツチング液中で局部電池を形
成するため、アルミニウム箔の化学溶解性が大きくなり
、電解エツチングによる以上にアルミニウム箔が過剰に
溶解し、微細で且つ均一なエッチビットが得られなくな
る。従って。In the conventional hot rolling process, precipitation of impurity elements is extremely likely to occur because the two conditions of processing and temperature are met. When precipitation of impurity elements occurs, a potential difference is created between the precipitate and the aluminum matrix. In the subsequent etching process, if there is a potential difference between the precipitate and the aluminum matrix, a local battery will form in the etching solution, which will increase the chemical solubility of the aluminum foil and cause the aluminum foil to become more etchable than electrolytic etching. Excessive dissolution makes it impossible to obtain fine and uniform etch bits. Therefore.
過剰溶解を起こさないでエツチング性に優れたアルミニ
ウム箔を得るためには、箔製造過程の熱間圧延工程にお
ける不純物元素の析出を極力抑えることが重要となるが
、その手段として。In order to obtain an aluminum foil with excellent etching properties without causing excessive melting, it is important to suppress the precipitation of impurity elements as much as possible during the hot rolling process of the foil manufacturing process.
例えば、特開昭64−71504号公報および特公平1
−46576号公報にあるように、熱間圧延工程途中で
、不純物元素の析出温度域を圧延加工を行いながら速や
かに通過させることが提案されているが、この方法では
熱間圧延中に圧延材の温度を、前者では400℃から2
50℃へ、後者では450℃から220℃へ短時間で冷
却しなければならず、操業上実施が難しい。For example, Japanese Patent Application Laid-Open No. 64-71504 and Japanese Patent Publication No. 1
As stated in Publication No. 46576, it has been proposed to quickly pass through the precipitation temperature range of impurity elements during the hot rolling process. In the former case, the temperature of 400℃ to 2
The latter requires cooling from 450°C to 220°C in a short time, which is difficult to implement operationally.
さらに鋳塊の結晶粒が圧延加工で引き延ばされたままの
状態では、箔表面のマクロ組織が非常に粗くなるため、
エツチング時に均一なビット開始点が得られず、容量の
低下を引き起すという問題を生じる。すなわち、従来の
技術は熱間圧延の途中で再結晶を確実に起こさせる意図
で行われておらず、そのため上記のような問題があった
。Furthermore, if the crystal grains of the ingot remain stretched during rolling, the macrostructure of the foil surface becomes extremely rough.
A problem arises in that a uniform bit starting point cannot be obtained during etching, causing a reduction in capacity. In other words, the conventional techniques have not been carried out with the intention of ensuring that recrystallization occurs during hot rolling, and as a result, the above-mentioned problems have occurred.
(問題点を解決するための手段)
本発明者はアルミニウム中に含まれるFeSi、 Cu
などの不純物元素を析出させることなくしかも均一な再
結晶組織を得る操業の容易な製造方法を鋭意研究開発し
、均質化処理後、温度を下げることなく高温のままで粗
熱間圧延に着手し、粗熱間圧延終了後、再結晶が完了す
るまで放置し、その後、圧延を再開して微量不純物元素
の析出が起こり易い温度域の上限である400℃以上で
仕上げ熱間圧延を終了し、その後加工を加えずに常温ま
で冷却することによって所期の目標を達成することが可
能であることを見いだし1本発明をするに至った。すな
わち次の手段で解決することが出来た。(Means for solving the problem) The present inventor has discovered that FeSi and Cu contained in aluminum
We worked hard to research and develop an easy-to-operate manufacturing method that produces a uniform recrystallized structure without precipitating impurity elements such as After completion of the rough hot rolling, leave it until recrystallization is completed, then resume rolling and finish the finishing hot rolling at 400 ° C. or higher, which is the upper limit of the temperature range in which precipitation of trace impurity elements is likely to occur, They discovered that it is possible to achieve the desired goal by cooling the material to room temperature without further processing, and have thus come up with the present invention. In other words, I was able to solve the problem using the following method.
