JPH0422857B2 - - Google Patents

Info

Publication number
JPH0422857B2
JPH0422857B2 JP63131822A JP13182288A JPH0422857B2 JP H0422857 B2 JPH0422857 B2 JP H0422857B2 JP 63131822 A JP63131822 A JP 63131822A JP 13182288 A JP13182288 A JP 13182288A JP H0422857 B2 JPH0422857 B2 JP H0422857B2
Authority
JP
Japan
Prior art keywords
optical glass
press
molding
molded
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63131822A
Other languages
Japanese (ja)
Other versions
JPH01301528A (en
Inventor
Hideto Monji
Makoto Umetani
Kyoshi Kuribayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13182288A priority Critical patent/JPH01301528A/en
Publication of JPH01301528A publication Critical patent/JPH01301528A/en
Publication of JPH0422857B2 publication Critical patent/JPH0422857B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、レンズやプリズム等の高精度な光学
ガラス素子をプレス成形型によつて熱間でプレス
成形する光学ガラス素子のプレス成形方法に関す
るものである。 従来の技術 近年、光学ガラスレンズは光学機器のレンズ構
成の簡略化とレンズ部分の軽量化の両方を同時に
達成しうる非球面化の方法にある。この非球面レ
ンズ製造にあたつては、従来の光学レンズの製造
方法である研磨方では、加工および量産化が困難
であり、直接プレス成形法が有望視されている。 この直接プレス成形法というのは、予め所望の
面品質および面精度に仕上げた非球面状のモール
ド上で、光学ガラスの塊状物を加熱加圧整形する
か、あるいは予め加熱した光学ガラスの塊状物を
加熱加圧成形を行い、それ以後の研磨工程を必要
としないで光学ガラスレンズを製造する方法であ
る。(例えば、特公昭54−38126号公報) 発明が解決しようとする課題 非球面レンズ、プリズム等の光学ガラス素子の
場合、非常に高い面精度であることが要求される
ため、プレス成形に使用する光学ガラスの塊状物
の形状、重量、とりわけ表面状態の管理が重要で
あり、光学ガラスの塊状物が高価なものになり、
その結果としてプレス成形した光学ガラス素子が
高価なものになつていた。 光学ガラスの塊状物の表面に欠陥がない状態
(例えば表面粗さを0.1ミクロン以下、好ましくは
0.01ミクロン以下の鏡面状態)にするために、研
磨、熱加工、またはエツチング処理を施す必要が
あり光学ガラスの塊状物が高価なものになつてお
り、低コストで高精度な光学ガラス素子が製造で
きる方法の開発が強く望まれていた。 課題を解決するための手段 本発明は前記課題を解決するために、巨視的な
うねりのある光学ガラス塊をプレス成形用型によ
つて熱間でプレス成形した光学ガラス素子のプレ
ス成形方法を提供するものである。 作 用 光学ガラス塊の表面に微視的な凹凸(例えばサ
ブミクロン程度)が存在する光学ガラス塊を高温
のプレス成形用型でプレス成形した場合、光学ガ
ラス塊にプレス成形用型が接した瞬間に光学ガラ
ス塊の表面(数ミクロン程度)が瞬間的に昇温さ
れて光学ガラス塊の表面が軟化する。そして光学
ガラス塊の表面に存在していた微視的な凹凸がつ
ながつて閉孔になり、光学ガラス塊の表面に多数
の閉孔が残る。 これに対して光学ガラス塊の表面に巨視的なう
ねりがある光学ガラス塊を高温のプレス成形用型
でプレス成形した場合、光学ガラス塊にプレス成
形用型が接した瞬間に光学ガラス塊の表面が瞬間
的に昇温し光学ガラス塊の表面が軟化する。しか
しながら光学ガラス熱伝導が悪いために光学ガラ
ス塊内部まで瞬間的に昇温してガラス内部まで軟
化されることはないので、巨視的なうねりがつな
がらない状態で光学ガラス塊の変化が徐々に進
み、巨視的なうねりの間で空気が取り込まれずに
所望の光学ガラス素子にプレス成形される。 実施例 以下発明の一実施設について、図面を参照しな
がら説明する。 第1図は本発明に用いたガラスプレス成形用型
および光学ガラス塊の断面図である。プレス成形
用型の母材として超硬合金(WC−5TiC−8Co)
を用い、上型1は曲率半径が200mmの凹形の成形
面3を、下型2には曲率半径が46mmの凹形の成形
面4をそれぞれ形成した。これらの成形面3およ
び4を超微細なダイヤモンド粉末を用いてラツピ
ングし、約1時間で表面の最大粗さ(Rmax)が
約80人の鏡面となつた成形面3および4の表面
に、スパツタ法で白金−イリジウム−オスミウム
合金(Pt−Ir−Os)の薄膜を被覆した。このよ
うな方法により光学ガラス素子の成形用上型1お
よび下型2を作製した。 光学ガラス塊3は、シリカ(SiO2)50重量パ
ーセント、酸化鉛(PbO)35重量パーセント、残
部が酸化カリ(k2O)、酸化ヒ素(As2O3)、酸化
アンチモン(Sb2O3)等の微量成分からなる酸化
鉛系光学ガラスを1200゜Cで溶融したあと、ノズル
温度800℃で滴下し450℃に加熱したオーステナイ
ト鋼(SUS316)で受けて10秒間プレス成形して
第1図Aに示した形状のものを得た。 そして、第1図Bのように500゜に昇温させた上
述のプレス成形用型1および2を用いて、プレス
圧力40Kg/cm2、プレス時間1分の条件でプレス成
形した。成形レンズ4はそのまま冷却し430℃で
上下の型と離型し、直ちに徐冷炉にいれて徐冷し
300℃で取り出して第1図Cのような成形レンズ
4を得た。 このような工程によつて、酸化鉛系光学ガラス
のプレス成形を行い、光学ガラス塊3および成形
レンズ4の表面粗さ測定した結果、光学ガラス塊
3には第2図Aのよな10数ミクロンのうねりがあ
つたものの、上述した方法でプレス成形した成形
レンズ4は第2図B及びCのような表面粗さ
(Rmax)約90Åの鏡面が得られ、光学顕微鏡で
観察した結果その成形面に閉孔は存在していなか
つた。さらに面精度はニユートンリング2本以
内、アス5分の1本以内であり、その光学性能は
極めて優れていると共に製品歩留りも非常に良好
であつた。 さらに、上述のオーステナイト鋼(SUS316)
で受ける温度と時間を変化させて異つた表面粗さ
の光学ガラス塊3を製作し、上述と同様のプレス
成形、冷却、測定・評価を行い、それらを表1に
まとめた。
INDUSTRIAL APPLICATION FIELD The present invention relates to a press-molding method for optical glass elements, in which highly accurate optical glass elements such as lenses and prisms are hot-press-molded using a press mold. BACKGROUND OF THE INVENTION In recent years, optical glass lenses have been made into aspherical surfaces that can simultaneously simplify the lens structure of optical instruments and reduce the weight of the lens portion. In manufacturing this aspherical lens, processing and mass production are difficult using the polishing method, which is the conventional method for manufacturing optical lenses, and direct press molding is considered to be promising. This direct press molding method involves heating and pressing a lump of optical glass into an aspherical mold that has been finished to the desired surface quality and precision in advance, or forming a lump of optical glass that has been heated in advance. This is a method of manufacturing optical glass lenses by performing heating and pressure molding without requiring a subsequent polishing process. (For example, Japanese Patent Publication No. 54-38126) Problems to be Solved by the Invention In the case of optical glass elements such as aspherical lenses and prisms, extremely high surface precision is required, so they cannot be used in press molding. It is important to control the shape, weight, and especially surface condition of optical glass lumps, which makes optical glass lumps expensive.
As a result, press-molded optical glass elements have become expensive. The surface of the optical glass block should be free of defects (for example, the surface roughness should be 0.1 micron or less, preferably
In order to achieve a mirror-like finish of 0.01 micron or less, it is necessary to perform polishing, heat processing, or etching treatment, making optical glass blocks expensive, making it difficult to manufacture high-precision optical glass elements at low cost. There was a strong desire to develop a method that could do this. Means for Solving the Problems In order to solve the above problems, the present invention provides a press molding method for an optical glass element in which an optical glass lump having macroscopic undulations is hot press molded using a press mold. It is something to do. Effect When an optical glass gob with microscopic irregularities (e.g. submicron level) on its surface is press-molded using a high-temperature press mold, the moment the press mold comes into contact with the optical glass gob. The surface of the optical glass gob (approximately several microns) is instantaneously heated, softening the surface of the optical glass gob. Then, the microscopic irregularities existing on the surface of the optical glass gob connect and form closed pores, leaving a large number of closed pores on the surface of the optical glass gob. On the other hand, when an optical glass gob with macroscopic undulations on its surface is press-molded using a high-temperature press-molding mold, the surface of the optical glass gob instantly appears when the press-molding mold comes into contact with the optical glass gob. The temperature rises instantaneously, and the surface of the optical glass lump softens. However, due to the poor thermal conductivity of the optical glass, the temperature inside the optical glass gob is not instantaneously raised and the inside of the glass is not softened, so the change in the optical glass gob progresses gradually without macroscopic waviness. The desired optical glass element is press-molded without air being trapped between the macroscopic undulations. Embodiment A practical facility of the invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a glass press molding die and an optical glass gob used in the present invention. Cemented carbide (WC-5TiC-8Co) as the base material for press molding molds
The upper mold 1 had a concave molding surface 3 with a radius of curvature of 200 mm, and the lower mold 2 had a concave molding surface 4 with a curvature radius of 46 mm. These molded surfaces 3 and 4 are lapped using ultrafine diamond powder, and spatter is applied to the surfaces of molded surfaces 3 and 4, which have reached a mirror surface with a maximum surface roughness (Rmax) of approximately 80 mm in about 1 hour. A thin film of platinum-iridium-osmium alloy (Pt-Ir-Os) was coated by the method. An upper mold 1 and a lower mold 2 for molding an optical glass element were produced by such a method. Optical glass lump 3 contains 50% by weight of silica (SiO 2 ), 35% by weight of lead oxide (PbO), and the remainder is potassium oxide (k 2 O), arsenic oxide (As 2 O 3 ), and antimony oxide (Sb 2 O 3 ) . ) is melted at 1200°C, and then dripped at a nozzle temperature of 800°C, received by austenitic steel (SUS316) heated to 450°C, and press-formed for 10 seconds. A product having the shape shown in A was obtained. Then, as shown in FIG. 1B, press molding was carried out using the above-mentioned press molding molds 1 and 2 heated to 500° under the conditions of a press pressure of 40 kg/cm 2 and a press time of 1 minute. The molded lens 4 was cooled as it was, separated from the upper and lower molds at 430°C, and immediately placed in an annealing furnace to be annealed.
The molded lens 4 as shown in FIG. 1C was obtained by taking it out at 300°C. Through such a process, lead oxide optical glass was press-molded, and the surface roughness of the optical glass lump 3 and the molded lens 4 was measured. Although there were micron undulations, the molded lens 4 press-molded by the method described above had a mirror surface with a surface roughness (Rmax) of approximately 90 Å as shown in Figure 2 B and C, and observation with an optical microscope revealed that the molding There were no closed pores on the surface. Further, the surface accuracy was within two Newton rings and within one fifth of an asperity, and the optical performance was extremely excellent and the product yield was also very good. Furthermore, the austenitic steel (SUS316) mentioned above
Optical glass ingots 3 with different surface roughnesses were produced by varying the temperature and time they were subjected to, and were subjected to press molding, cooling, measurement and evaluation in the same manner as described above, and the results are summarized in Table 1.

【表】 巨視的なうねりとは、近以的に正弦波状である
とき山と山との距離がうねりの大きさであり、山
と谷の差がうねりの高さであるとすれば、例えば
外径が20mm程度のレンズ形状の場合、巨視的なう
ねりの大きさは数10μmから数mmの範囲であり、
うねりの高さはうねりの大きさの10分の1以下で
あることが好ましく、このような巨視的なうねり
であれば上記の作用を有する。 なお本発明の光学ガラス素子のプレス成形方法
は、巨視的なうねりのある光学ガラス塊をプレス
成形用型によつて熱間でプレス成形して光学ガラ
ス素子を作製することを特徴とするものであり、
プレス成形用型の材質、光学ガラス塊の種類、製
造方法、巨視的なうねりの大きさ、其の他のプレ
ス成形条件等は本実施例に限定されるものではな
い。 発明の効果 以上説明したように、本発明の光学ガラス素子
のプレス成形方法は、巨視的なうねりのある光学
ガラス塊をプレス成形用型によつて熱間でプレス
成形して光学ガラス素子を作製することから、光
学ガラス塊の表面に巨視的なうねりがある光学ガ
ラス塊を高温のプレス成形用型でプレス成形した
場合、光学ガラス塊にプレス成形用型が接した瞬
間に光学ガラス塊の表面が瞬間的に昇温し光学ガ
ラス塊の表面が軟化する。しかしながら光学ガラ
スの熱伝導が悪いために光学ガラス塊内部まで瞬
間的に昇温してガラス内部まで軟化されることは
ないので、巨視的なうねりがつながらない状態で
光学ガラス塊の変形が徐々に進み、巨視的なうね
りの間で空気が取り込まれずに所望の光学ガラス
素子にプレス成形される。すなわち、本発明によ
つて高精度な光学ガラス素子の大量生産が可能に
なり、生産性の向上と製造コスト低減に著しい効
果がある。
[Table] Macroscopic undulation is a sinusoidal wave in the near future, and if the distance between the crests is the undulation size, and the difference between the crests and troughs is the undulation height, then, for example, In the case of a lens shape with an outer diameter of about 20 mm, the macroscopic size of waviness ranges from several tens of micrometers to several mm.
The height of the undulation is preferably one-tenth or less of the size of the undulation, and such macroscopic undulations have the above effect. The press-molding method for an optical glass element of the present invention is characterized by hot press-molding an optical glass lump having macroscopic undulations using a press mold to produce an optical glass element. can be,
The material of the press molding die, the type of optical glass gob, the manufacturing method, the size of macroscopic waviness, other press molding conditions, etc. are not limited to those in this example. Effects of the Invention As explained above, in the press-molding method for an optical glass element of the present invention, an optical glass element having macroscopic undulations is hot-press-molded using a press mold. Therefore, when an optical glass gob with macroscopic undulations on its surface is press-molded using a high-temperature press-molding mold, the surface of the optical glass gob changes as soon as the press-molding mold comes into contact with the optical glass gob. The temperature rises instantaneously, and the surface of the optical glass lump softens. However, due to the poor thermal conductivity of optical glass, the temperature inside the optical glass gob is not instantaneously raised and the inside of the glass is not softened, so the deformation of the optical glass gob gradually progresses without the macroscopic waviness being connected. , the desired optical glass element is press-molded without air being trapped between the macroscopic undulations. That is, the present invention makes it possible to mass-produce high-precision optical glass elements, and has a significant effect on improving productivity and reducing manufacturing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は巨視的なうねりのある光学ガラス塊を
プレス成形用型によつてプレス成形して光学ガラ
ス素子を作製していることを表わす説明用概略
図、第2図は光学ガラス塊および成形レンズの表
面粗さの測定結果を示す説明図である。 1……上型、2……下型、3……光学ガラス
塊、4……成形レンズ。
Figure 1 is an explanatory schematic diagram showing that an optical glass element is produced by press-molding an optical glass gob with macroscopic undulations using a press-molding mold, and Figure 2 shows the optical glass gob and the molding. FIG. 3 is an explanatory diagram showing the measurement results of the surface roughness of a lens. 1... Upper mold, 2... Lower mold, 3... Optical glass lump, 4... Molded lens.

Claims (1)

【特許請求の範囲】[Claims] 1 巨視的なうねりのある光学ガラス魂をプレス
成形用型によつて熱間でプレス成形する光学ガラ
ス素子のプレス成形方法。
1. A press-molding method for an optical glass element, in which an optical glass element with macroscopic undulations is hot-press-molded using a press mold.
JP13182288A 1988-05-30 1988-05-30 Method for press forming optical glass element Granted JPH01301528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13182288A JPH01301528A (en) 1988-05-30 1988-05-30 Method for press forming optical glass element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13182288A JPH01301528A (en) 1988-05-30 1988-05-30 Method for press forming optical glass element

Publications (2)

Publication Number Publication Date
JPH01301528A JPH01301528A (en) 1989-12-05
JPH0422857B2 true JPH0422857B2 (en) 1992-04-20

Family

ID=15066912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13182288A Granted JPH01301528A (en) 1988-05-30 1988-05-30 Method for press forming optical glass element

Country Status (1)

Country Link
JP (1) JPH01301528A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245613A (en) * 1975-09-02 1977-04-11 Eastman Kodak Co Process for molding of optical glass body and body with said process
JPS59116137A (en) * 1982-12-20 1984-07-04 Canon Inc Manufacture of optical element
JPS60118639A (en) * 1983-11-29 1985-06-26 Hoya Corp Manufacture of pressed lens
JPS6138130A (en) * 1984-07-31 1986-02-24 Sanshin Ind Co Ltd Attaching structure of temperature sensing member to internal-combustion engine
JPS61132526A (en) * 1984-11-29 1986-06-20 Olympus Optical Co Ltd Production of optical element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245613A (en) * 1975-09-02 1977-04-11 Eastman Kodak Co Process for molding of optical glass body and body with said process
JPS59116137A (en) * 1982-12-20 1984-07-04 Canon Inc Manufacture of optical element
JPS60118639A (en) * 1983-11-29 1985-06-26 Hoya Corp Manufacture of pressed lens
JPS6138130A (en) * 1984-07-31 1986-02-24 Sanshin Ind Co Ltd Attaching structure of temperature sensing member to internal-combustion engine
JPS61132526A (en) * 1984-11-29 1986-06-20 Olympus Optical Co Ltd Production of optical element

Also Published As

Publication number Publication date
JPH01301528A (en) 1989-12-05

Similar Documents

Publication Publication Date Title
KR860001491B1 (en) Process for molding glass shapes of high precision
KR900000622B1 (en) Method for forming of optical glass element
JPS60145919A (en) Press-molding of high-precision formed glass article
JP3763552B2 (en) Glass lens having glass coating layer and manufacturing method thereof
US4897101A (en) Method of forming a precision glass mold and article
JPH0422857B2 (en)
JPH0231012B2 (en)
JPH0247411B2 (en) KOGAKUGARASUSOSHINOPURESUSEIKEIYOKATA
JPS61291427A (en) Molded lens and production thererof
JPS6296328A (en) Method of molding optical glass element
JP2875621B2 (en) Method for manufacturing optical glass molded body and method and apparatus for manufacturing optical glass element
JPH05330832A (en) Method for molding calchogenide glass lens
JP2501588B2 (en) Mold for press molding optical glass element and molding method thereof
JPH0451495B2 (en)
JPH0372016B2 (en)
JPH04175228A (en) Production of optics
JPS62292639A (en) Method for forming optical glass element
JPH0692654A (en) Method for molding glass lens
JPS6311285B2 (en)
JPH1160251A (en) Formation of optical element
JPS62297229A (en) Forming of optical glass element
JPH01264937A (en) Press-forming method for optical glass element
JPS63182225A (en) Production of optical glass element
JP2621941B2 (en) Optical element molding method
JP3323556B2 (en) Press molding method for optical glass element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees