JPH0360435A - Production of optical glass element - Google Patents

Production of optical glass element

Info

Publication number
JPH0360435A
JPH0360435A JP19506189A JP19506189A JPH0360435A JP H0360435 A JPH0360435 A JP H0360435A JP 19506189 A JP19506189 A JP 19506189A JP 19506189 A JP19506189 A JP 19506189A JP H0360435 A JPH0360435 A JP H0360435A
Authority
JP
Japan
Prior art keywords
glass
optical
processing jig
optical glass
jig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19506189A
Other languages
Japanese (ja)
Other versions
JPH0645465B2 (en
Inventor
Hideto Monju
秀人 文字
Masaaki Haruhara
正明 春原
Tadataka Yonemoto
米本 忠孝
Noriyuki Kawada
川田 紀行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Sumita Optical Glass Inc
Original Assignee
Matsushita Electric Industrial Co Ltd
Sumita Optical Glass Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd, Sumita Optical Glass Inc filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19506189A priority Critical patent/JPH0645465B2/en
Priority to US07/549,437 priority patent/US5087279A/en
Priority to EP90113470A priority patent/EP0408065B1/en
Priority to DE69023286T priority patent/DE69023286T2/en
Publication of JPH0360435A publication Critical patent/JPH0360435A/en
Priority to US07/789,755 priority patent/US5120343A/en
Publication of JPH0645465B2 publication Critical patent/JPH0645465B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE:To obtain an optical glass element which is free from surface blemish with high precision and good productivity at a low cost by thermally softening a specified glass gob with a heated working jig, thermally pressing and molding the obtained molding body of optical glass with a mold for pressing. CONSTITUTION:Molten glass 14 consisting of SiO2 and BaO, etc., is melted at about 1200 deg.C and dropped on a first heated working jig 24 bad in wettability to glass through a nozzle 12 in the atmosphere such as gaseous N2. Then a second heated working jig 16 described hereunder is stuck to this glass 14. Thereafter the jig 16 is inverted by an arm 25 and this glass 14 is placed on the jig 16. This jig 16 is good in wettability to glass and the optical surface is coated by noble metal such as Ta, Re. Then glass 14 is thermally deformed at about 780 deg.C for 20 minutes by the jig 16 and thereafter pressed at about 30kg/cm<2> at about 680 deg.C for about 2 minutes by a mold 20 for press-molding to obtain an optical glass element 22. Then the element 22 is slowly cooled at about 400 deg.C and taken out from a takeout 23. Thereafter it is manufactured and worked to produce the optical glass element wherein the surface roughness (RMS) of a press-molded surface has an optical specular surface of about 20Angstrom .

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、レンズやプリズム等の高精度な光学ガラス素
子および前記光学ガラス素子のリヒートブレスtc形用
素材の光学ガラス放形体等の光学ガラス素子の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to optical glass elements such as high-precision optical glass elements such as lenses and prisms, and optical glass molded bodies used as materials for reheat brace TC type optical glass elements. Regarding the manufacturing method.

従来の技術 近年、光学ガラスレンズは光学機器のレンズ構成の簡略
化とレンズ部分の軽量化の両方を同時に達成しうる非球
面化の方向にある。この非球面レンズの製造にあたって
は、従来の光学レンズの製造方法である研磨法では、加
工および量産化が困難であり、金型を用いた成形法が有
望視されている。
2. Description of the Related Art In recent years, there has been a trend toward aspheric optical glass lenses, which can simultaneously simplify the lens structure of optical equipment and reduce the weight of the lens portion. In manufacturing this aspherical lens, processing and mass production are difficult using the polishing method, which is a conventional optical lens manufacturing method, and a molding method using a mold is considered to be promising.

この金型を用いた成形法というのは、予め所望の面品質
および面精度に仕上げた金型上に水酸化アルミニウム、
炭酸マグネシウム、カーボン等の離型剤を塗布あるいは
被覆した状態で、光学ガラスの塊状物を加熱成形するか
、あるいは溶融状態の光学ガラスの塊状物を加熱成形を
行なう方法である。(例えば、特公昭54−60312
号公報)発明が解決しようとする課題 非球面レンズ、プリズム等の光学ガラス素子の場合、欠
陥あるいは離型剤の付着のない表面、面粗度、および面
精度であることが要求されるため、光学ガラス素子およ
び前記光学ガラス素子のリヒートプレス成形用素材の光
学ガラス成形体は非常に高価なものになっていた。
The molding method using this mold involves placing aluminum hydroxide on a mold that has been finished to the desired surface quality and precision in advance.
In this method, a lump of optical glass is heat-molded in a state in which a mold release agent such as magnesium carbonate or carbon is coated or coated, or a lump of optical glass in a molten state is heat-molded. (For example, Special Publication No. 54-60312
Problems to be Solved by the Invention In the case of optical glass elements such as aspherical lenses and prisms, the surface is required to be free from defects or adhesion of mold release agents, and to have a surface roughness and surface precision. Optical glass elements and optical glass molded bodies used as raw materials for reheat press molding of optical glass elements have become very expensive.

すなわち光学ガラス成形体の表面に欠陥がない状態(例
えば表面粗さRMSで0.005ミクロン以下の鏡面状
態)にするために、研磨またはエツチング処理を施す必
要があり光学ガラス成形体が高価なものになっており、
低コストで高精度な光学ガラス成形体が製造できる方法
の開発が強く望まれていた。
In other words, it is necessary to perform polishing or etching treatment to make the surface of the optical glass molded body defect-free (for example, a mirror surface with a surface roughness of 0.005 microns or less in RMS), and the optical glass molded body is expensive. has become,
There has been a strong desire to develop a method that can produce high-precision optical glass moldings at low cost.

課題を解決するための手段 本発明は前記課題を解決するために、非酸化性雰囲気中
で、所望の光学ガラス素子と近似形状でない第一の熱加
工治具で溶融ガラスを受けてガラスゴブを作製する工程
、所望の光学ガラス素子と近似形状の第二の熱加工治具
に前記ガラスゴブを接着させた状態で前記ガラスゴブと
第二の熱加工治具とを反転させて置換する工程、第二の
熱加工治具で熱軟化した前記ガラスゴブの表面張力によ
り光学ガラス成形体を作製する工程、光学ガラス成形体
をプレス成形用金型で加熱加圧成形する工程とを含む光
学ガラス素子の製造方法を提供するものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention produces a glass gob by receiving molten glass in a non-oxidizing atmosphere using a first heat processing jig that does not have an approximate shape to a desired optical glass element. a step of inverting and replacing the glass gob and the second thermal processing jig with the glass gob adhered to a second thermal processing jig having a shape similar to that of the desired optical glass element; A method for producing an optical glass element, which includes the steps of: producing an optical glass molded body using the surface tension of the glass gob that has been thermally softened with a heat processing jig; and heating and press-molding the optical glass molded body with a press molding die. This is what we provide.

作用 高温の溶融ガラスは化学的に極めて活性な状態にあるた
め、熱加工治具に非常に大きなダメージを与え、光学ガ
ラスと反応あるいは融着した。このことを防ぐために熱
加工治具を加熱せずに使用することは有効であるが、熱
加工治具と接したガラスゴブの接触面には熱収縮に起因
するしわ状の大きな欠陥が発生する。一方、熱加工治具
と接していないガラスゴブの表面は非常に平滑な面であ
った。
Since the molten glass at high temperature is in an extremely active state chemically, it caused great damage to the thermal processing jig and reacted or fused with the optical glass. Although it is effective to use the thermal processing jig without heating it to prevent this, large wrinkle-like defects due to thermal contraction occur on the contact surface of the glass gob in contact with the thermal processing jig. On the other hand, the surface of the glass gob that was not in contact with the heat processing jig was a very smooth surface.

熱加工治具と接したガラスゴブ表面のしわ状の欠陥を取
り除くために、溶融ガラスを所望の光学ガラス素子と近
似形状でない第一の熱加工治具で受けた後、ガラスゴブ
の平滑な面に所望の光学ガラス素子と近似形状の第二の
熱加工治具を接触させて、ガラスゴブを第二の熱加工治
具に付着させる。ガラスゴブが第二の熱加工治具に付着
した状態で第二の熱加工治具を反転させて、ガラスゴブ
を第一の熱加工治具から第二の熱加工治具に安定して置
換し、加熱した第二の熱加工治具でしわ状の面を上にし
たガラスゴブをガラスの表面張力により大変形を行う。
In order to remove wrinkle-like defects on the surface of the glass gob in contact with the thermal processing jig, the molten glass is applied to the first thermal processing jig, which does not have an approximate shape to the desired optical glass element, and then the desired optical glass element is applied to the smooth surface of the glass gob. A second thermal processing jig having an approximate shape is brought into contact with the optical glass element, and the glass gob is attached to the second thermal processing jig. inverting the second heat processing jig with the glass gob attached to the second heat processing jig to stably replace the glass gob from the first heat processing jig to the second heat processing jig; Using a heated second thermal processing jig, the glass gob with its wrinkled side facing up is subjected to large deformations due to the surface tension of the glass.

さらにこの光学ガラス成形体をプレス成形用金型で加熱
加圧成形することにより、表面に欠陥のない光学ガラス
素子を製造することができる。
Further, by heating and press-molding this optical glass molded body using a press mold, an optical glass element with no defects on the surface can be manufactured.

溶融ガラスを直接受ける第一の熱加工治具は、溶融ガラ
スと濡れ性が悪く、離型性が優れている材料、例えばカ
ーボン、ボロンナイトライド、窒化アルミ、窒化クロム
、ステンレス鋼等が適している。また、第二の熱加工治
具及びプレス成形用金型に被覆する薄膜は、非酸化性雰
囲気中で光学ガラスと反応あるいはわずかに付着する貴
金属。
The first heat processing jig that receives the molten glass directly is made of materials that have poor wettability with the molten glass and have excellent mold release properties, such as carbon, boron nitride, aluminum nitride, chromium nitride, and stainless steel. There is. In addition, the thin film that coats the second heat processing jig and the press molding die is a precious metal that reacts with or slightly adheres to the optical glass in a non-oxidizing atmosphere.

タングステン、タンクル、レニウム、ハフニウムの単体
あるいはそれらの合金であることが望ましい。
It is preferable to use tungsten, tankle, rhenium, hafnium alone or an alloy thereof.

本発明において、光学ガラスとこれらの薄膜とが反応あ
るいは融着しない非酸化性雰囲気は、窒素、アルゴン、
ヘリウム等の不活性ガス、およびこれらの不活性ガスに
水素、あるいは−酸化炭素。
In the present invention, the non-oxidizing atmosphere in which the optical glass and these thin films do not react or fuse together is nitrogen, argon,
Inert gases such as helium, and these inert gases with hydrogen or -carbon oxide.