(11N解コンデンサ用アルミニウム鋳塊に570〜6
30℃の温度範囲で、4〜24時間の均質化処理を施し
た後、ただちにほぼ均質化処理温度で粗熱間圧延に着手
し、500〜530℃の温度で粗熱間圧延を終了し再結
晶が完了するまで放置し。(570~6 in aluminum ingot for 11N solution capacitor)
After homogenizing for 4 to 24 hours in a temperature range of 30°C, rough hot rolling is immediately started at approximately the homogenizing temperature, and the rough hot rolling is finished at a temperature of 500 to 530°C and then restarted. Leave it until the crystallization is complete.
次いで仕上げ熱間圧延を行い、400℃以上の温度で終
了し、その後の冷間圧延、箔圧延は常法による。Next, finish hot rolling is performed and completed at a temperature of 400° C. or higher, and subsequent cold rolling and foil rolling are carried out by conventional methods.
(2)!解コンデンサ用アルミニウム鋳塊に570〜6
30℃の温度範囲で、4〜24時間の均質化処理を施し
た後、ただちにほぼ均質化処理温度で粗熱間圧延に着手
し、500〜530℃の温度で20〜60mm厚さまで
粗熱間圧延を行い、そのまま粗熱間圧延を終了し60〜
120秒放置し再結晶を完了させ、次いで仕上げ熱間圧
延を行い、400℃以上の温度で終了せしめ、その後の
冷間圧延。(2)! 570-6 for aluminum ingots for decomposition capacitors
After homogenizing for 4 to 24 hours in a temperature range of 30°C, rough hot rolling is immediately started at approximately the homogenization temperature, and rough hot rolling is carried out at a temperature of 500 to 530°C to a thickness of 20 to 60 mm. Rolling is carried out, and the rough hot rolling is finished at 60~
The recrystallization was completed by standing for 120 seconds, followed by finish hot rolling, which was completed at a temperature of 400° C. or higher, followed by cold rolling.
箔圧延は常法による。Foil rolling is done by a conventional method.
(3) 前記(2)項において、仕上げ熱間圧延後、
300℃以下に30分以内に冷却する。(3) In the above (2), after finishing hot rolling,
Cool to below 300°C within 30 minutes.
(4)前記(3)項において、粗熱間圧延開始から粗熱
間圧延終了までの時間を0.5分から6分以内とし、か
つ、仕上げ熱間圧延開始から仕上げ熱間圧延終了までの
時間を0.5分から3分以内とする。(4) In item (3) above, the time from the start of rough hot rolling to the end of rough hot rolling shall be within 0.5 minutes to 6 minutes, and the time from the start of finishing hot rolling to the end of finishing hot rolling. within 0.5 to 3 minutes.
(作用)
次に本発明の製造条件を限定した理由について説明する
。(Function) Next, the reason for limiting the manufacturing conditions of the present invention will be explained.
本製造方法は、電解コンデンサに通常使用される純度で
あれば、使用するアルミニウム地金の純度を制約しない
が、エツチングに際しての過剰溶解を避けるためには9
9.97χA1以上の純度の地金が使用されることが望
ましい。更に陽極箔用にはA199.90%以上、 F
e 300 ppm以下、 Si 300 ppm以下
、 Cu 100 ppm以下が、また陰極箔用にはA
1 99.80%以上、 Fe 600 ppm以下
、 Si 600 ppm以下、 Cu 600 pp
m以下の地金を使用することによって本発明の製造方法
の効果が一層を効になる。すなわちFeは、固溶状態に
て存在すると加工硬化性を著しく高め1強度を向上する
だけでなく、転位分布を均一にする効果があるが、多く
含有されると析出が起こり易くなりむしろ有害である。This manufacturing method does not restrict the purity of the aluminum base metal used as long as it is of a purity normally used for electrolytic capacitors, but in order to avoid excessive dissolution during etching,
It is desirable to use a metal having a purity of 9.97χA1 or higher. Furthermore, for anode foil, A199.90% or more, F
e 300 ppm or less, Si 300 ppm or less, Cu 100 ppm or less, and A for cathode foil.
1 99.80% or more, Fe 600 ppm or less, Si 600 ppm or less, Cu 600 ppm
The effect of the manufacturing method of the present invention becomes even more effective by using a base metal having a size of less than m. In other words, when Fe exists in a solid solution state, it not only significantly increases work hardenability and improves strength, but also has the effect of making the dislocation distribution uniform, but if it is contained in a large amount, precipitation tends to occur, which is rather harmful. be.
Siは、 Feの平衡固溶量を低下させ、しかもFeの
析出を促進するので。Si reduces the equilibrium solid solution amount of Fe and promotes the precipitation of Fe.
Fe含有量と同程度とする。Cuは、エツチングを均一
に進行させる効果を有する元素であるが。The content should be approximately the same as the Fe content. Cu is an element that has the effect of uniformly progressing etching.
多く存在すると過溶解などの不具合が生じる。If too much is present, problems such as overdissolution will occur.
均質化処理を570〜630℃の温度範囲で、4〜24
時間としたのは、570℃未満では鋳造時に生じた不純
物元素のミクロ偏析をなくシ、均一に分布させることが
出来ないこと、さらに温度が570℃以上でも加熱時間
が4時間未満であるとやはり均質化不十分であり、しか
も場所によって均質化の程度が変動することによる。な
お、均質化処理温度は高ければそれだけ均質化が容易に
進むが、630℃を超える温度では溶融温度に接近して
おり鋳塊が局部溶融する危険性があること、鋳塊表面の
酸化が著しいことなどから、570〜630℃の範囲の
温度が望ましい。Homogenization treatment was performed at a temperature range of 570 to 630°C for 4 to 24 hours.
The reason for this is that if the temperature is lower than 570°C, it will not be possible to eliminate the micro-segregation of impurity elements that occur during casting and it will not be possible to distribute them uniformly.Furthermore, even if the temperature is 570°C or higher, the heating time is less than 4 hours. This is because homogenization is insufficient and the degree of homogenization varies depending on the location. Note that the higher the homogenization temperature is, the easier the homogenization will be, but if the temperature exceeds 630°C, it approaches the melting temperature and there is a risk of local melting of the ingot, and significant oxidation of the ingot surface. For this reason, a temperature in the range of 570 to 630°C is desirable.
一方、均質化処理時間であるが長ければより均質化が進
むが、24時間を超えれば、その効果が飽和するので、
4〜24時間の範囲とすることが望ましい。On the other hand, the longer the homogenization treatment time, the more homogenization will progress, but if it exceeds 24 hours, the effect will be saturated.
It is desirable to set it as the range of 4 to 24 hours.
均質化処理後、温度を下げることなく高温のままで粗熱
間圧延に着手し、500℃以上の温度で20〜60 +
*+i厚さまで粗熱間圧延し、そのまま粗熱間圧延を終
了し、再結晶が完了するまで放置する理由は以下のとお
りである。すなわち。After the homogenization treatment, rough hot rolling is started at a high temperature without lowering the temperature, and at a temperature of 500℃ or higher, 20 to 60 +
The reason for performing rough hot rolling to *+i thickness, finishing the rough hot rolling, and leaving it until recrystallization is completed is as follows. Namely.
一般に圧延用スラブは300〜600■厚さのものが多
く使用されており、これに500℃以上の温度で90%
以上の圧下率(20〜60園剛厚さに相当する)を加え
て、そのまま粗熱間圧延を終了し。In general, slabs for rolling are often used with a thickness of 300 to 600 mm, and at a temperature of 500°C or higher, 90%
The above rolling reduction rate (corresponding to 20 to 60 thickness) was applied, and the rough hot rolling was then completed.
60秒以上放置すると、粗熱間圧延時に圧延方向に延ば
された鋳塊の結晶粒が完全に再結晶する。If left for 60 seconds or more, the crystal grains of the ingot stretched in the rolling direction during rough hot rolling will completely recrystallize.
この鋳造組織の再結晶は後述の仕上げ熱間圧延後の再結
晶と組み合わされることによって、最終筒の圧延組織を
微細にする作用があり、従ってエツチング時にビットが
均一に発生し、容量向上に寄与する効果がある。500
℃未満の温度では粗熱間圧延を終了し再結晶するのに数
分以上を要し著しく生産を阻害し好ましくない。This recrystallization of the cast structure, in combination with the recrystallization after finishing hot rolling described below, has the effect of making the rolled structure of the final cylinder finer, and therefore bits are generated uniformly during etching, contributing to increased capacity. It has the effect of 500
If the temperature is lower than .degree. C., it will take several minutes or more to complete the rough hot rolling and recrystallize, which is undesirable as it will significantly impede production.
方熱間圧延終了温度が高くなると再結晶が容易に進むが
530℃を超えると再結晶粒が粗大になるので、500
〜530℃の範囲の温度が望ましい。On the other hand, as the hot rolling end temperature increases, recrystallization progresses easily, but when the temperature exceeds 530°C, the recrystallized grains become coarse.
Temperatures in the range ˜530° C. are desirable.
粗熱間圧延終了後の放置時間は、60秒未満では再結晶
が完了しないので、60秒以上保持する。しかし保持時
間が長すぎると温度が低下してしまうので、60〜12
0秒の範囲が望ましい。The standing time after the rough hot rolling is kept for 60 seconds or more since recrystallization will not be completed if it is less than 60 seconds. However, if the holding time is too long, the temperature will drop, so
A range of 0 seconds is desirable.
更に粗熱間圧延終了厚みが60 sg+より厚い場合に
は、粗熱間圧延の圧下量が少ないため、500℃以上の
温度でも再結晶を完了させるのに数分を要し好ましくな
い。一方、20 am未満まで粗熱間圧延すると、50
0℃以上に温度を維持することが困難となる。従って、
粗熱間圧延終了時の厚さは20〜60 sunの範囲と
する。Further, if the thickness after rough hot rolling is thicker than 60 sg+, the reduction amount in rough hot rolling is small, so it takes several minutes to complete recrystallization even at a temperature of 500° C. or higher, which is not preferable. On the other hand, when rough hot rolled to less than 20 am,
It becomes difficult to maintain the temperature above 0°C. Therefore,
The thickness at the end of rough hot rolling is in the range of 20 to 60 suns.
また均質化処理後に温度を下げると20〜60霞厚さの
時点にて、500℃以上の温度を確保することが困難と
なる。Further, if the temperature is lowered after the homogenization treatment, it becomes difficult to maintain a temperature of 500° C. or higher when the thickness is 20 to 60 degrees.
なお、粗熱間圧延開始から粗熱間圧延終了までの時間を
冷却速度をコントロールしながら0、5分から6分以内
に終了するようにする理由であるが、粗熱間圧延の温度
範囲で6分を越えてしまうと、不純物の析出が促進され
、最終製品に悪影響を及ぼすからである。粗熱間圧延時
間は短いほうが好ましいが、0.5分未満では実際の製
造が困難となる。The reason why the time from the start of rough hot rolling to the end of rough hot rolling is controlled within 0.5 to 6 minutes while controlling the cooling rate is 6 minutes within the temperature range of rough hot rolling. This is because if the amount is exceeded, the precipitation of impurities will be promoted and the final product will be adversely affected. Although it is preferable that the rough hot rolling time be short, actual production becomes difficult if it is less than 0.5 minutes.
次に、400℃以上で仕上げ熱間圧延を終了することに
よって、300〜400℃の温度範囲で起こる不純物元
素の拡散、析出を防止できる。更に400℃以上で仕上
げ熱間圧延を終了することによって、仕上げ熱間圧延終
了後数分以内に再結晶させることが出来、前述の再結晶
工程とともに最終筒の圧延組織の微細化、さらにエツチ
ング時におけるピントの均一な発生を促すことが出来る
。この様な高温で仕上げ熱間圧延を行うには、できるだ
け高速度(例えば、100〜120m/5in)で熱間
圧延し、圧延ロールに接触する時間を短縮し温度の低下
を制御することによって実現出来る。この仕上げ熱間圧
延に要する時間は、0.5分から3分以内に終了するよ
うにすることが好ましい。仕上げ熱間圧延の時間が長す
ぎると析出が促進されてしまうからである。Next, by finishing the finish hot rolling at 400°C or higher, diffusion and precipitation of impurity elements that occur in the temperature range of 300 to 400°C can be prevented. Furthermore, by finishing the finish hot rolling at 400°C or higher, it is possible to recrystallize within a few minutes after finishing the finish hot rolling, and in addition to the above-mentioned recrystallization process, the rolled structure of the final cylinder is refined, and furthermore, during etching. It is possible to promote uniform focusing in the image. Finish hot rolling at such high temperatures is achieved by hot rolling at as high a speed as possible (for example, 100 to 120 m/5 in), shortening the contact time with the rolling rolls, and controlling the temperature drop. I can do it. The time required for this finish hot rolling is preferably completed within 0.5 minutes to 3 minutes. This is because if the finishing hot rolling time is too long, precipitation will be promoted.
なお、仕上げ熱間圧延終了後の冷却過程において、30
0〜400℃の不純物元素の析出しやすい温度域を通過
するのに要する時間は短いほどより、30分以内が望ま
しい。これは以下の理由による。すなわち仕上げ熱間圧
延終了後数分以内に再結晶が完了し、転位がほとんど存
在しないこと、さらに圧延加工による転位の導入もない
ので不純物元素の析出は起こり難くなる。In addition, in the cooling process after finishing hot rolling, 30
The shorter the time required to pass through the temperature range of 0 to 400°C where impurity elements are likely to precipitate, the more preferably 30 minutes or less. This is due to the following reasons. That is, recrystallization is completed within a few minutes after finishing hot rolling, almost no dislocations exist, and since no dislocations are introduced by rolling, precipitation of impurity elements becomes difficult.
しかしたとえ転位が少なくても、上記温度域に長時間保
持されると、少しずつではあるが不純物元素の析出が起
こり、エツチング性を悪化させるからである。冷却の方
法としては強制空冷でコントロール出来る。However, even if there are few dislocations, if the temperature range is kept in the above temperature range for a long time, impurity elements will precipitate little by little, which will deteriorate etching properties. The cooling method can be controlled by forced air cooling.
仕上げ熱間圧延終了後の冷間圧延および箔圧延は1通常
行われている工程でよく特に規定しないが、冷間圧延の
圧下率は95%以上となるのが普通である。Cold rolling and foil rolling after completion of finish hot rolling are commonly performed steps and are not particularly specified, but the reduction ratio in cold rolling is usually 95% or more.
(実施例)
通常のDC鋳造によって表1に示すような化学組成を有
し、厚さが400mm、幅が1000 mmのスラブを
得た。(Example) A slab having a chemical composition shown in Table 1 and having a thickness of 400 mm and a width of 1000 mm was obtained by ordinary DC casting.
第1表 組 成
第1表の組成の2種類のDCスラブを使用して次の第2
表に示す条件で均質化処理と熱間圧延を行い、その後冷
間圧延および箔圧延を施し供試材A−1からA−15に
ついては90μm厚さ、B−1からB−4については5
0μm厚さの箔を作成した。粗熱間圧延に約4分、仕上
げ熱間圧延には約2分を要した。その後、第3表に示す
条件により電解エツチングおよび化成処理を行った後、
静電容量を測定して評価を行った。静電容量、エツチン
グ均一性、総合評価の結果を第2表に併せてに示す。○
印が合格と判定されたもので、本発明によるものは何れ
も合格であったが、比較例によるものは不合格であった
。Table 1 Composition Two types of DC slabs with the compositions shown in Table 1 are used to create the following second
Homogenization treatment and hot rolling were performed under the conditions shown in the table, and then cold rolling and foil rolling were performed to obtain a thickness of 90 μm for test materials A-1 to A-15, and a thickness of 5 μm for test materials B-1 to B-4.
A foil with a thickness of 0 μm was created. Rough hot rolling took about 4 minutes, and finishing hot rolling took about 2 minutes. After that, after performing electrolytic etching and chemical conversion treatment under the conditions shown in Table 3,
Evaluation was performed by measuring capacitance. The results of capacitance, etching uniformity, and overall evaluation are also shown in Table 2. ○
The mark indicates that the test results were determined to pass, and all the test results according to the present invention passed, but the test results according to the comparative example failed.
第3表
電解エツチング条件および”4b茨妨月國u牛「発明の
効果」
以上説明したように本発明に係わる電解コンデンサ陽極
用アルミニウム箔の製造方法によって不純物元素の析出
を阻止制御して製造されたアルミニウム箔は、従来の製
造方法によるアルミニウム箔に比較して、良好な箔特性
、すなわち高い静電容量と均一な特性分布を有しており
、工業的にその効果の大きい発明である。Table 3 Electrolytic etching conditions and "4b Effects of the invention" As explained above, the method for producing aluminum foil for electrolytic capacitor anodes according to the present invention prevents and controls the precipitation of impurity elements. The aluminum foil produced by the present invention has better foil properties, that is, higher capacitance and more uniform property distribution, than aluminum foil manufactured by conventional methods, and is an invention that has great industrial effects.
Claims (4)
30℃の温度範囲で,4〜24時間の均質化処理を施し
た後,ただちにほぼ均質化処理温度で粗熱間圧延に着手
し,500〜530℃の温度で粗熱間圧延を終了し再結
晶が完了するまで放置し,次いで仕上げ熱間圧延を行い
,400℃以上の温度で終了し,その後の冷間圧延,箔
圧延は常法によることを特徴とする電解コンデンサ用ア
ルミニウム箔の製造方法。(1) 570-6 for aluminum ingots for electrolytic capacitors
After homogenizing for 4 to 24 hours in a temperature range of 30°C, rough hot rolling is immediately started at approximately the homogenizing temperature, and the rough hot rolling is finished at a temperature of 500 to 530°C and then restarted. A method for manufacturing an aluminum foil for an electrolytic capacitor, characterized in that it is left to stand until crystallization is completed, then finish hot rolling is completed at a temperature of 400°C or higher, and subsequent cold rolling and foil rolling are carried out by conventional methods. .
30℃の温度範囲で,4〜24時間の均質化処理を施し
た後,ただちにほぼ均質化処理温度で粗熱間圧延に着手
し,500〜530℃の温度で20〜60mm厚さまで
粗熱間圧延を行い,そのまま粗熱間圧延を終了し60〜
120秒放置し再結晶を完了させ,次いで仕上げ熱間圧
延を行い,400℃以上の温度で終了せしめ,その後の
冷間圧延,箔圧延は常法によることを特徴とする電解コ
ンデンサ用アルミニウム箔の製造方法。(2) 570-6 for aluminum ingots for electrolytic capacitors
After homogenizing for 4 to 24 hours in a temperature range of 30°C, rough hot rolling is immediately started at approximately the homogenization temperature, and rough hot rolling is carried out at a temperature of 500 to 530°C to a thickness of 20 to 60 mm. Rolling is carried out, and the rough hot rolling is finished at 60~
An aluminum foil for electrolytic capacitors, which is left for 120 seconds to complete recrystallization, then finish hot rolled to finish at a temperature of 400°C or higher, and subsequent cold rolling and foil rolling are carried out by conventional methods. Production method.
冷却することを特徴とする請求項(2)に記載の電解コ
ンデンサ用アルミニウム箔の製造方法。(3) The method for producing an aluminum foil for an electrolytic capacitor according to claim (2), wherein the aluminum foil is cooled to 300° C. or less within 30 minutes after finishing hot rolling.
0.5分から6分以内とし,かつ,仕上げ熱間圧延開始
から仕上げ熱間圧延終了までの時間を0.5分から3分
以内とすることを特徴とする請求項(3)に記載の電解
コンデンサ用アルミニウム箔の製造方法。(4) The time from the start of rough hot rolling to the end of rough hot rolling is within 0.5 minutes to 6 minutes, and the time from the start of finish hot rolling to the end of finish hot rolling is 0.5 minutes to 3 minutes. The method for manufacturing an aluminum foil for an electrolytic capacitor according to claim 3, wherein
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2202588A JP2918172B2 (en) | 1990-08-01 | 1990-08-01 | Manufacturing method of aluminum foil for electrolytic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2202588A JP2918172B2 (en) | 1990-08-01 | 1990-08-01 | Manufacturing method of aluminum foil for electrolytic capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0488153A true JPH0488153A (en) | 1992-03-23 |
JP2918172B2 JP2918172B2 (en) | 1999-07-12 |
Family
ID=16459972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2202588A Expired - Lifetime JP2918172B2 (en) | 1990-08-01 | 1990-08-01 | Manufacturing method of aluminum foil for electrolytic capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2918172B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1150213A (en) * | 1997-07-25 | 1999-02-23 | Furukawa Electric Co Ltd:The | Aluminum foil for electrode of electrolytic capacitor |
WO2005069321A1 (en) * | 2004-01-19 | 2005-07-28 | Matsushita Electric Industrial Co., Ltd. | Electric double-layer capacitor, its manufacturing method, and electronic device using same |
JP2008291305A (en) * | 2007-05-24 | 2008-12-04 | Fujifilm Corp | Method for manufacturing aluminum alloy sheet for lithographic printing plate |
WO2016067045A1 (en) * | 2014-10-31 | 2016-05-06 | Imperial Innovations Limited | Material and process for preparing and forming an aluminium alloy material |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2756861B2 (en) | 1990-08-01 | 1998-05-25 | 日本軽金属株式会社 | Manufacturing method of aluminum foil for anode of electrolytic capacitor |
-
1990
- 1990-08-01 JP JP2202588A patent/JP2918172B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1150213A (en) * | 1997-07-25 | 1999-02-23 | Furukawa Electric Co Ltd:The | Aluminum foil for electrode of electrolytic capacitor |
WO2005069321A1 (en) * | 2004-01-19 | 2005-07-28 | Matsushita Electric Industrial Co., Ltd. | Electric double-layer capacitor, its manufacturing method, and electronic device using same |
US7394648B2 (en) | 2004-01-19 | 2008-07-01 | Matsushita Electric Industrial Co., Ltd. | Electric double-layer capacitor, its manufacturing method, and electronic device using same |
JP2008291305A (en) * | 2007-05-24 | 2008-12-04 | Fujifilm Corp | Method for manufacturing aluminum alloy sheet for lithographic printing plate |
WO2016067045A1 (en) * | 2014-10-31 | 2016-05-06 | Imperial Innovations Limited | Material and process for preparing and forming an aluminium alloy material |
Also Published As
Publication number | Publication date |
---|---|
JP2918172B2 (en) | 1999-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007046093A (en) | Aluminum foil for electrolytic capacitor electrode, and manufacturing method therefor | |
JPH0488153A (en) | Manufacture of aluminum foil for electrolytic capacitor | |
JPS58221265A (en) | Manufacture of aluminum foil material for anode of electrolytic capacitor | |
JP2945298B2 (en) | Manufacturing method of aluminum alloy foil for electrolytic capacitor cathode | |
JP2970852B2 (en) | Manufacturing method of aluminum alloy foil for cathode of electrolytic capacitor | |
JP2756861B2 (en) | Manufacturing method of aluminum foil for anode of electrolytic capacitor | |
JP2006351704A (en) | Aluminum material for electrolytic capacitor electrode | |
JPH0361333B2 (en) | ||
JP2006219742A (en) | Aluminum alloy foil for cathode of electrolytic capacitor and its production method | |
JP4827103B2 (en) | Method for producing aluminum foil for electrolytic capacitor electrode | |
JP4916698B2 (en) | Aluminum material for electrolytic capacitor and manufacturing method thereof, manufacturing method of electrode material for electrolytic capacitor, anode material for electrolytic capacitor, and aluminum electrolytic capacitor | |
JPH04247855A (en) | Production of aluminum foil for electrolytic capacitor anode | |
JP6802161B2 (en) | Manufacturing method of aluminum material for electrolytic capacitor electrode, manufacturing method of electrode material for aluminum electrolytic capacitor, and manufacturing method of aluminum electrolytic capacitor | |
JP3594858B2 (en) | Aluminum foil for electrolytic capacitor electrodes | |
JP3203666B2 (en) | Manufacturing method of aluminum alloy foil for anode of electrolytic capacitor | |
JP2010013714A (en) | Aluminum foil for electrolytic capacitor electrode | |
JPH0581164B2 (en) | ||
JP3359408B2 (en) | Manufacturing method of aluminum foil for electrode of electrolytic capacitor | |
JP2000129383A (en) | Aluminum foil material for electrolytic capacitor electrode | |
RU2113922C1 (en) | Method for production of aluminum band | |
JPH0266141A (en) | Manufacture of aluminum foil for electrolytic capacitor cathode | |
JPH03138340A (en) | Manufacture of high purity aluminum foil | |
JP2010053395A (en) | Intermediate product of aluminum foil for electrolytic capacitor, and method for manufacturing aluminum foil for electrolytic capacitor | |
JPH0790519A (en) | Production of aluminum foil for electrolytic capacitor cathode | |
JPH01276612A (en) | Aluminum material for electrode of electrolytic capacitor |