JPH0561772B2 - - Google Patents

Info

Publication number
JPH0561772B2
JPH0561772B2 JP63106016A JP10601688A JPH0561772B2 JP H0561772 B2 JPH0561772 B2 JP H0561772B2 JP 63106016 A JP63106016 A JP 63106016A JP 10601688 A JP10601688 A JP 10601688A JP H0561772 B2 JPH0561772 B2 JP H0561772B2
Authority
JP
Japan
Prior art keywords
hot rolling
aluminum material
aluminum
rolling
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63106016A
Other languages
Japanese (ja)
Other versions
JPH01276612A (en
Inventor
Masashi Sakaguchi
Tomoaki Yamanoi
Tomohiko Kitamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP10601688A priority Critical patent/JPH01276612A/en
Publication of JPH01276612A publication Critical patent/JPH01276612A/en
Publication of JPH0561772B2 publication Critical patent/JPH0561772B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 この発明は電解コンデンサ電極用アルミニウム
材料に関する。 従来の技術及び課題 アルミニウム電解コンデンサ用電極材として一
般に用いられるアルミニウム箔には、その実効面
積を拡大して単位面積当りの静電容量を増大する
ため、一般に電気化学的あるいは化学的エツチン
グ処理が施される。 ところで、アルミニウム箔は一般には溶解・鋳
造、熱間圧延、冷間圧延、最終焼鈍の各工程の順
次的実施により製作されるが、最終焼鈍したアル
ミニウム箔の再結晶集合組織において、{100}面
が箔の表面と平行となり<001>方向が圧延方向
と平行となつている、いわゆる立方体方位の結晶
が多く存在すれば、このアルミニウム箔をエツチ
ングした場合に静電容量が大きくなることは良く
知られた事実である。 そこで、最終焼鈍後の再結晶集合組織における
{100}面の占有率を向上し、エツチング特性の向
上ひいては静電容量の増大を図るべく従来より
種々検討されているが、いずれも十分なものでは
なく、また{100}面の占有率のバラツキも大き
いものであつた。 この発明はかかる事情に鑑み、最終焼鈍後の
{100}面の占有率を向上、安定化させ、静電容量
の大きな電解コンデンサ用アルミニウム箔を提供
することを目的とし、このための材料を提供せん
とするものである。 問題点を解決するための手段 上記目的において、発明者は鋭意研究の結果、
アルミニウム箔の製造工程における熱間圧延後の
組織と最終焼鈍後の{100}面の占有率との間に
密接な相関関係があることを見出すに至り、かか
る知見に基いてこの発明を完成しえたものであ
る。 即ちこの発明に係る電解コンデンサ電極用アル
ミニウム材料の製造方法は、不純物としてのFe、
Si、Cuを除く残部の純度が99.9%以上である高純
度アルミニウムからなるアルミニウム材料であつ
て、熱間圧延後の組織において、結晶粒の短軸の
長さが最大10mm以下であることを特徴とするもの
である。 本発明に係るアルミニウム材料において、不純
物としてのFe、Si、Cuを除く残部の純度が99.9
%以上り限定されるのは、99.9%未満では{100}
占有率のバラツキが大きくなり、占有率も低下す
るからである。またFeは立方体方位の成長を阻
害する元素であり、100ppmを超えて含有される
と最終焼鈍時の{100}占有率そのものが低下す
る傾向にあるため100ppm以下に規制するのが望
ましい。SiはFeの析出を促進する元素であるが、
100ppmを超えて含有されるとやはり立方体方位
の成長を阻害する傾向となるため、同じく
100ppm以下に規制するのが望ましい。Cuは
100ppmを超えて含有されるとエツチング処理に
おいて過溶解などの問題を生じ易いため、同じく
100ppm以下に規制するのが望ましい。 アルミニウム箔の製造工程における熱間圧延に
より、アルミニウム材料1は第1図に示すよう
に、その結晶粒2が圧延方向Xに延ばされた状態
となるが、この発明では熱間圧延後の組織におい
て、結晶粒2の長軸の長さ(a)、短軸弐長さ(b)、厚
み(C)のうち、特に短軸の長さ(b)が最大10mm以下で
あることを要件とする。短軸の長さ(b)が10mmを超
える結晶粒が存在すると、最終焼鈍後の{100}
面の占有率が低下し、またロツト内のバラツキも
大きくなるためである。これは、結晶粒2の短軸
の長さ(b)が10mmを超えると、再結晶時に圧延面が
{100}面となるような核の有効な発生場所である
結晶粒界の分布が不均一となるため、最終焼鈍時
に起こる再結晶で圧延面が{100}面を持つよう
な再結晶粒の十分な核生成、成長が進行しないた
めであると考えられる。このような現象は熱間圧
延工程における圧下率が特に97%程度以上である
場合に特に顕著となる。 熱間圧延後の組織において、短軸bの長さが10
mmを超える結晶粒を規制するための具体的方法と
しては、例えば、熱間圧延において、厚さ10〜80
mmの間での1パスの圧下率が40%以上である工程
を1回もしくは2回とるとか、更に圧延パス間の
保持時間を1分以上にし、再結晶を進行させるこ
となどが挙げられる。 上記アルミニウム材料は、これを冷間圧延、箔
圧延、最終焼鈍の各工程を順次的に実施して電解
コンデンサ電極用アルミニウム箔に製作する。か
かる熱間圧延以後の工程についてはこれを何ら限
定するものではなく、従来の同様の条件を採用し
うる。また冷間圧延後あるいは冷間圧延の途中に
1回あるいは2回以上の中間焼鈍を施しても良
い。 最終焼鈍を経たアルミニウム箔は、その後電気
化学的あるいは化学的エツチング処理したのち、
電解コンデンサ電極箔として使用する。 発明の効果 この発明に係る電解コンデンサ電極用アルミニ
ウム材料は、上述の次第であるから、該材料を用
いることにより、最終焼鈍後の箔において{100}
面の占有率を向上させることができ、また場所に
よるバラツキを抑えることができる。その結果、
エツチング特性を向上させることができ、ひいて
は静電容量に優れかつその値にバラツキの少ない
電極箔を得ることができる。 実施例 [試料1] Fe:25ppm、Si:10ppm、Cu:50ppmを含み、
これら以外の不純物の含有量が10ppmであるアル
ミニウム鋳塊につき、熱間圧延開始温度520℃で
合計圧下率98%の熱間圧延を施した。ここに、熱
間圧延のパススケジユールは、下記第1表におけ
る(イ)を採用した。 上記熱間圧延により得られたアルミニウム材料
の組織を調べたところ、結晶粒の短軸の長さは最
大180μmであり、平均値は120μmであつた。 次に、上記アルミニウム材料を0.12mmの厚さま
で冷間圧延し、続いて250℃で10時間の中間焼鈍
を実施したのち、厚さ0.1mmに冷間圧延した。そ
してこのアルミニウム箔を550℃×1時間最終焼
鈍した。 [試料2] 熱間圧延開始温度を550℃とするとともに、熱
間圧延におけるパススケジユールとして、下記第
1表における(ロ)を採用した以外は上記試料1と同