二酸化炭素の炭素酸化物、メタン、エタン エチレン、
トルエン等の炭化水素類、トリクロロエチレン、トリク
ロルトリフルオルエタン等のハロゲン化炭化水素類、エ
チレングリコール グリセリン等のアルコール類、F−
113,F−11等のフルオロカーボン類を適宜混合し
たものである。
Carbon oxides of carbon dioxide, methane, ethane ethylene,
Hydrocarbons such as toluene, halogenated hydrocarbons such as trichloroethylene and trichlorotrifluoroethane, alcohols such as ethylene glycol and glycerin, F-
It is a mixture of fluorocarbons such as 113 and F-11 as appropriate.

これらの雰囲気は、光学ガラス組成、熱加工治具に被覆
する薄膜組成、熱変形の温度と時間、ブレス成形の温度
と時間、あるいは光学ガラス成形体の形状等の条件によ
って適宜選択する。
These atmospheres are appropriately selected depending on conditions such as the composition of the optical glass, the composition of the thin film coated on the thermal processing jig, the temperature and time of thermal deformation, the temperature and time of press molding, and the shape of the optical glass molded body.

実施例 以下に本発明の一実施例を図面にもとづいて説明する。Example An embodiment of the present invention will be described below based on the drawings.

実施例1 第1図は本発明に用いた第一の熱加工治具、第二の熱加
工治具及びブレス成形用金型の断面図である。第一の熱
加工治具としてカーボンを使用し、平型に加工した。第
二の熱加工治具の母材として超硬合金(WC−5TiC
−8Co)を用いて曲率半径が15閣の凹形の光学面1
を形成した。この光学面1をさらに超微細なダイヤモン
ド粉末を用いてラッピングし、約1時間で表面の表面粗
さ(RMS)が約30人の鏡面にした。鏡面となった熱
加工治具表面に、スパッタ法で白金−イリジウム−オス
ミウム合金(Pt−1r−Os)の薄1II2を被覆し
た。第二の熱加工治具と同様に母材として超硬合金(W
C−5Ti C−8Co)を用いて曲率半径が20−の
凹形の光学面lを形成し、スパッタ法で白金−イリジウ
ム−オスミウム合金(PL−1r−Os)の薄膜2を被
覆し、ブレス成形用金型とした。
Example 1 FIG. 1 is a sectional view of a first thermal processing jig, a second thermal processing jig, and a press molding die used in the present invention. Carbon was used as the first heat processing jig and processed into a flat shape. Cemented carbide (WC-5TiC) is used as the base material of the second heat processing jig.
-8Co) with a concave optical surface 1 with a radius of curvature of 15
was formed. This optical surface 1 was further lapped using ultrafine diamond powder, and the surface roughness (RMS) was made into a mirror surface of about 30 in about 1 hour. A thin 1II2 layer of platinum-iridium-osmium alloy (Pt-1r-Os) was coated on the mirror-finished surface of the heat processing jig by sputtering. Similar to the second heat processing jig, the base material is cemented carbide (W).
A concave optical surface l with a radius of curvature of 20 is formed using C-5TiC-8Co), and a thin film 2 of platinum-iridium-osmium alloy (PL-1r-Os) is coated by sputtering. It was used as a mold for molding.

溶融ガラス14は、シリカ(Si02)30重量パーセ
ント、酸化バリウム(Bad)50重量パーセント、ホ
ウ酸(B208)15重量パーセント、残部が微量成分
からなるホウケイ酸バリウムガラスを用いた。このガラ
スを1200 ’Cで溶融したあと、800°Cに保持
したノズル12から約3グラムの溶融ガラス14を窒素
ガス20リツタ一/分、水素ガス2リツタ一/分の割合
で混合した雰囲気の成形機内に保持した第一の熱加工治
具24に滴下した。第一の熱加工治具24は予め200
℃に加熱しておき、滴下後直ちに溶融ガラス14に第二
の熱加工治具24を接触させて第二の熱加工治具24に
溶融ガラス14を付着させた。
The molten glass 14 used was barium borosilicate glass consisting of 30% by weight of silica (Si02), 50% by weight of barium oxide (Bad), 15% by weight of boric acid (B208), and the remainder being trace components. After melting this glass at 1200'C, about 3 grams of molten glass 14 was mixed from a nozzle 12 maintained at 800°C at a rate of 20 liters/min of nitrogen gas and 2 liters/min of hydrogen gas. It was dropped into the first heat processing jig 24 held in the molding machine. The first heat processing jig 24 has a diameter of 200 mm in advance.
℃, and immediately after dropping, the second thermal processing jig 24 was brought into contact with the molten glass 14 to adhere the molten glass 14 to the second thermal processing jig 24.

溶融ガラス14の付着した第二の熱加工治具24をアー
ム25によって反転させ、第二の熱加工治具16に第2
図のように溶融ガラス14を置換した。第二の熱加工治
具16で630°C210分間熱変形させたあと、ブレ
ス成形用金型20でブレス成形した。プレス成形条件は
金型温度560 ’C、プレス圧力30kg/c+i、
ブレス時間2分であった。その後300 ’Cまで徐冷
し、取り出し口23から光学ガラス素子22を取り出し
た。
The second thermal processing jig 24 with the molten glass 14 attached thereto is reversed by the arm 25, and the second thermal processing jig 16 is placed in the second thermal processing jig 16.
The molten glass 14 was replaced as shown in the figure. After being thermally deformed at 630° C. for 210 minutes using the second heat processing jig 16, it was press molded using a press mold 20. Press molding conditions are mold temperature 560'C, press pressure 30kg/c+i,
Breathing time was 2 minutes. Thereafter, it was slowly cooled to 300'C, and the optical glass element 22 was taken out from the takeout port 23.

このような工程によって作製した光学ガラス素子22に
おいて、ブレス成形部の表面粗さ(RMS)は約25大
の光学的鏡面であり、気泡、傷、あるいは剥離跡といっ
た欠陥は認められず、面精度もニュートンリング2本以
内、アユ5分の1本以内であり、その光学性能は極めて
優れていた。
In the optical glass element 22 manufactured by such a process, the surface roughness (RMS) of the press molded part is an optical mirror surface of about 25, and no defects such as bubbles, scratches, or peeling marks are observed, and the surface accuracy is high. The optical performance was within two Newton rings and within one-fifth of a sweetfish, and its optical performance was extremely excellent.

実施例2 第一〇熱加工治具としてボロンナイトライドを使用し、
曲率半径が45閣の凸型に加工した。第二の熱加工治具
の母材としてオーステナイト鋼(SUS316)を用い
て曲率半径が45鰭の凹形の光学面1を形威した。この
光学面lをさらに超微細なダイヤモンド粉末を用いてラ
ッピングし、約1時間で表面の表面粗さ(RMS)が約
30入の鏡面にした。鏡面となった熱加工治具表面に、
スパッタ法で白金−イリジウム−オスミウム合金(P 
L −1r−O3)の薄膜2を被覆した。第二の熱加工
治具と同様に母材としてオーステナイト鋼(SUS31
6)を用いて曲率半径が150+nmの凹形の光学面1
を形威し、スパッタ法でロジウム−金−タングステン合
金(Rh−Au−W)の薄膜2を被覆し、ブレス成形用
金型とした。
Example 2 10 Using boron nitride as a heat processing jig,
It was processed into a convex shape with a radius of curvature of 45. A concave optical surface 1 with a radius of curvature of 45 fins was formed using austenitic steel (SUS316) as the base material of the second heat processing jig. This optical surface 1 was further lapped using ultrafine diamond powder to give a mirror surface with a surface roughness (RMS) of about 30 in about 1 hour. On the mirror surface of the heat processing jig,
Platinum-iridium-osmium alloy (P
A thin film 2 of L-1r-O3) was coated. Similar to the second heat processing jig, the base material is austenitic steel (SUS31).
6) to form a concave optical surface 1 with a radius of curvature of 150+nm.
A thin film 2 of rhodium-gold-tungsten alloy (Rh-Au-W) was coated by sputtering to form a press mold.

溶融ガラス14は、ジルコニア(ZrO2)8重量パー
セント、酸化ランタン(La2o3)30重量パーセン
ト、ホウ酸(B208)42重量パーセント、酸化カル
シウム(Cab)10重量パーセント、残部が微量成分
からなるランタン系ガラスを用いた。このガラスを14
00″Cで溶融したあと、950°Cに保持したノズル
12から約3グラムの溶融ガラス14を窒素ガス20リ
ツタ一/分、トリクロルトリフルオルエタン(C2C1
3F8)ガスlリッター7分の割合で混合したハロゲン
化炭化水素雰囲気の成形機内に保持した第一の熱加工治
具24に滴下した。第一の熱加工治具24は予め400
°Cに加熱しておき、滴下後直ちに溶融ガラス14に第
二の熱加工治具24を接触させて第二の熱加工治具24
に溶融ガラス14を付着させた。f9融ガラス14の付
着した第二の熱加工治具24をアーム25によって反転
させ、第二の熱加工治具16に第2図のように溶融ガラ
ス14を置換した。第二の熱加工治具16で780°C
l2O分間熱変形させたあと、プレス成形用金型20で
プレス成形した。プレス成形条件は金型温度680°C
、プレス圧力30kg/ c4、プレス時間2分であっ
た。その後400“Cまで徐冷し、取り出し口23から
光学ガラス素子22を取り出した。
The molten glass 14 is a lanthanum-based glass consisting of 8% by weight of zirconia (ZrO2), 30% by weight of lanthanum oxide (La2O3), 42% by weight of boric acid (B208), 10% by weight of calcium oxide (Cab), and the remainder being trace components. Using. 14 pieces of this glass
After melting at 00''C, approximately 3 grams of molten glass 14 was heated from the nozzle 12 maintained at 950°C with nitrogen gas at 20 liters/min and trichlorotrifluoroethane (C2C1
3F8) Gas was dropped into the first heat processing jig 24 held in the molding machine in a halogenated hydrocarbon atmosphere mixed at a ratio of 1 liter to 7 minutes. The first heat processing jig 24 has a diameter of 400 mm in advance.
°C, and immediately after dropping, the second thermal processing jig 24 is brought into contact with the molten glass 14.
The molten glass 14 was attached to the glass. The second thermal processing jig 24 to which the f9 molten glass 14 was attached was turned over by the arm 25, and the molten glass 14 was replaced with the second thermal processing jig 16 as shown in FIG. 780°C in the second heat processing jig 16
After being thermally deformed for 120 minutes, it was press-molded using a press molding die 20. Press molding conditions are mold temperature 680°C
, press pressure was 30 kg/c4, and press time was 2 minutes. Thereafter, it was slowly cooled to 400"C, and the optical glass element 22 was taken out from the takeout port 23.

このような工程によって作製した光学ガラス素子22に
おいて、プレス成形面の表面粗さ(RMS)は約20人
の光学的鏡面であり、気泡、傷、あるいは剥離跡といっ
た欠陥は認められず、面精度もニュートンリング2本以
内、デス5分の1本以内であり、その光学性能は極めて
優れてい実施例3 第一の熱加工治具として窒化アルミを使用し、曲率半径
が200mmの凸形に加工した。第二の熱加工治具の母
材としてサーメット(TtC−10Mo−9N+>を用
いて曲率半径が200mmの凹形の光学面1を形成した
。この光学面lをさらに超微細なダイヤモンド粉末を用
いてラッピングし、約1時間で表面の表面粗さ(RMS
)が約30人の鏡面にした。
In the optical glass element 22 manufactured by such a process, the surface roughness (RMS) of the press-molded surface is approximately an optical mirror surface, and no defects such as bubbles, scratches, or peeling marks are observed, and the surface accuracy is high. The optical performance is within 2 Newton rings and 1/5 Newton ring, and its optical performance is extremely excellent.Example 3 Aluminum nitride was used as the first heat processing jig and processed into a convex shape with a radius of curvature of 200 mm. did. A concave optical surface 1 with a radius of curvature of 200 mm was formed using cermet (TtC-10Mo-9N+) as the base material of the second thermal processing jig.This optical surface 1 was further formed using ultrafine diamond powder. The surface roughness (RMS) was measured in about 1 hour.
) made a mirror surface of about 30 people.

鏡面となった熱加工治具表面に、スパッタ法で白金−タ
ンタル−レニウム合金(Pt、−Ta−Re)の薄膜2
を被覆した。第二の熱加工治具と同様に母材としてサー
メット(TiC−10Mo−9Ni)を用いて曲率半径
が500Mの凹形の光学面1を形威し、スパッタ法で白
金−タンタル−レニウム合金(PL−Ta−Re)の薄
膜2を被覆し、プレス成形用金型とした。
A thin film 2 of platinum-tantalum-rhenium alloy (Pt, -Ta-Re) is deposited on the mirror-finished surface of the heat processing jig by sputtering.
coated. Similar to the second heat processing jig, a concave optical surface 1 with a radius of curvature of 500M is formed using cermet (TiC-10Mo-9Ni) as the base material, and a platinum-tantalum-rhenium alloy ( A thin film 2 of PL-Ta-Re) was coated to prepare a mold for press molding.

溶融ガラス14は、シリカ(Sin2)65重量パーセ
ント、酸化カリウム(K2O)9重量パーセント、ホウ
酸(B20B)10重量パーセント、酸化ナトリウム(
Na20)10重量パーセント、残部が微量成分からな
るホウケイ酸ガラスを用いた。
The molten glass 14 contains 65 weight percent of silica (Sin2), 9 weight percent of potassium oxide (K2O), 10 weight percent of boric acid (B20B), and sodium oxide (
A borosilicate glass containing 10% by weight of Na20) and the remainder consisting of trace components was used.

このガラスを1350℃で溶融したあと、920″Cに
保持したノズル12から約3グラムの溶融ガラス14を
アルゴンガス20リツタ一/分、エチレン(C2H,)
1りンター/分の割合で混合した炭化水素雰囲気の成形
機内に保持した第一の熱加工治具24に滴下した。第一
の熱加工治具24は予め550 ’Cに加熱しておき、
滴下後直ちに熔融ガラス14に第二の熱加工治具24を
接触させて第二の熱加工治具24に溶融ガラス14を付
着させた。溶融ガラス14の付着した第二の熱加工治具
24をアーム25によって反転させ、第二の熱加工治具
16に第2図のように溶融ガラス14を置換した。第二
の熱加工治具16で780℃、5分間熱変形させたあと
、プレス成形用金型20でプレス成形した。プレス成形
条件は金型温度680°C、プレス圧力80kg/cj
、プレス時間1分であった。その後380″Cまで徐冷
し、取り出し口23から光学ガラス素子22を取り出し
た。
After melting this glass at 1,350°C, about 3 grams of molten glass 14 was poured into the nozzle 12 maintained at 920°C using argon gas at 20 liters/min and ethylene (C2H,
The mixture was dropped into the first heat processing jig 24 held in a molding machine in which a hydrocarbon atmosphere was mixed at a rate of 1 linter/min. The first thermal processing jig 24 is heated to 550'C in advance,
Immediately after dropping, the second thermal processing jig 24 was brought into contact with the molten glass 14 to adhere the molten glass 14 to the second thermal processing jig 24. The second thermal processing jig 24 with the molten glass 14 attached thereon was turned over by the arm 25, and the molten glass 14 was replaced with the second thermal processing jig 16 as shown in FIG. After being thermally deformed at 780° C. for 5 minutes using the second thermal processing jig 16, it was press-molded using a press molding die 20. Press molding conditions are mold temperature 680°C, press pressure 80kg/cj
, the press time was 1 minute. Thereafter, it was slowly cooled to 380''C, and the optical glass element 22 was taken out from the takeout port 23.

このような工程によって作製した光学ガラス素子22に
おいて、プレス成形面の表面粗さ(RMS)は約20入
の光学的鏡面であり、気泡、傷、あるいは剥離跡といっ
た欠陥は認められず、面精度もニュートンリング2本以
内、デス5分の1本以内であり、その光学性能は極めて
優れていた。
In the optical glass element 22 manufactured by such a process, the surface roughness (RMS) of the press-molded surface is approximately 20% optical mirror surface, and no defects such as bubbles, scratches, or peeling marks are observed, and the surface accuracy is high. Its optical performance was extremely excellent, with the distance being within two Newton's rings and within one-fifth of Newton's ring.

実施例4 第一の熱加工治具としてマルテンサイト系ステンレス鋼
(SUS420)を使用し、平型に加工した。第二の熱
加工治具の母材としてシリコンを用いて曲率半径が55
mの凹形の光学面1を形成した。この光学面lをさらに
超微細なダイヤモンド粉末を用いてラッピングし、約1
時間で表面の表面粗さ(RMS)が約20人の鏡面にし
た。鏡面となった熱加工治具表面に、スパッタ法でロジ
ウム−金−タングステン合金(Rh−Au−W)の薄1
t!!2を被覆した。第二の熱加工治具と同様に母材と
してシリコンを用いて曲率半径が100mmの凹形の光
学面1を形威し、スパッタ法でロジウム−金−タングス
テン合金(Rh−A u−W)のgl膜2を被覆し、プ
レス成形用金型とした。
Example 4 Martensitic stainless steel (SUS420) was used as a first heat processing jig and processed into a flat shape. Using silicon as the base material of the second heat processing jig, the radius of curvature is 55
A concave optical surface 1 of m was formed. This optical surface l is further lapped using ultra-fine diamond powder, approximately 1
The surface roughness (RMS) was approximately 20 times mirror-like. A thin layer of rhodium-gold-tungsten alloy (Rh-Au-W) is applied to the mirror-finished surface of the heat processing jig by sputtering.
T! ! 2 was coated. Similar to the second thermal processing jig, silicon is used as the base material to form a concave optical surface 1 with a radius of curvature of 100 mm, and a rhodium-gold-tungsten alloy (Rh-Au-W) is formed by sputtering. The mold was coated with the GL film 2 and used as a mold for press molding.

溶融ガラス14は、シリカ(Si02)52重量パーセ
ント、酸化カリウム(K2O)6重量パーセント、酸化
鉛(PbO)35重量パーセント、酸化ナトリウム(N
 a 20)5重量パーセント、残部が微量成分からな
る重フリントガラスを用いた。
The molten glass 14 contains 52 weight percent of silica (Si02), 6 weight percent of potassium oxide (K2O), 35 weight percent of lead oxide (PbO), and sodium oxide (N
a20) A heavy flint glass consisting of 5% by weight and the remainder being trace components was used.

このガラスを1250″C″i′溶融したあと、750
℃に保持したノズル12から約5グラムの溶融ガラス1
4をヘルウムガス20リッター/分、二酸化炭素ガス2
リツタ一/分の割合で混合した雰囲気の成形機内に保持
した第一〇熱加工治具24に滴下した。第一〇熱加工治
具24は加熱せずにおき、滴下後直ちに溶融ガラス14
に第二の熱加工治Ji124を接触させて第二〇熱加工
治具24に溶融ガラス14を付着させた。溶融ガラス1
4の付着した第二の熱加工治具24をアーム25によっ
て反転させ、第二の熱加工治具16に第2図のように溶
融ガラス14を置換した。第二の熱加工治具16で61
0°C15分間熱変形させたあと、ブレス成形用金型2
0でブレス成形した。
After melting this glass to 1250″C″i′, 750″C″i′
Approximately 5 grams of molten glass 1 from nozzle 12 held at ℃
4, helium gas 20 liters/min, carbon dioxide gas 2
The mixture was dropped into the heat processing jig 24 held in the molding machine in a mixed atmosphere at a rate of 1/min. 10. Leave the thermal processing jig 24 unheated, and immediately after dropping the molten glass 14
A second thermal processing jig 124 was brought into contact with the molten glass 14 to adhere to the second thermal processing jig 24. molten glass 1
The second thermal processing jig 24 to which the glass particles 4 were attached was turned over by the arm 25, and the molten glass 14 was replaced with the second thermal processing jig 16 as shown in FIG. 61 with second heat processing jig 16
After heat deforming at 0°C for 15 minutes, press mold 2
Breath molding was performed at 0.

プレス成形条件は金型温度550°C、プレス圧力80
 k g /cd、プレス時間1分であった。その後3
80°Cまで徐冷し、取り出し口23から光学ガラス素
子22を取り出した。
Press molding conditions are mold temperature 550°C, press pressure 80°C.
kg/cd, press time was 1 minute. then 3
It was slowly cooled to 80° C., and the optical glass element 22 was taken out from the take-out port 23.

このような工程によって作製した光学ガラス素子22に
おいて、プレス成形面の表面粗さ(RMS)は約20入
の光学的鏡面であり、気泡、傷、あるいは剥離跡といっ
た欠陥は認められず、面精度もニュートンリング2本以
内、デス5分の1本以内であり、その光学性能は極めて
優れていた。
In the optical glass element 22 manufactured by such a process, the surface roughness (RMS) of the press-molded surface is approximately 20% optical mirror surface, and no defects such as bubbles, scratches, or peeling marks are observed, and the surface accuracy is high. Its optical performance was extremely excellent, with the distance being within two Newton's rings and within one-fifth of Newton's ring.

なお本発明の光学ガラス素子の製造方法は、非酸化性雰
囲気中で、所望の光学ガラス素子と近似形状でない第一
の熱加工治具で溶融ガラスを受けてガラスゴブを作製す
る工程、所望の光学ガラス素子と近似形状の第二の熱加
工治具に前記ガラスゴブを接着させた状態で前記ガラス
ゴブと第二の熱加工治具とを反転させて置換する工程、
第二の熱加工治具で熱軟化した前記ガラスゴブの表面張
力により光学ガラス成形体を作製する工程、光学ガラス
成形体をブレス成形用金型で加熱加圧成形する工程を含
む光学ガラス素子の製造方法であることを特徴とするも
のであり、成形の雰囲気、光学ガラス&ll威、熱加工
治具に被覆する薄膜組成、熱変形の温度と時間、あるい
は光学ガラス成形体の形状等の条件は本実施例に限定さ
れるものではない。
The method for producing an optical glass element of the present invention includes a step of producing a glass gob by receiving molten glass in a first thermal processing jig that does not have an approximate shape to the desired optical glass element in a non-oxidizing atmosphere; a step of inverting and replacing the glass gob and the second thermal processing jig with the glass gob adhered to a second thermal processing jig having a shape similar to that of the glass element;
Manufacture of an optical glass element, including a step of producing an optical glass molded body using the surface tension of the glass gob that has been thermally softened in a second thermal processing jig, and a step of heating and press-molding the optical glass molded body with a press mold. This method is characterized by the fact that the conditions such as the molding atmosphere, the temperature of the optical glass, the composition of the thin film coated on the thermal processing jig, the temperature and time of thermal deformation, and the shape of the optical glass molded product are not specified. It is not limited to the examples.

発明の詳細 な説明したように、本発明の光学ガラス素子の製造方法
は、熱加工治具と接したガラスゴブ表面のしわ状の欠陥
を取り除くために、溶融ガラスを所望の光学ガラス素子
と近似形状でない第一の熱加工治具で受けた後、ガラス
ゴブの平滑な面に所望の光学ガラス素子と近似形状の第
二の熱加工治具を接触させて、ガラスゴブを第二の熱加
工治具に付着させる。ガラスゴブが第二の熱加工治具に
付着した状態で第二の熱加工治具を反転させて、ガラス
ゴブを第一の熱加工治具から第二の熱加工治具に安定し
て置換し、加熱した第二の熱加工治具でしわ状の面を上
にしたガラスゴブをガラスの表面張力により大変形を行
う、さらにこの光学ガラス成形体をブレス成形用金型で
加熱加圧成形することにより、表面に欠陥のない光学ガ
ラス素子を製造することができる。
As described in detail, the method for manufacturing an optical glass element of the present invention involves processing molten glass into a shape approximately similar to that of a desired optical glass element in order to remove wrinkle-like defects on the surface of the glass gob in contact with a thermal processing jig. After receiving the glass gob with the first heat processing jig, a second heat processing jig having an approximate shape to the desired optical glass element is brought into contact with the smooth surface of the glass gob, and the glass gob is placed in the second heat processing jig. Make it adhere. inverting the second heat processing jig with the glass gob attached to the second heat processing jig to stably replace the glass gob from the first heat processing jig to the second heat processing jig; The glass gob with the wrinkled side facing up is greatly deformed using the heated second thermal processing jig due to the surface tension of the glass, and this optical glass molded body is then heated and pressure molded using a press mold. , it is possible to manufacture an optical glass element with no defects on the surface.

すなわち、本発明によって高精度な光学ガラス素子の大
量生産が可能になり、生産性の向上と製造コストの低減
に著しい効果がある。
That is, the present invention makes it possible to mass-produce high-precision optical glass elements, and has a significant effect on improving productivity and reducing manufacturing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明を説明するための第一の熱加工治
具の説明図、第1図(ロ)は本発明を説明するための第
二の熱加工治具の説明図、第1図(C)はブレス成形用
金型の断面図、第2図は光学ガラス素子の製造装置を示
す本発明実施例の断面図である。 1・・・・・・光学面、2・・・・・・薄膜、IO・・
・・・・ガラス溶融炉、11・・・・・・加熱ヒータ、
12・・・・・・ノズル、13・・・・・ノズル加熱ヒ
ータ、14・・・・・・溶融ガラス、15・・・・・・
加熱ヒータ、16・・・・・・第二の熱加工治具、17
・・・・・・ガス入口、18・・・・・・光学ガラス成
形体、19・・・・・・プレスシリンダ、20・・・・
・・ブレス成形用金型、21・・・・・・コンベア、2
2・・・・・・光学ガラス素子、23・・・・・・取り
出し口、24・・・・・・第一の熱加工治具、25・・
・・・・アーム。
FIG. 1(a) is an explanatory diagram of a first thermal processing jig for explaining the present invention, FIG. 1(b) is an explanatory diagram of a second thermal processing jig for explaining the present invention, FIG. 1(C) is a sectional view of a press mold, and FIG. 2 is a sectional view of an embodiment of the present invention showing an apparatus for manufacturing an optical glass element. 1...Optical surface, 2...Thin film, IO...
...Glass melting furnace, 11... Heater,
12... Nozzle, 13... Nozzle heater, 14... Molten glass, 15...
Heater, 16...Second thermal processing jig, 17
... Gas inlet, 18 ... Optical glass molded body, 19 ... Press cylinder, 20 ...
... Breath molding mold, 21 ... Conveyor, 2
2... Optical glass element, 23... Output port, 24... First thermal processing jig, 25...
····arm.

Claims (4)

【特許請求の範囲】[Claims] (1)非酸化性雰囲気中で、所望の光学ガラス素子と近
似形状でない第一の熱加工治具で溶融ガラスを受けてガ
ラスゴブを作製する工程、所望の光学ガラス素子と近似
形状の第二の熱加工治具に前記ガラスゴブを接着させた
状態で前記ガラスゴブと第二の熱加工治具とを反転させ
て置換する工程、第二の熱加工治具で熱軟化した前記ガ
ラスゴブの表面張力により光学ガラス成形体を作製する
工程、光学ガラス成形体をプレス成形用金型で加熱加圧
成形する工程とを含む光学ガラス素子の製造方法。
(1) In a non-oxidizing atmosphere, a step of producing a glass gob by receiving molten glass with a first thermal processing jig that does not have an approximate shape to the desired optical glass element; a step of inverting and replacing the glass gob and a second heat processing jig with the glass gob adhered to the heat processing jig; optical A method for producing an optical glass element, comprising the steps of producing a glass molded body and heating and press-molding the optical glass molded body in a press mold.
(2)第一の熱加工治具が溶融ガラスと濡れ性が悪い請
求項(1)記載の光学ガラス素子の製造方法。
(2) The method for manufacturing an optical glass element according to (1), wherein the first thermal processing jig has poor wettability with the molten glass.
(3)第二の熱加工治具及びプレス成形用金型が、所望
の形状および光学面に加工され、かつ溶融ガラスと濡れ
性が良く化学的に安定な薄膜で被覆された請求項(1)
記載の光学ガラス素子の製造方法。
(3) Claim (1) wherein the second heat processing jig and the press molding die are processed into a desired shape and optical surface, and are coated with a chemically stable thin film that has good wettability with the molten glass. )
A method of manufacturing the optical glass element described above.
(4)薄膜が貴金属、タングステン、タンタル、レニウ
ム、ハフニウムの単体あるいはそれらの合金である請求
項(3)記載の光学ガラス素子の製造方法。
(4) The method for manufacturing an optical glass element according to claim (3), wherein the thin film is made of a noble metal, tungsten, tantalum, rhenium, or hafnium, or an alloy thereof.
JP19506189A 1989-07-14 1989-07-26 Method for manufacturing optical glass element Expired - Fee Related JPH0645465B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP19506189A JPH0645465B2 (en) 1989-07-26 1989-07-26 Method for manufacturing optical glass element
US07/549,437 US5087279A (en) 1989-07-14 1990-07-06 Method of producing optical glass element and production apparatus using this method
EP90113470A EP0408065B1 (en) 1989-07-14 1990-07-13 Method of producing optical glass element and production apparatus using this method
DE69023286T DE69023286T2 (en) 1989-07-14 1990-07-13 Process for producing an optical glass element and apparatus for carrying out this process.
US07/789,755 US5120343A (en) 1989-07-14 1991-11-08 Apparatus for producing optical glass element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19506189A JPH0645465B2 (en) 1989-07-26 1989-07-26 Method for manufacturing optical glass element

Publications (2)

Publication Number Publication Date
JPH0360435A true JPH0360435A (en) 1991-03-15
JPH0645465B2 JPH0645465B2 (en) 1994-06-15

Family

ID=16334908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19506189A Expired - Fee Related JPH0645465B2 (en) 1989-07-14 1989-07-26 Method for manufacturing optical glass element

Country Status (1)

Country Link
JP (1) JPH0645465B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5762673A (en) * 1997-01-24 1998-06-09 Hoya Precision Inc. Method of manufacturing glass optical elements

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5762673A (en) * 1997-01-24 1998-06-09 Hoya Precision Inc. Method of manufacturing glass optical elements

Also Published As

Publication number Publication date
JPH0645465B2 (en) 1994-06-15

Similar Documents

Publication Publication Date Title
US5171347A (en) Method of manufacturing glass optical element
KR900000622B1 (en) Method for forming of optical glass element
US5087279A (en) Method of producing optical glass element and production apparatus using this method
JP4255292B2 (en) Optical element molding glass material and optical element manufacturing method
EP0378292B1 (en) Method of manufacturing glass optical element
JPH0360435A (en) Production of optical glass element
JPS61183134A (en) Die for press-forming optical glass element
JP2875621B2 (en) Method for manufacturing optical glass molded body and method and apparatus for manufacturing optical glass element
JPH0421608B2 (en)
JPH0345523A (en) Production of optical glass element and production unit therefor
JPH0489326A (en) Optical glass formed body, its production and production apparatus
JPH0745328B2 (en) Method and apparatus for manufacturing optical glass element
JPH02258640A (en) Production of optical glass element and production apparatus therefor
JP2892217B2 (en) Method and apparatus for manufacturing glass material
JPH02188433A (en) Optical glass molded body and molding method thereof and thermal processing jig utilized therefor
JPH0437614A (en) Production of optical glass element
JPH02225324A (en) Production of optical glass element and apparatus therefor
JP3110501B2 (en) Method and apparatus for manufacturing glass gob
JP3185299B2 (en) Glass lens molding die and glass lens molding device
JP4567893B2 (en) Optical element manufacturing method and optical element molding mold manufacturing method
JPH01111738A (en) Molding die for molded glass
JPH01264937A (en) Press-forming method for optical glass element
JPH0769654A (en) Forming system for optical glass element
JP3045433B2 (en) Method for manufacturing optical glass element
JPH04175228A (en) Production of optics

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees