JPH04175228A - Production of optics - Google Patents

Production of optics

Info

Publication number
JPH04175228A
JPH04175228A JP30081290A JP30081290A JPH04175228A JP H04175228 A JPH04175228 A JP H04175228A JP 30081290 A JP30081290 A JP 30081290A JP 30081290 A JP30081290 A JP 30081290A JP H04175228 A JPH04175228 A JP H04175228A
Authority
JP
Japan
Prior art keywords
mold
press
base plate
temperature
transparent base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30081290A
Other languages
Japanese (ja)
Inventor
Hideto Monju
秀人 文字
Kiyoshi Kuribayashi
清 栗林
Makoto Umetani
誠 梅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP30081290A priority Critical patent/JPH04175228A/en
Publication of JPH04175228A publication Critical patent/JPH04175228A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/082Construction of plunger or mould for making solid articles, e.g. lenses having profiled, patterned or microstructured surfaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/41Profiled surfaces
    • C03B2215/412Profiled surfaces fine structured, e.g. fresnel lenses, prismatic reflectors, other sharp-edged surface profiles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/41Profiled surfaces
    • C03B2215/414Arrays of products, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/70Horizontal or inclined press axis

Abstract

PURPOSE:To enable production of the subject thin and high-accuracy optics without changing the degree of parallelization of a thin transparent base plate or the thickness thereof by press molding the thin transparent base plate using a pair of mold units while making the temperature of one mold unit for forming fine optics higher than that of the other mold unit. CONSTITUTION:A thin transparent base plate 3 is placed on one press molding mold unit 1 for forming fine optics and a pair of press molding mold units 1 and 2 are heated to a prescribed temperatures. In this case, the temperature of the one mold unit 1 is made >=10 deg.C higher than that of the other mold unit 2 so that the temperature of the transparent base plate 3 may be a temperature where the base plate shows 10<6>-10<10> poise. A press cylinder 7 is lowered to press mold the transparent base plate 3 and the objective optics 10 are obtained. This method enables heat deformation of only a plane forming a microlens array, a diffraction grating, etc., and the objective thin and high-accuracy optics can be produced without changing the degree of parallelization of the original transparent base plate 3 and the thickness thereof.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、マイクロレンズアレーや回折格子等の薄型で
高精度な光学素子の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing thin and highly accurate optical elements such as microlens arrays and diffraction gratings.

従来の技術 近年、新しい光学デバイスの小型・軽量化を達成するた
めにマイクロレンズアレーや回折格子等の薄型で高精度
な光学素子の開発が強く望まれていた。従来このような
高精度な光学素子の製造にあたっては、特開昭60−2
64334号公報に記載されているように、フォトレジ
ストを用いた写真食刻技術で行なわれていた。
BACKGROUND OF THE INVENTION In recent years, there has been a strong desire to develop thin, high-precision optical elements such as microlens arrays and diffraction gratings in order to make new optical devices smaller and lighter. Conventionally, in manufacturing such high-precision optical elements, Japanese Patent Application Laid-Open No. 60-2
As described in Japanese Patent No. 64334, this was done by photolithography using a photoresist.

発明が解決しようとする課題 従来のフォトレジストを用いた写真食刻法では、パター
ニングやエツチング等の複雑な工程をいくつも経るため
に量産化が困難であり、また高精度な光学素子形状をコ
ントロールすることができなかった。
Problems to be Solved by the Invention With conventional photolithography using photoresists, it is difficult to mass produce as it involves a number of complicated processes such as patterning and etching, and it is difficult to control the shape of optical elements with high precision. I couldn't do it.

課題を解決するための手段 本発明は前記課題を解決するために、一対のプレス成形
用金型において、微小光学素子を形成する一方の金型温
度が他方の金型温度より少な(とも10℃以上高い温度
で薄型の透明基板を加熱加圧成形する光学素子の製造方
法を提供するものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides a pair of press molding molds in which the temperature of one mold for forming a micro-optical element is lower than the temperature of the other mold (both are 10°C). The present invention provides a method for manufacturing an optical element in which a thin transparent substrate is heated and press-molded at a high temperature.

作用 金型を用いた成形法というのは、予め所望の形状および
面品質に仕上げた金型で被成形体の塊状物を加熱成形す
る方法であり、例えば直径10m。
The molding method using a working mold is a method in which a lump of material to be molded is heated and molded using a mold that has been finished in a desired shape and surface quality in advance, and has a diameter of, for example, 10 m.

厚さ5W程度のいわゆるふつうのレンズの場合、一対の
金型の温度が等しい状態で加熱加圧成形していた。しか
しながらマイクロレンズアレーや回折格子等の薄い光学
素子の場合、一対の金型の温度が等しい状態で加熱加圧
成形すると、透明基板においてマイクロレンズアレーや
回折格子等を形成する面のみならずもう一方の面も熱変
形して、光学素子の平行度の維持が難しく、また薄肉化
で割れやすくなる。
In the case of a so-called normal lens with a thickness of about 5 W, the molding was carried out under heating and pressure with a pair of molds kept at the same temperature. However, in the case of thin optical elements such as microlens arrays and diffraction gratings, when a pair of molds are heated and pressed at the same temperature, not only the surface of the transparent substrate where the microlens array or diffraction grating will be formed, but also the other side. The surfaces of the optical elements are also thermally deformed, making it difficult to maintain the parallelism of the optical element, and making the optical element thinner makes it more likely to break.

本発明では、一対のプレス成形用金型において、微小光
学素子を形成する一方の金型温度が他方の金型温度より
少なくとも10℃以上高い温度で薄型の透明基板を加熱
加圧成形することにより、マイクロレンズアレーや回折
格子等を形成する面のみを熱変形させることができ、も
との透明基板の平行度や厚みを変えることなく薄型で高
精度な光学素子を製造することができる。
In the present invention, in a pair of press molding molds, a thin transparent substrate is heated and press-molded at a temperature where one mold for forming a micro-optical element is at least 10°C higher than the other mold temperature. , it is possible to thermally deform only the surface forming the microlens array, diffraction grating, etc., and it is possible to manufacture a thin and highly accurate optical element without changing the parallelism or thickness of the original transparent substrate.

実施例 実施例1 プレス成形用金型1の母材として超硬合金(WC−5T
iC−8Co)を505w*40m5+*10w1角の
平板に切断後、さらに超微細なダイヤモンド粉末を用い
てラッピングし、約1時間で表面の表面粗さ(RMS)
が約30Aの鏡面にした。この鏡面にスパッタ法で白金
−イリジウム−オスミウム合金(Pt−1r−Os)の
薄膜を被覆した。
Examples Example 1 Cemented carbide (WC-5T) was used as the base material of the press mold 1.
iC-8Co) was cut into 505w*40m5+*10w1 square plates, and then wrapped with ultra-fine diamond powder to improve the surface roughness (RMS) in about 1 hour.
It has a mirror surface of about 30A. This mirror surface was coated with a thin film of platinum-iridium-osmium alloy (Pt-1r-Os) by sputtering.

曲率半径が200μmのダイヤモンドバイトを高精度に
数値制御した切削加工機で、サグ量1.5μmの凹状の
レンチキュラーレンズを50μmピッチで上記の薄膜に
形成し、プレス成形用金型1とした。同様の方法で、プ
レス成形用金型2の母材として超硬合金(WC−57i
C−8Co)を50m*40醜*10■角の平板に切断
後、さらに超微細なダイヤモンド粉末を用いラッピング
して表面粗さ(RMS)が約30Aの鏡面にした。この
鏡面にスパッタ法で白金−イリジウム−オスミウム合金
(P t −I r−Os )の薄膜を被覆し、プレス
成形用金型2とした。
A concave lenticular lens with a sag amount of 1.5 μm was formed on the above thin film at a pitch of 50 μm using a cutting machine in which a diamond cutting tool with a radius of curvature of 200 μm was numerically controlled with high precision to form a press molding mold 1. In a similar manner, a cemented carbide (WC-57i) was used as the base material of the press mold 2.
C-8Co) was cut into a 50m*40mm*10mm square flat plate, which was further lapped with ultrafine diamond powder to give a mirror surface with a surface roughness (RMS) of about 30A. This mirror surface was coated with a thin film of platinum-iridium-osmium alloy (Pt-Ir-Os) by sputtering to obtain a press molding mold 2.

第1図は、本発明の光学素子の製造方法を模式的に示し
た断面図である。透明基板3として、シリカ(SiO2
)30重量パーセント、酸化バリウム(Bad)50重
量パーセント、ホウ酸(B 20 s )15重量パー
セント、残部が微量成分からなるホウケイ酸バリウムガ
ラスを用いた。プレス成形用金型1を下のヒータブロッ
ク4に、またプレス成形用金型2を上のヒータブロック
5にそれぞれ取り付け、さらにプレスシリンダ6および
7に取り付けた。第1・図(a)のようにプレス成形用
金型1の上に透明基板3を置き、プレス成形金型1及び
プレス成形用金型2を所定の温度に加熱した。第1図(
b)のようにプレスシリンダ7を下げて透明基板3をプ
レス成形した。プレス成形条件は、第1表のようにガラ
スが106〜1010ポアズの粘度を示す金118度で
あり、プレス圧力3kz/dであった。その後300℃
まで徐冷して、第1図(C)のような光学素子10を得
た。なお一連のプレス成形は、窒素ガス20リツタ一/
分、水素ガス2リツタ一/分の割合で混合した非酸化性
雰囲気に保持した成形機(不図示)で行なった。
FIG. 1 is a cross-sectional view schematically showing the method for manufacturing an optical element of the present invention. As the transparent substrate 3, silica (SiO2
), 50 weight percent of barium oxide (Bad), 15 weight percent of boric acid (B 20 s ), and the balance was a barium borosilicate glass consisting of trace components. The press molding die 1 was attached to the lower heater block 4, the press molding die 2 was attached to the upper heater block 5, and further attached to the press cylinders 6 and 7. As shown in FIG. 1 (a), a transparent substrate 3 was placed on a press molding die 1, and the press molding die 1 and press molding die 2 were heated to a predetermined temperature. Figure 1 (
As shown in b), the press cylinder 7 was lowered and the transparent substrate 3 was press-molded. As shown in Table 1, the press molding conditions were as follows: the glass had a viscosity of 106 to 1010 poise, the gold was 118 degrees Celsius, and the press pressure was 3 kHz/d. Then 300℃
The optical element 10 as shown in FIG. 1(C) was obtained. The series of press forming was performed using 20 liters of nitrogen gas.
This was carried out using a molding machine (not shown) maintained in a non-oxidizing atmosphere in which hydrogen gas was mixed at a rate of 2 liters per minute and 2 liters of hydrogen gas per minute.

このような工程によって、第1表に示した各種条件で光
学素子10を作製した。第1表から明らかなように、い
ずれの光学素子10において、割れや、気泡等の欠陥も
認められず、透明基板3の平行度も維持され、面精度も
ニュートンリング2本以内、アメ5分の1本以内であり
、その光学性能は極めて優れていた。
Through these steps, the optical element 10 was manufactured under various conditions shown in Table 1. As is clear from Table 1, no defects such as cracks or bubbles were observed in any of the optical elements 10, the parallelism of the transparent substrate 3 was maintained, and the surface accuracy was within 2 Newton rings, 5 min. The optical performance was extremely excellent.

(以  下  余  白) 実施例2 プレス成形用金型1の母材としてシリコンを50−*4
0■*1〇−角の平板に切断後、さらに超微細なダイヤ
モンド粉末を用いてラッピングし、約1時間で表面の表
面粗さ(RMS)が約20Aの鏡面にした。この鏡面に
スパッタ法でロジウム−金−タングステン合金(Rh 
−A u −W )の薄膜を被覆した。曲率半径が0.
1μmのダイヤモンドバイトを高精度に数値制御した切
削加工機で、サグ量0.5μmの凹状の回折格子を3μ
mピッチで上記の薄膜に形成し、プレス成形用金型1と
した。同様の方法で、プレス成形用金型2の母材として
シリコンを50wa*40wn*10m+角の平板に切
断後、さらに超微細なダイヤモンド粉末を用いラッピン
グして表面粗さ(RMS)が約20Aの鏡面にした。こ
の鏡面にスパッタ法でロジウム−金−タングステン合金
(Rh−Au−W)の薄膜を被覆し、プレス成形用金型
2とした。
(Margins below) Example 2 Silicone was used as the base material of press mold 1 50-*4
After cutting into a flat plate with a 0*10-angle, it was further lapped with ultra-fine diamond powder to give a mirror surface with a surface roughness (RMS) of about 20A in about 1 hour. A rhodium-gold-tungsten alloy (Rh) was applied to this mirror surface by sputtering.
-Au-W) was coated with a thin film. The radius of curvature is 0.
A concave diffraction grating with a sag of 0.5 μm is cut into a 3μ
The above thin film was formed at a pitch of m to form a press molding mold 1. Using the same method, silicon was cut into 50wa*40wn*10m+square flat plates as the base material for the press mold 2, and then wrapped with ultra-fine diamond powder to achieve a surface roughness (RMS) of approximately 20A. I made it a mirror surface. This mirror surface was coated with a thin film of rhodium-gold-tungsten alloy (Rh-Au-W) by sputtering to form a press molding mold 2.

透明基板3として、シリカ(Si02)52重量パーセ
ント)酸化カリウム(K 20)6重量パーセント、酸
化鉛(PbO)35重量パーセント、酸化ナトリウム(
Na20)5重量パーセント、残部が微量成分からなる
重フリントガラスを用いた。
As the transparent substrate 3, 52% by weight of silica (Si02), 6% by weight of potassium oxide (K20), 35% by weight of lead oxide (PbO), and 35% by weight of sodium oxide (
A heavy flint glass containing 5% by weight of Na20) and the remainder consisting of trace components was used.

プレス成形用金型1を下のヒータブロック4に、またプ
レス成形用金型2を上のヒータブロック5にそれぞれ取
り付け、−さらにプレスシリンダ6および7に取り付け
た。第1図(a)のようにプレス成形用金型1の上に透
明基板3を置き、プレス成形用金型1及びプレス成形用
金型2を所定の温度に加熱した。第1図(b)のように
プレスシリンダ7を下げて透明基板3をプレス成形した
。プレス成形条件は、第1表のようにガラスが106〜
1010ポアズの粘度を示す金型温度であり、プレス時
間1分であった。その後200℃まで徐冷して、第1図
(C)のような光学素子10を得た。なお一連のプレス
成形は、ヘリウムガス20リツター/分、二酸化炭素ガ
ス2リツタ一/分の割合で混合した非酸化性雰囲気に保
持した成形機(不図示)で行なった。
The press mold 1 was attached to the lower heater block 4, and the press mold 2 was attached to the upper heater block 5, and then to the press cylinders 6 and 7. As shown in FIG. 1(a), a transparent substrate 3 was placed on a press molding die 1, and the press molding die 1 and the press molding die 2 were heated to a predetermined temperature. As shown in FIG. 1(b), the press cylinder 7 was lowered and the transparent substrate 3 was press-molded. As shown in Table 1, the press forming conditions are as follows:
The mold temperature was such that the viscosity was 1010 poise, and the pressing time was 1 minute. Thereafter, it was slowly cooled to 200° C. to obtain an optical element 10 as shown in FIG. 1(C). The series of press moldings was carried out using a molding machine (not shown) maintained in a non-oxidizing atmosphere containing 20 liters/minute of helium gas and 2 liters/minute of carbon dioxide gas.

このような工程によって、第2表に示した各種条件で光
学素子10を作製した。第2表から明らかなように、い
ずれの光学素子10において、割れや、気泡等の欠陥も
認められず、透明基板3の平行度も維持され、面精度も
ニュートンリング2本以内、アズ5分の1本以内であり
、その光学性能は極めて優れていた。
Through such steps, optical elements 10 were manufactured under various conditions shown in Table 2. As is clear from Table 2, no defects such as cracks or bubbles were observed in any of the optical elements 10, the parallelism of the transparent substrate 3 was maintained, and the surface accuracy was within 2 Newton rings and 5 min. The optical performance was extremely excellent.

(以  下  余  白) なお本発明の光学素子の製造方法は、一対のプレス成形
用金型において、微小光学素子を形成する一方の金型温
度が他方の金型温度より少な(とも10℃以上高い温度
で薄型の透明基板を加熱加圧成形することを特徴とする
ものであり、透明基板の厚みや基板材料の種類(ガラス
あるいはプラスチック)、プレス成形用金型材料、加熱
加圧成形の温度と時間と雰囲気、あるいは光学素子の形
状等の条件は本実施例に限定されるものではない。
(Left below) In addition, in the method for manufacturing an optical element of the present invention, in a pair of press molding molds, the temperature of one mold for forming a micro optical element is lower than the temperature of the other mold (both are 10°C or higher). It is characterized by heating and pressure molding a thin transparent substrate at high temperatures, and the thickness of the transparent substrate, the type of substrate material (glass or plastic), the mold material for press molding, and the temperature of heating and pressure molding. Conditions such as time, atmosphere, and the shape of the optical element are not limited to those in this example.

発明の詳細 な説明したように、本発明の光学素子の製造方法は、一
対のプレス成形用金型において、微小光学索子を形成す
る一方の金型温度が他方の金型温度より少なくとも10
℃以上高い温度で薄型の透明基板を加熱加圧成形するこ
とによって、マイクロレンズアレーや回折格子等を形成
する面のみを熱変形させることができ、もとの透明基板
の平行度や厚みを変えることなく薄型で高精度な光学素
子を製造することができる。すなわち、本発明によって
高精度な光学素子の大量生産が可能になり、生産性の向
上と製造コストの低減に著しい効果がある。
As described in detail, the method for manufacturing an optical element of the present invention is characterized in that in a pair of press-molding molds, the temperature of one of the molds for forming the microscopic optical cord is at least 10% lower than the temperature of the other mold.
By heating and press-molding a thin transparent substrate at a temperature higher than ℃, it is possible to thermally deform only the surface that forms the microlens array, diffraction grating, etc., changing the parallelism and thickness of the original transparent substrate. It is possible to manufacture thin, high-precision optical elements without any problems. That is, the present invention makes it possible to mass-produce highly accurate optical elements, and has a significant effect on improving productivity and reducing manufacturing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光学素子の製造方法の一実施例を示す
模式図である。 1.2・・・・・・プレス成形用金型、3・・・・・・
透明基板、4,5・・・・・・ヒータブロック、6,7
・・・・・・プレスシリンダ、lO・・・・・・光学素
子。
FIG. 1 is a schematic diagram showing an embodiment of the method for manufacturing an optical element of the present invention. 1.2...Mold for press molding, 3...
Transparent substrate, 4, 5... Heater block, 6, 7
...Press cylinder, lO...Optical element.

Claims (2)

【特許請求の範囲】[Claims] (1)一対のプレス成形用金型において、微小光学素子
を形成する一方の金型温度が他方の金型温度より少なく
とも10℃以上高い温度で薄型の透明基板を加熱加圧成
形する光学素子の製造方法。
(1) In a pair of press molding molds, the temperature of one of the molds forming the micro-optical element is at least 10°C higher than the temperature of the other mold, and a thin transparent substrate is heated and press-molded. Production method.
(2)微小光学素子を形成する一方の金型が、透明基板
が10^6〜10^1^0ポアズの粘度を示す温度であ
る請求項1記載の光学素子の製造方法。
(2) The method for manufacturing an optical element according to claim 1, wherein one of the molds for forming the micro optical element has a temperature at which the transparent substrate exhibits a viscosity of 10^6 to 10^1^0 poise.
JP30081290A 1990-11-05 1990-11-05 Production of optics Pending JPH04175228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30081290A JPH04175228A (en) 1990-11-05 1990-11-05 Production of optics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30081290A JPH04175228A (en) 1990-11-05 1990-11-05 Production of optics

Publications (1)

Publication Number Publication Date
JPH04175228A true JPH04175228A (en) 1992-06-23

Family

ID=17889402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30081290A Pending JPH04175228A (en) 1990-11-05 1990-11-05 Production of optics

Country Status (1)

Country Link
JP (1) JPH04175228A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2744113A1 (en) * 1996-01-31 1997-08-01 Corning Inc Fabrication of networks of micro-lenses

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2744113A1 (en) * 1996-01-31 1997-08-01 Corning Inc Fabrication of networks of micro-lenses
WO1998038137A1 (en) * 1996-01-31 1998-09-03 Corning Incorporated Process and device for manufacturing networks of microlenses

Similar Documents

Publication Publication Date Title
KR900000622B1 (en) Method for forming of optical glass element
US20030115907A1 (en) Multiple lens molding system and method
JPH01106003A (en) Lens element and manufacture thereof
JPS6228091B2 (en)
JPH04175228A (en) Production of optics
RU2361826C2 (en) Production method of optic items with application of sol-gel process and molds for their production
JP2875621B2 (en) Method for manufacturing optical glass molded body and method and apparatus for manufacturing optical glass element
JPS6296328A (en) Method of molding optical glass element
JPS60264330A (en) Mold for press molding of optical glass element
JPH01218808A (en) Manufacture of optical element press molding die
JPH0422857B2 (en)
JPS60176930A (en) Mold for press molding glass lens
JPH0477320A (en) Method and device for producing optical glass element
JP2892217B2 (en) Method and apparatus for manufacturing glass material
JP2002080227A (en) Method of manufacturing optical element
JPS63182225A (en) Production of optical glass element
JPS62256732A (en) Molding tool for glass lens
JPS62292639A (en) Method for forming optical glass element
JPS63134527A (en) Method for forming optical glass element
JPH0360435A (en) Production of optical glass element
JP2006298727A (en) Base material for forming optical device, method of manufacturing base material for forming optical device, method of manufacturing optical device and optical device
JPH02258640A (en) Production of optical glass element and production apparatus therefor
JPH0717391B2 (en) Optical glass element press molding method
JPH0517165A (en) Production of optical element
JPH06127952A (en) Press forming method for optical glass element