様にして試験片を得た。この場合、熱間圧延後の
アルミニウム材料の組織において、結晶粒の短軸
の長さは最大20000μm(20mm)であり、平均値
は900μmであつた。 [試料3] Fe:40ppm、Si:30ppm、Cu:30ppmを含み、
これら以外の不純物の含有量が30ppmであるアル
ミニウム鋳塊につき、熱間圧延開始温度580℃で
合計圧下率98%の熱間圧延を施した。ここに、熱
間圧延のパススケジユールは、下記第1表におけ
る(イ)を採用した。 上記熱間圧延により得られたアルミニウム材料
の製織を調べたところ、結晶粒の短軸の長さは最
大1800μmであり、平均値は700μmであつた。 次に、上記アルミニウム材料を0.15mmの厚さま
で冷間圧延し、続いて250℃で12時間の中間焼鈍
を実施したのち、厚さ0.1mmに冷間圧延した。そ
してこのアルミニウム箔を550℃×1時間最終焼
鈍した。 [試料4] 熱間圧延開始温度を590℃とするとともに、熱
間圧延におけるパススケジユールとして、下記第
1表における(ロ)を採用した以外は上記試料3と同
様にして試験片を得た。この場合、熱間圧延後の
アルミニウム材料の組織において、結晶粒の短軸
の長さは最大25000μm(25mm)であり、平均値
は500μmであつた。 [試料5] 中間焼鈍を300℃×12時間の条件で行つた以外
は試料3と同様にして試験片を得た。 [試料6] Fe:60ppm、Si:40ppm、Cu:30ppmを含み、
これら以外の不純物の含有量が100ppmであるア
ルミニウム鋳塊につき、熱間圧延開始温度590℃
で合計圧下率98%の熱間圧延を施した。ここに、
熱間圧延のパススケジユールは、下記第1表にお
ける(イ)を採用した。 上記熱間圧延により得られたアルミニウム材料
の組織を調べたところ、結晶粒の短軸の長さは最
大1200μmであり、平均値は600μmであつた。 次に、上記アルミニウム材料を0.12mmの厚さま
で冷間圧延し、続いで300℃で12時間の中間焼鈍
を実施したのち、厚さ0.1mmに熱間圧延した。そ
してこのアルミニウム箔を550℃×1時間最終焼
鈍した。 [試料7] 熱間圧延におけるパススケジユールとして、下
記第1表における(ロ)を採用した以外は上記試料6
と同様にして試験片を得た。この場合、熱間圧延
後のアルミニウム材料の組織において、結晶粒の
短軸の長さは最大22000μm(22mm)であり、平
均値は1200μmであつた。
INDUSTRIAL APPLICATION FIELD This invention relates to an aluminum material for electrolytic capacitor electrodes. Prior Art and Problems Aluminum foil, which is commonly used as an electrode material for aluminum electrolytic capacitors, is generally subjected to electrochemical or chemical etching treatment in order to expand its effective area and increase capacitance per unit area. be done. By the way, aluminum foil is generally manufactured by sequentially performing each process of melting/casting, hot rolling, cold rolling, and final annealing. It is well known that if there are many crystals with a so-called cubic orientation, in which the <001> direction is parallel to the surface of the foil and parallel to the rolling direction, the capacitance will increase when this aluminum foil is etched. It is a fact that Therefore, various studies have been made to improve the occupancy of {100} planes in the recrystallized texture after final annealing, improve etching characteristics, and increase capacitance, but none of them are sufficient. Moreover, there was a large variation in the occupancy of the {100} plane. In view of the above circumstances, the present invention aims to provide an aluminum foil for electrolytic capacitors that improves and stabilizes the occupancy of the {100} plane after final annealing and has a large capacitance, and provides materials for this purpose. This is what I am trying to do. Means for Solving the Problems For the above purpose, the inventor has conducted extensive research and found that
We have discovered that there is a close correlation between the structure after hot rolling in the manufacturing process of aluminum foil and the occupancy rate of {100} planes after final annealing, and based on this knowledge, we have completed this invention. This is what I learned. That is, the method for producing an aluminum material for electrolytic capacitor electrodes according to the present invention includes Fe as impurities,
An aluminum material made of high-purity aluminum with a purity of 99.9% or more for the balance excluding Si and Cu, characterized by a structure after hot rolling in which the length of the minor axis of the crystal grains is at most 10 mm or less That is. In the aluminum material according to the present invention, the purity of the remainder excluding Fe, Si, and Cu as impurities is 99.9.
% or more is limited to less than 99.9% {100}
This is because the variation in the occupancy rate increases and the occupancy rate also decreases. Further, Fe is an element that inhibits the growth of cubic orientation, and if it is contained in an amount exceeding 100 ppm, the {100} occupancy rate itself tends to decrease during final annealing, so it is desirable to limit it to 100 ppm or less. Si is an element that promotes the precipitation of Fe,
If the content exceeds 100 ppm, it tends to inhibit the growth of cubic orientation, so
It is desirable to regulate it to 100ppm or less. Cu is
If the content exceeds 100ppm, problems such as excessive dissolution may occur during etching processing, so
It is desirable to regulate it to 100ppm or less. Due to the hot rolling in the aluminum foil manufacturing process, the aluminum material 1 becomes in a state where its crystal grains 2 are stretched in the rolling direction X, as shown in FIG. Among the length (a) of the long axis of crystal grain 2, the length (b) of short axis 2, and the thickness (C), the short axis length (b) in particular must be at most 10 mm or less. do. If there are grains whose short axis length (b) exceeds 10 mm, the {100}
This is because the surface occupancy rate decreases and the variation within the lot also increases. This is because when the length (b) of the minor axis of grain 2 exceeds 10 mm, the distribution of grain boundaries, which are effective locations for the generation of nuclei such that the rolled surface becomes the {100} plane during recrystallization, becomes uneven. This is thought to be due to the fact that sufficient nucleation and growth of recrystallized grains such that the rolled surface has a {100} plane does not progress during recrystallization that occurs during final annealing because of uniformity. Such a phenomenon becomes particularly noticeable when the rolling reduction in the hot rolling process is about 97% or more. In the structure after hot rolling, the length of short axis b is 10
As a specific method for controlling crystal grains exceeding mm, for example, in hot rolling, a thickness of 10 to 80 mm
Examples include performing a step in which the rolling reduction rate per pass is 40% or more between rolling passes once or twice, and further increasing the holding time between rolling passes to 1 minute or more to advance recrystallization. The above aluminum material is manufactured into an aluminum foil for electrolytic capacitor electrodes by sequentially performing cold rolling, foil rolling, and final annealing. The steps after hot rolling are not limited in any way, and similar conventional conditions may be employed. Further, intermediate annealing may be performed once or twice or more after cold rolling or during cold rolling. After the final annealing, the aluminum foil is then electrochemically or chemically etched.
Used as electrolytic capacitor electrode foil. Effects of the Invention Since the aluminum material for electrolytic capacitor electrodes according to the present invention is as described above, by using the material, {100}
It is possible to improve the surface occupancy rate and to suppress variations depending on the location. the result,
Etching characteristics can be improved, and an electrode foil with excellent capacitance and less variation in capacitance can be obtained. Example [Sample 1] Contains Fe: 25ppm, Si: 10ppm, Cu: 50ppm,
An aluminum ingot containing 10 ppm of impurities other than these was hot rolled at a hot rolling start temperature of 520°C and a total reduction of 98%. Here, as the pass schedule for hot rolling, (a) in Table 1 below was adopted. When the structure of the aluminum material obtained by the hot rolling was examined, the length of the short axis of the crystal grains was at most 180 μm, and the average length was 120 μm. Next, the aluminum material was cold rolled to a thickness of 0.12 mm, followed by intermediate annealing at 250° C. for 10 hours, and then cold rolled to a thickness of 0.1 mm. This aluminum foil was then finally annealed at 550°C for 1 hour. [Sample 2] A test piece was obtained in the same manner as Sample 1 above, except that the hot rolling start temperature was set to 550°C and the pass schedule in the hot rolling was adopted as (b) in Table 1 below. In this case, in the structure of the aluminum material after hot rolling, the short axis length of the crystal grains was at most 20,000 μm (20 mm), and the average value was 900 μm. [Sample 3] Contains Fe: 40ppm, Si: 30ppm, Cu: 30ppm,
An aluminum ingot containing 30 ppm of impurities other than these was hot rolled at a hot rolling start temperature of 580°C and a total reduction of 98%. Here, as the pass schedule for hot rolling, (a) in Table 1 below was adopted. When the weaving of the aluminum material obtained by the above hot rolling was examined, the length of the minor axis of the crystal grains was at most 1800 μm, and the average value was 700 μm. Next, the above aluminum material was cold rolled to a thickness of 0.15 mm, followed by intermediate annealing at 250° C. for 12 hours, and then cold rolled to a thickness of 0.1 mm. This aluminum foil was then finally annealed at 550°C for 1 hour. [Sample 4] A test piece was obtained in the same manner as Sample 3 above, except that the hot rolling start temperature was set to 590°C and the pass schedule in the hot rolling was adopted as (b) in Table 1 below. In this case, in the structure of the aluminum material after hot rolling, the short axis length of the crystal grains was at most 25,000 μm (25 mm), and the average value was 500 μm. [Sample 5] A test piece was obtained in the same manner as Sample 3 except that intermediate annealing was performed at 300° C. for 12 hours. [Sample 6] Contains Fe: 60ppm, Si: 40ppm, Cu: 30ppm,
Hot rolling start temperature of 590℃ for aluminum ingots containing 100ppm of impurities other than these.
Hot rolling was carried out at a total reduction rate of 98%. Here,
For the hot rolling pass schedule, (a) in Table 1 below was adopted. When the structure of the aluminum material obtained by the above-mentioned hot rolling was examined, the length of the short axis of the crystal grains was at most 1200 μm, and the average value was 600 μm. Next, the above aluminum material was cold rolled to a thickness of 0.12 mm, followed by intermediate annealing at 300° C. for 12 hours, and then hot rolled to a thickness of 0.1 mm. This aluminum foil was then finally annealed at 550°C for 1 hour. [Sample 7] Sample 6 above except that (b) in Table 1 below was adopted as the pass schedule in hot rolling.
A test piece was obtained in the same manner as above. In this case, in the structure of the aluminum material after hot rolling, the short axis length of the crystal grains was at most 22,000 μm (22 mm), and the average value was 1,200 μm.

【表】 以上により得られた7種類の試料につき、幅方
向に3か所、長さ方向に10か所の合計30点につ
き、各{100}面の占有率を調査し、その最大値、
最小値、平均値を調べた。その結果を下記第2表
に示す。
[Table] For the seven types of samples obtained above, the occupancy rate of each {100} plane was investigated at a total of 30 points, 3 points in the width direction and 10 points in the length direction, and the maximum value,
The minimum value and average value were examined. The results are shown in Table 2 below.

【表】【table】

【表】 上記結果からわかるように、この発明に係るア
ルミニウム材料を用いることにより、再結晶集合
組織における{100}面の占有率の大きなかつバ
ラツキの少ないアルミニウム箔を得ることができ
ることを確認しえ、従つてエツチング特性に優れ
静電容量の大きなかつバラツキの少ない電極箔と
なしうることを当然に予想しうるものであつた。
[Table] As can be seen from the above results, it has been confirmed that by using the aluminum material according to the present invention, it is possible to obtain an aluminum foil in which the recrystallized texture has a large occupancy rate of {100} planes and little variation. Therefore, it could be naturally expected that an electrode foil with excellent etching properties, large capacitance, and little variation could be produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は熱間圧延後のアルミニウム材料の結晶
粒組織を示す模式図である。 1……アルミニウム材料、2……結晶粒。
FIG. 1 is a schematic diagram showing the grain structure of an aluminum material after hot rolling. 1... Aluminum material, 2... Crystal grain.

Claims (1)

【特許請求の範囲】 1 不純物としてのFe、Si、Cuを除く残部の純
度が99.9%以上である高純度アルミニウムからな
るアルミニウム材料であつて、熱間圧延後の組織
において、結晶粒の短軸の長さが最大10mm以下で
あることを特徴とする電解コンデンサ電極用アル
ミニウム材料。 2 不純物としてのFe、Si、Cuの含有量が、そ
れぞれ100ppm以下である請求項1記載の電解コ
ンデンサ電極用アルミニウム材料。
[Scope of Claims] 1. An aluminum material made of high-purity aluminum with a purity of 99.9% or more excluding impurities such as Fe, Si, and Cu, in which the minor axis of crystal grains in the structure after hot rolling is An aluminum material for electrolytic capacitor electrodes characterized by a maximum length of 10 mm or less. 2. The aluminum material for electrolytic capacitor electrodes according to claim 1, wherein the content of Fe, Si, and Cu as impurities is each 100 ppm or less.
JP10601688A 1988-04-27 1988-04-27 Aluminum material for electrode of electrolytic capacitor Granted JPH01276612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10601688A JPH01276612A (en) 1988-04-27 1988-04-27 Aluminum material for electrode of electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10601688A JPH01276612A (en) 1988-04-27 1988-04-27 Aluminum material for electrode of electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH01276612A JPH01276612A (en) 1989-11-07
JPH0561772B2 true JPH0561772B2 (en) 1993-09-07

Family

ID=14422861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10601688A Granted JPH01276612A (en) 1988-04-27 1988-04-27 Aluminum material for electrode of electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH01276612A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2572479B2 (en) * 1990-06-25 1997-01-16 昭和アルミニウム株式会社内 Aluminum foil for electrolytic capacitor electrodes
JP2000269092A (en) * 1999-03-18 2000-09-29 Kobe Steel Ltd Aluminum foil for electrolytic capacitor having superior ability to etch, and its manufacture

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797614A (en) * 1980-12-09 1982-06-17 Showa Aluminium Co Ltd Method of producing aluminum foil for electrolytic condenser electrode
JPS6063359A (en) * 1983-09-19 1985-04-11 Toyo Alum Kk Manufacture of aluminum foil for anode of electrolytic capacitor
JPS6063360A (en) * 1983-09-19 1985-04-11 Toyo Alum Kk Manufacture of aluminum foil for anode of electrolytic capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797614A (en) * 1980-12-09 1982-06-17 Showa Aluminium Co Ltd Method of producing aluminum foil for electrolytic condenser electrode
JPS6063359A (en) * 1983-09-19 1985-04-11 Toyo Alum Kk Manufacture of aluminum foil for anode of electrolytic capacitor
JPS6063360A (en) * 1983-09-19 1985-04-11 Toyo Alum Kk Manufacture of aluminum foil for anode of electrolytic capacitor

Also Published As

Publication number Publication date
JPH01276612A (en) 1989-11-07

Similar Documents

Publication Publication Date Title
JP4521771B2 (en) Aluminum material for electrolytic capacitor electrodes
JP3308456B2 (en) Manufacturing method of aluminum foil for electrode of electrolytic capacitor
JPH0561772B2 (en)
JP2970852B2 (en) Manufacturing method of aluminum alloy foil for cathode of electrolytic capacitor
JPH02270928A (en) Aluminum foil for anode of chemical condenser and its manufacture
JP2651932B2 (en) Aluminum alloy foil for anode of electrolytic capacitor and method for producing the same
JP3203665B2 (en) Manufacturing method of aluminum foil for anode of electrolytic capacitor
JP4827103B2 (en) Method for producing aluminum foil for electrolytic capacitor electrode
JPS6059982B2 (en) Method for manufacturing aluminum foil for electrolytic capacitor electrodes
JPH0466204A (en) Manufacture of aluminum foil for electrolytic condenser
JPH01215959A (en) Manufacture of aluminum foil for electrolytic capacitor cathode
JPH0489118A (en) Production of aluminum foil for electrolytic capacitor anode
JPH0361333B2 (en)
JP3370244B2 (en) Aluminum alloy foil for electrolytic capacitors with high mechanical strength
JPH0585630B2 (en)
JPH0372703B2 (en)
JPH05461B2 (en)
JPH028354A (en) Manufacture of aluminum foil for electrolytic capacitor anode
JPH08337833A (en) Aluminum foil for electrode of electrolytic capacitor
JPH0488153A (en) Manufacture of aluminum foil for electrolytic capacitor
JP2687597B2 (en) Method for producing aluminum alloy clad plate with controlled crystal aggregation direction
JPH05311360A (en) Manufacture of aluminum alloy foil for electrode of electrolytic capacitor
JPH03165508A (en) Aluminum alloy for cathode foil of electrolytic capacitor
JPH10330873A (en) Aluminum foil for electrolytic capacitor electrode
JPS63265416A (en) Aluminum alloy foil for electrolytic capacitor electrode