JPH02225324A - Production of optical glass element and apparatus therefor - Google Patents

Production of optical glass element and apparatus therefor

Info

Publication number
JPH02225324A
JPH02225324A JP4762989A JP4762989A JPH02225324A JP H02225324 A JPH02225324 A JP H02225324A JP 4762989 A JP4762989 A JP 4762989A JP 4762989 A JP4762989 A JP 4762989A JP H02225324 A JPH02225324 A JP H02225324A
Authority
JP
Japan
Prior art keywords
optical glass
processing jig
optical
press
thermal processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4762989A
Other languages
Japanese (ja)
Inventor
Hideto Monju
秀人 文字
Kiyoshi Kuribayashi
清 栗林
Makoto Umetani
誠 梅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4762989A priority Critical patent/JPH02225324A/en
Priority to DE1990604103 priority patent/DE69004103T2/en
Priority to EP90300031A priority patent/EP0378292B1/en
Publication of JPH02225324A publication Critical patent/JPH02225324A/en
Priority to US07/866,265 priority patent/US5171347A/en
Priority to US07/932,228 priority patent/US5284501A/en
Pending legal-status Critical Current

Links

Landscapes

  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PURPOSE:To prevent fine bubble-like defects from occurring in a formed glass body by providing the same apparatus with a nozzle, thermal working jig and metallic mold for press forming and enabling continuous press forming in a nonoxidizing atmosphere. CONSTITUTION:Molten glass 14 discharged from the tip of a nozzle 12 provided in an apparatus kept in a nonoxidizing atmosphere is fed to a thermal working jig 16 in the same apparatus. The above-mentioned glass 14 is then thermally deformed on the jig 16 to afford a formed body 18 of optical glass, which is subsequently press formed in a metallic mold 20 for press forming in the aforementioned same apparatus to provide optical glass elements 22.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、レンズやプリズム等の高精度な光学ガラス素
子および、前記光学ガラス素子のリヒートプレス成形用
素材の光学ガラス成形体等の光学ガラス素子の製造方法
並びにその方法に用いる製造装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to optical glass elements such as high-precision optical glass elements such as lenses and prisms, and optical glass molded bodies of materials for reheat press molding of optical glass elements. The present invention relates to a manufacturing method and a manufacturing device used in the method.

従来の技術 近年、光学ガラスレンズは光学機器のレンズ構成の簡略
化とレンズ部分の軽量化の両方を同時に達成しうる非球
面化の方向にある。この非球面レンズの製造にあたって
は、従来の光学レンズの製造方法である研磨法では、加
工および量産化が困難であり、金型を用いた成形法が有
望視されている。
2. Description of the Related Art In recent years, there has been a trend toward aspheric optical glass lenses, which can simultaneously simplify the lens structure of optical equipment and reduce the weight of the lens portion. In manufacturing this aspherical lens, processing and mass production are difficult using the polishing method, which is a conventional optical lens manufacturing method, and a molding method using a mold is considered to be promising.

この金型を用いた成形法というのは、予め所望の面品質
および面精度に仕上げた金型上に水酸化アルミニウム、
炭酸マグネシウム、カーボン等の離型剤を塗布あるいは
被覆した状態で、光学ガラスの塊状物を加熱成形するか
、あるいは溶融状態の光学ガラスの塊状物を加熱成形を
行う方法である。(例えば、特公昭54−60312号
公報)発明が解決しようとする課題 非球面レンズ、プリズム等の光学ガラス素子の場合、欠
陥あるいは離型剤の付着のない表面、面粗度、および面
精度であることが要求されるため、光学ガラス素子およ
び前記光学ガラス素子のリヒートプレス成形用素材の光
学ガラス成形体は非常に高価なものになっていた。
The molding method using this mold involves placing aluminum hydroxide on a mold that has been finished to the desired surface quality and precision in advance.
This is a method in which a lump of optical glass is heat-molded in a state in which a mold release agent such as magnesium carbonate or carbon is coated or coated, or a lump of optical glass in a molten state is heat-molded. (For example, Japanese Patent Publication No. 54-60312) Problems to be Solved by the Invention In the case of optical glass elements such as aspherical lenses and prisms, the surface, surface roughness, and surface precision are free of defects or adhesion of mold release agents. As a result, optical glass elements and optical glass molded bodies, which are raw materials for reheat press molding of optical glass elements, have become extremely expensive.

すなわち光学ガラス成形体の表面に気泡あるいは傷等の
欠陥がない状態(例えば表面粗さRMSで0.005ミ
クロン以下の鏡面状態)にするために、研磨またはエツ
チング処理を施す必要があり、光学ガラス成形体が高価
なものになっており、低コストで高精度な光学ガラス素
子が製造できる方法の開発が強く望まれていた。
In other words, in order to make the surface of the optical glass molded object free from defects such as bubbles and scratches (for example, a mirror-like state with a surface roughness of 0.005 microns or less in RMS), it is necessary to perform a polishing or etching process. Molded objects have become expensive, and there has been a strong desire to develop a method that can produce high-precision optical glass elements at low cost.

課題を解決するための手段 本発明は前記課題を解決するために、ノズル先端から流
出した溶融ガラスを非酸化性雰囲気に保持したままで熱
加工治具に供給する工程、前記供給工程から連続的に非
酸化性雰囲気中で熱加工治具の光学面上で熱変形させる
工程、熱変形させた光学ガラス成形体をプレス成形用金
型でプレス成形する工程を含んだ光学ガラス素子の製造
方法、並びに該方法に用いる熱加工治具に溶融ガラスを
供給するノズルと、溶融ガラスを熱変形させる熱加工治
具と、熱変形させた光学ガラス成形体をプレス成形する
プレス成形用金型とを、非酸化性雰囲気に保持した同一
装置内に設けた光学ガラス素子の製造装置を提供するも
のである。
Means for Solving the Problems In order to solve the problems described above, the present invention provides a step of supplying the molten glass flowing out from the nozzle tip to a thermal processing jig while being maintained in a non-oxidizing atmosphere, and a step of continuously supplying the molten glass from the supply step. A method for producing an optical glass element, comprising the steps of: thermally deforming it on the optical surface of a thermal processing jig in a non-oxidizing atmosphere; and press-molding the thermally deformed optical glass molded body using a press molding die. Also, a nozzle for supplying molten glass to a thermal processing jig used in the method, a thermal processing jig for thermally deforming the molten glass, and a press molding die for press-molding the thermally deformed optical glass molded body. The present invention provides an apparatus for manufacturing optical glass elements, which is provided within the same apparatus maintained in a non-oxidizing atmosphere.

熱加工治具及びプレス成形用金型に被覆する薄膜は、非
酸化性雰囲気中で光学ガラスと反応あるいは融着しない
貴金属、タングステン、タンタル、レニウム、ハフニウ
ムの単体あるいはそれらの合金であることが望ましい。
The thin film coated on the heat processing jig and press mold is preferably made of noble metals, tungsten, tantalum, rhenium, hafnium, or alloys thereof, which do not react or fuse with optical glass in a non-oxidizing atmosphere. .

作用 従来、大気中でノズル先端から溶融ガラスを流出させる
と、熱変形させた光学ガラス成形体には微小を気泡状の
欠陥が発生しやすかった。この現象を鋭意検討した結果
、溶融ガラスを大気中でノズル先端から流出させた場合
、溶融ガラスが熱加工治具に供給させる間に溶融ガラス
表面は急速に冷却され、溶融ガラスと強固に結合する大
気中の水分や酸素等が溶融ガラス表面に吸着する。この
ような吸着物が熱加工治具に接した時に気体として膨張
するために、光学ガラス成形体には微小な気泡状の欠陥
が発生するからだと考えられる。
Function Conventionally, when molten glass flows out from the tip of a nozzle in the atmosphere, microscopic bubble-like defects are likely to occur in the thermally deformed optical glass molded body. As a result of extensive research into this phenomenon, we found that when molten glass flows out from the nozzle tip in the atmosphere, the surface of the molten glass is rapidly cooled while being fed to the heat processing jig, and is firmly bonded to the molten glass. Moisture, oxygen, etc. in the atmosphere are adsorbed to the surface of the molten glass. It is thought that this is because such adsorbed matter expands as a gas when it comes into contact with a thermal processing jig, causing minute bubble-like defects in the optical glass molded body.

この問題を解決するためにノズル先端から流出した溶融
ガラスを非酸化性雰囲気に保持したままで熱加工治具に
供給し、その後連続的に非酸化性雰囲気中で熱加工治具
の光学面上で熱変形させ、さらに熱変形させた光学ガラ
ス成形体をプレス成形用金型でプレス成形する製造方法
を考案した。
To solve this problem, the molten glass flowing out from the nozzle tip is kept in a non-oxidizing atmosphere while being supplied to the thermal processing jig, and then continuously placed on the optical surface of the thermal processing jig in the non-oxidizing atmosphere. We devised a manufacturing method in which the optical glass molded body was thermally deformed using a press-molding mold.

この製造方法により、溶融ガラスと強固に結合する大気
中の水分や酸素等の吸着が防止させ、熱変形時の光学ガ
ラス成形体への微小な気泡状の欠陥の発生を除くことが
できる。
This manufacturing method prevents the adsorption of moisture, oxygen, etc. in the atmosphere that is strongly bonded to the molten glass, and eliminates the generation of minute bubble-like defects in the optical glass molded body during thermal deformation.

本発明において、光学ガラス成形体に微小な気泡状の欠
陥が発生しにくい非酸化性雰囲気は、窒素、アルゴン、
ヘリウム等の不活性ガス雰囲気、およびこれらの不活性
ガス雰囲気に水素、あるいは−酸化炭素、二酸化炭素の
炭素酸化物、メタン、エタン、エチレン、トルエン等の
炭化水素類、トリクロロエチレン、トリクロルトリフル
オリエタン等のハロゲン化炭化水素類、エチレングリコ
ール、グリセリン等のアルコール類、F−113、F−
11等のフルオロカーボン類を適宜混合したものである
In the present invention, the non-oxidizing atmosphere in which minute bubble-like defects are less likely to occur in the optical glass molded article is nitrogen, argon,
Inert gas atmosphere such as helium, and in these inert gas atmospheres, hydrogen, carbon oxide, carbon oxides of carbon dioxide, hydrocarbons such as methane, ethane, ethylene, toluene, trichloroethylene, trichlorotrifluoriethane, etc. halogenated hydrocarbons, alcohols such as ethylene glycol and glycerin, F-113, F-
It is a mixture of fluorocarbons such as No. 11 as appropriate.

これらの雰囲気は、光学ガラス組成、熱加工冶具おおよ
びプレス成形用金型に被覆する薄膜組成、熱変形の温度
と時間、あるいは光学ガラス成形体の形状等の条件によ
って適宜選択する。
These atmospheres are appropriately selected depending on conditions such as the composition of the optical glass, the composition of the thin film coated on the thermal processing jig and press mold, the temperature and time of thermal deformation, and the shape of the optical glass molded body.

このように化学的に安定な薄膜で被覆された熱加工治具
の光学面上でガラス塊を熱変形させると、光学ガラス成
形体の自由表面だけでなく、熱加工治具の光学面の転写
面においても微小な気泡状の欠陥が発生していない光学
ガラス成形体を得ることができる。
When the glass gob is thermally deformed on the optical surface of the thermal processing jig coated with a chemically stable thin film, not only the free surface of the optical glass molded object but also the optical surface of the thermal processing jig is transferred. It is possible to obtain an optical glass molded article that does not have minute bubble-like defects even on its surface.

実施例 以下、本発明の一実施例について 図面を用いて詳細に
説明する。
EXAMPLE Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

〈実施例1〉 第1図は本発明に用いた熱加工治具の断面図である。熱
加工治具の母材3として超硬合金(WC−5TiC−8
Co)を用い、曲率半径が20論の凹形の光学面lを形
成した。この光学面1をさらに超微細なダイヤモンド粉
末を用いてラッピングし、約1時間で表面の表面粗さ(
RMS)が約25人の鏡面にした。鏡面となった熱加工
治具表面に、スパッタ法で白金−イリジウム−オスミウ
ム合金(PL−1r−Os)の薄膜2を被覆して光学ガ
ラス成形体の熱加工治具16を作製した。また熱加工治
具16と同様の方法で、曲率半径が200 mの凹形の
光学面を有したプレス成形用金型を作製した。
<Example 1> FIG. 1 is a sectional view of a thermal processing jig used in the present invention. Cemented carbide (WC-5TiC-8
A concave optical surface l having a radius of curvature of 20 decibels was formed using Co. This optical surface 1 is further lapped using ultra-fine diamond powder, and the surface roughness (
RMS) made a mirror surface of about 25 people. The mirror-finished surface of the thermal processing jig was coated with a thin film 2 of platinum-iridium-osmium alloy (PL-1r-Os) by sputtering to produce a thermal processing jig 16 for an optical glass molded body. In addition, a press molding die having a concave optical surface with a radius of curvature of 200 m was manufactured in the same manner as the thermal processing jig 16.

溶融ガラス14は、シリカ(S i Ox ) 30重
量パーセント、酸化バリウム(Bad)50重量パーセ
ント、ホウ酸(B、Os )15重量パーセント、残部
が微量成分からなるホウケイ酸バリウムガラスを用いた
。第2図のように、ノズル12は雰囲気コントロールさ
れた成形機内に保持され、ガラス溶融炉10で1200
°Cで溶融し、ノズル温度800°Cに保ったノズル1
2から溶融ガラス約3グラムを上記の熱加工治具16に
供給した。成形機内は窒素ガス2゜リッター7分、水素
ガス2リツタ一/分の割合で混合した雰囲気に保持した
。熱加工治具16は予め640°Cに加熱しておき、第
2図のように溶融ガラス14を熱加工治具16に載せて
10分間熱変形させたあと、コンベア21で搬送し、プ
レス成形用金型2゜を取り付けたプレスシリンダーエ9
でプレス成形した。プレス成形は金型温度580″C1
成形時間2分、圧力30kg/cdで行った。プレス成
形後直ちに徐冷炉に搬送して徐冷し、300°Cになっ
てから取り出し口23から取り出し、光学ガラス素子2
2を得た。
The molten glass 14 used was barium borosilicate glass containing 30% by weight of silica (S i Ox ), 50% by weight of barium oxide (Bad), 15% by weight of boric acid (B, Os 2 ), and the remainder being trace components. As shown in FIG. 2, the nozzle 12 is held in an atmosphere-controlled molding machine, and the glass melting furnace
Nozzle 1 melted at °C and maintained at nozzle temperature 800 °C
Approximately 3 grams of molten glass from No. 2 was supplied to the thermal processing jig 16 described above. The inside of the molding machine was maintained in an atmosphere in which nitrogen gas was mixed at a rate of 2 liters per minute and 2 liters per minute of hydrogen gas. The heat processing jig 16 is preheated to 640°C, and as shown in Fig. 2, the molten glass 14 is placed on the heat processing jig 16 and thermally deformed for 10 minutes, then transported by the conveyor 21 and press-formed. Press cylinder E9 with the mold 2゜ attached
Press molded. For press molding, mold temperature is 580″C1
The molding time was 2 minutes and the pressure was 30 kg/cd. Immediately after the press molding, the optical glass element 2 is transferred to an annealing furnace and slowly cooled, and after reaching 300°C, it is taken out from the outlet 23.
I got 2.

このような工程によって作製した光学ガラス素子22は
、プレス成形面の表面粗さ(RMS)が約20人の光学
的鏡面であり、気泡、傷、あるいは剥離跡といった欠陥
は認められず、面精度もニュートンリング2本以内、ア
メ5分の1本以内であり、その光学性能は極めて優れて
いた。
The optical glass element 22 manufactured by such a process has a press-molded surface with a surface roughness (RMS) of about 20 optical mirror surfaces, no defects such as bubbles, scratches, or peeling marks, and has a high surface accuracy. The optical performance was within two Newton rings and within one-fifth of an American ring, and its optical performance was extremely excellent.

〈実施例2〉 熱加工治具の母材3としてオーステナイト鋼(SUS3
16)を用いて曲率半径が45mmの凹形の光学面1を
形成した。この光学面1をさらに超微細なダイヤモンド
粉末を用いてラッピングし、約1時間で表面の表面粗さ
(RMS)が約30人の鏡面にした。鏡面となった熱加
工治具表面に、スパッタ法でロジウム−金−タングステ
ン合金(Rh−Au−W)の薄膜2を被覆して光学ガラ
ス成形体の熱加工治具を作製した。また熱加工治具16
と同様の方法で、曲率半径が150avnの凹形の光学
・面を有したプレス成形用金型を作製した。
<Example 2> Austenitic steel (SUS3) was used as the base material 3 of the heat processing jig.
16) was used to form a concave optical surface 1 with a radius of curvature of 45 mm. This optical surface 1 was further lapped using ultrafine diamond powder, and the surface roughness (RMS) was made into a mirror surface of about 30 in about 1 hour. A thin film 2 of rhodium-gold-tungsten alloy (Rh-Au-W) was coated on the mirror-finished surface of the heat-processing jig by sputtering to produce a heat-processing jig for an optical glass molded body. Also, the heat processing jig 16
A press molding die having a concave optical surface with a radius of curvature of 150 avn was produced in the same manner as above.

溶融ガラス14は、ジルコニア(ZrOz)8重量パー
セント、酸化ランタン(Laz owl )30重量パ
ーセント、ホウ酸(B20:l ) 42iklt/”
−セント、酸化カルシウム(Cab)10重量パーセン
ト、残部が微量成分からなるランタン系ガラスを用いた
The molten glass 14 contains 8 percent by weight of zirconia (ZrOz), 30 percent by weight of lanthanum oxide (Lazowl), and 42 iklt/'' of boric acid (B20:l).
A lanthanum-based glass consisting of 10% by weight of calcium oxide (Cab) and the balance being trace components was used.

第2図のように、このガラスを1400°Cで溶融した
あと、ノズル12は雰囲気コントロールされた成形機内
に保持し、ノズル温度950°Cで4グラムの溶融ガラ
ス14を雰囲気コントロールした成形機内に保持した熱
加工治具16に滴下した。成形機内は窒素ガスをキャリ
アーガスにしたトリクロルトリフルオルエタン(Cm 
C1s Fz )蒸気を導入したハロゲン化炭化水素雰
囲気であった。熱加工治具16は予め780°Cに加熱
しておき、第2図のように溶融ガラス14を熱加工治具
16に載せて10分間熱変形させたあと、コンベア21
で搬送し、プレス成形用金型20を取り付けたプレスシ
リンダー19でプレス成形した。プレス成形は金型温度
680℃、成形時間2分、圧力30kg/c+1で行っ
た。プレス成形後直ちに徐冷炉に搬送して徐冷し、40
0°Cになってから取り出し口23から取り出し、光学
ガラス素子22を得た。
As shown in Fig. 2, after melting this glass at 1400°C, the nozzle 12 is held in an atmosphere-controlled molding machine, and at a nozzle temperature of 950°C, 4 grams of molten glass 14 is placed in the atmosphere-controlled molding machine. It was dripped onto the held thermal processing jig 16. Inside the molding machine, trichlorotrifluoroethane (Cm
It was a halogenated hydrocarbon atmosphere into which C1s Fz) steam was introduced. The heat processing jig 16 is heated to 780°C in advance, and the molten glass 14 is placed on the heat processing jig 16 as shown in FIG.
and press-molded using a press cylinder 19 equipped with a press-molding die 20. Press molding was performed at a mold temperature of 680° C., a molding time of 2 minutes, and a pressure of 30 kg/c+1. Immediately after press forming, it is transported to an annealing furnace for annealing, and
After the temperature reached 0°C, it was taken out from the takeout port 23 to obtain an optical glass element 22.

このような工程によって作製した光学ガラス素子22は
、プレス成形面の表面粗さ(RMS)が約20人の光学
的鏡面であり、気泡、傷、あるいは剥離跡といった欠陥
は認められず、面精度もニュートンリング2本以内、ア
メ5分の1以内であり、その光学性能は極めて優れてい
た。
The optical glass element 22 manufactured by such a process has a press-molded surface with a surface roughness (RMS) of about 20 optical mirror surfaces, no defects such as bubbles, scratches, or peeling marks, and has a high surface accuracy. The optical performance was within two Newton rings and within one-fifth of American, and its optical performance was extremely excellent.

〈実施例3〉 熱加工治具の母材3としてサーメット(TtC−10M
o−9Ni)を用いて曲率半径が200+nl11の凹
形の光学面1を形成した。この光学面1をさらに超微細
なダイヤモンド粉末を用いてラッピングし、約1時間で
表面の表面粗さ(RMS)が約30人の鏡面にした。鏡
面となった熱加工治具表面に、スパッタ法で白金−タン
タルーレニウム合金(Pt−Ta−Re)の薄膜2を被
覆して光学ガラス成形体の熱加工治具を作製した。また
熱加工治具16と同様の方法で、曲率半径が500閣の
凹形の光学面を有したプレス成形用金型を作製した。
<Example 3> Cermet (TtC-10M
A concave optical surface 1 with a radius of curvature of 200+nl11 was formed using a material (concave optical surface 1). This optical surface 1 was further lapped using ultrafine diamond powder, and the surface roughness (RMS) was made into a mirror surface of about 30 in about 1 hour. A thin film 2 of platinum-tantalurenium alloy (Pt-Ta-Re) was coated on the mirror-finished surface of the heat-processing jig by sputtering to produce a heat-processing jig for an optical glass molded body. In addition, a press molding die having a concave optical surface with a radius of curvature of 500 degrees was produced in the same manner as the thermal processing jig 16.

溶融ガラス14は、シリカcsio□)65重量パーセ
ント、酸化カリウム(K、O)9重量パーセント、ホウ
酸CBt Os )10重量パーセント、酸化ナトリウ
ム(Na、O)重量パーセント、残部が微量成分からな
るホウケイ酸ガラスを用いた。
The molten glass 14 is composed of silica csio□) 65 weight percent, potassium oxide (K, O) 9 weight percent, boric acid CBtOs) 10 weight percent, sodium oxide (Na, O) weight percent, and the balance consisting of trace components. Acid glass was used.

このガラス1350°Cで溶融したあと、第2図のよう
にノズル温度920℃で3グラムの熔融ガラス14を雰
囲気コントロールした成形機内に保持した熱加工治具1
6に滴下した。成形機内はアルゴンガス20リツタ一/
分、エチレン(C,H4)1リツタ一/分の討合で混合
した炭化水素雰囲気であった。
After melting this glass at 1350°C, a thermal processing jig 1 holds 3 grams of molten glass 14 in a molding machine with a controlled atmosphere at a nozzle temperature of 920°C as shown in Figure 2.
6. Inside the molding machine, there is 20 liters of argon gas.
The atmosphere was a hydrocarbon atmosphere mixed with 1 liter of ethylene (C,H4) per minute.

熱加工治具16は予め780℃に加熱しておき、第2図
のように溶融ガラス14を熱加工治具16に載せて5分
間熱変形させたあと、コンベア21で搬送し、プレス成
形用金型20を取り付けたプレスシリンダー19でプレ
ス成形した。プレス成形は金型温度680°C1成形時
間1分、圧力80kg/cjで行った。
The heat processing jig 16 is preheated to 780°C, and as shown in Fig. 2, the molten glass 14 is placed on the heat processing jig 16 and thermally deformed for 5 minutes, and then conveyed by the conveyor 21 to be used for press forming. Press molding was carried out using a press cylinder 19 equipped with a mold 20. Press molding was performed at a mold temperature of 680° C., a molding time of 1 minute, and a pressure of 80 kg/cj.

プレス成形後直ちに徐冷炉に搬送して徐冷し、380℃
になってから取り出し口23から取り出し、光学ガラス
素子22を得た。
Immediately after press molding, it is transported to a slow cooling furnace and slowly cooled to 380°C.
After this point, the optical glass element 22 was taken out from the takeout port 23.

このような工程によって作製した光学ガラス素子22は
、プレス成形面の表面粗さ(RMS)が約20人の光学
的鏡面であり、気泡、傷、あるいは剥離跡といった欠陥
は認められず、面精度もニュートンリング2本以内、ア
メ5分の1本以内であり、その光学性能は極めて優れて
いた。
The optical glass element 22 manufactured by such a process has a press-molded surface with a surface roughness (RMS) of about 20 optical mirror surfaces, no defects such as bubbles, scratches, or peeling marks, and has a high surface accuracy. The optical performance was within two Newton rings and within one-fifth of an American ring, and its optical performance was extremely excellent.

〈実施例4〉 熱加工治具の母材3としてシリコンを用いて曲率半径が
45閣の凹形の光学面1を形成した。この光学面1をさ
らに超微細なダイヤモンド粉末を用いてラッピングし、
約1時間で表面の表面粗さ(RMS)が約20人の鏡面
にした。鏡面となった熱加工治具表面に、スパッタ法で
ロジウム−金−タングステン合金(Rh−Au−W)の
薄膜2を被覆して第1図のような光学ガラス成形体の熱
加工治具16を作製した。また熱加工治具16と同様の
方法で、曲率半径が100mの凹形の光学面を有したプ
レス成形用金型を作製した。
Example 4 A concave optical surface 1 with a radius of curvature of 45 degrees was formed using silicon as the base material 3 of a thermal processing jig. This optical surface 1 is further wrapped with ultra-fine diamond powder,
In about 1 hour, the surface roughness (RMS) reached a mirror surface of about 20 people. A thin film 2 of rhodium-gold-tungsten alloy (Rh-Au-W) is coated on the mirror-finished surface of the heat processing jig by sputtering to form a heat processing jig 16 for forming an optical glass body as shown in FIG. was created. In addition, a press molding die having a concave optical surface with a radius of curvature of 100 m was produced in the same manner as the thermal processing jig 16.

光学ガラス塊3は、シリカ(Sint)52重量パーセ
ント、酸化カリウム(K、0)6重量パーセント、酸化
鉛(PbO)35重量パーセント、酸化ナトリウム(N
a、O)5重量パーセント、残部が微量成分からなる重
フリントガラスを用いた。
The optical glass lump 3 contains 52% by weight of silica (Sint), 6% by weight of potassium oxide (K,0), 35% by weight of lead oxide (PbO), and 35% by weight of sodium oxide (N
a, O) A heavy flint glass consisting of 5% by weight and the remainder consisting of trace components was used.

このガラス1250°Cで溶融したあと、第2図のよう
にノズル温度750°Cで5グラムの溶融ガラス14を
雰囲気コントロールした成形機内に保持した熱加工治具
16に滴下した。成形機内はへルウムガス20リッター
/分、二酸化炭素ガス2リツタ一/分の割合で混合した
雰囲気であった。熱加工治具16は予め610℃に加熱
しておき、第2図のように溶融ガラス14を熱加工治具
16に載せて5分間熱変形させたあと、コンベア21で
搬送し、プレス成形用金型20を取り付けたプレスシリ
ンダー19でプレス成形した。プレス成形は金型温度5
50″C1成形時間1分、圧力80)cg/cdで行っ
た。プレス成形後直ちに徐冷炉に搬送して徐冷し、38
0”Cになってから取り出し口23から取り出し、光学
ガラス素子22を得た。
After this glass was melted at 1250°C, 5 grams of molten glass 14 was dropped at a nozzle temperature of 750°C into a thermal processing jig 16 held in an atmosphere-controlled molding machine as shown in FIG. The atmosphere inside the molding machine was a mixture of 20 liters/minute of helium gas and 2 liters/minute of carbon dioxide gas. The heat processing jig 16 is preheated to 610°C, and as shown in Fig. 2, the molten glass 14 is placed on the heat processing jig 16 and thermally deformed for 5 minutes, and then conveyed by the conveyor 21 to be used for press forming. Press molding was carried out using a press cylinder 19 equipped with a mold 20. For press molding, mold temperature is 5.
50"C1 molding time was 1 minute and the pressure was 80) cg/cd. Immediately after press molding, it was transferred to an annealing furnace and slowly cooled.
After the temperature reached 0''C, it was taken out from the takeout port 23 to obtain an optical glass element 22.

このような工程によって作製した光学ガラス素子22は
、プレス成形面の表面粗さ(RMS)が約20人の光学
的鏡面であり、気泡、傷、あるいは剥離跡といった欠陥
は認められず、面精度もニュートンリング2本以内、ア
メ5分の1本以内であり、その光学性能は極めて優れて
いた。
The optical glass element 22 manufactured by such a process has a press-molded surface with a surface roughness (RMS) of about 20 optical mirror surfaces, no defects such as bubbles, scratches, or peeling marks, and has a high surface accuracy. The optical performance was within two Newton rings and within one-fifth of an American ring, and its optical performance was extremely excellent.

なお本発明の光学ガラス素子の製造方法並びに該方法に
用いる製造装置は、ノズル先端から流出した溶融ガラス
を非酸化性雰囲気に保持したままで熱加工治具に供給す
る工程、前記供給工程から連続的に非酸化性雰囲気中で
熱加工治具の光学面上で熱変形される工程、熱変形させ
た光学ガラス成形体をプレス成形用金型でプレス成形す
る工程を含んだ光学ガラス素子の製造方法、並びに該方
法に用いる熱加工治具に溶融ガラスを供給するノズルと
、溶融ガラスを熱変形させる熱加工治具と、熱変形させ
た光学ガラス成形体をプレス成形するプレス成形用金型
とを、非酸化性雰囲気に保持した同一装置内に設けた光
学ガラス素子の製造装置であることを特徴とするもので
あり、成形の雰囲気、光学ガラス組成、熱加工治具に被
覆する薄膜組成、熱変形の温度と時間、あるいは光学ガ
ラス成形体の形状等の条件は本実施例に限定されるもの
ではない。
The method for manufacturing an optical glass element of the present invention and the manufacturing apparatus used in the method include a step of supplying the molten glass flowing out from the nozzle tip to a thermal processing jig while being maintained in a non-oxidizing atmosphere, and a continuous step from the supply step. Manufacturing of an optical glass element, which includes the steps of thermally deforming it on the optical surface of a thermal processing jig in a non-oxidizing atmosphere, and press-molding the thermally deformed optical glass molded object with a press molding die. A method, a nozzle for supplying molten glass to a thermal processing jig used in the method, a thermal processing jig for thermally deforming the molten glass, and a press molding die for press forming a thermally deformed optical glass molded body. This is an optical glass element manufacturing apparatus in which the following are installed in the same apparatus maintained in a non-oxidizing atmosphere, and the molding atmosphere, optical glass composition, thin film composition coated on the thermal processing jig, Conditions such as the temperature and time of thermal deformation or the shape of the optical glass molded body are not limited to those in this example.

発明の詳細 な説明したように、本発明の光学ガラス素子の製造方法
並びに該方法に用いる製造装置は、ノズルと、熱加工治
具と、プレス成形用金型とを、非酸化性雰囲気に保持し
た同一装置内に設けることにより、ノズル先端から流出
した溶融ガラスを非酸化性雰囲気に保持したままで熱加
工治具に供給し、その後連続的に非酸化性雰囲気中で熱
加工治具の光学面上で熱変形させ、さらに熱変形させた
光学ガラス成形体をプレス成形用金型で連続的にプレス
成形することが可能になり、溶融ガラスと強固に結合す
る大気中の水分や酸素等の吸着が防止され、熱変形時の
光学ガラス成形体への微小な気泡状の欠陥の発生を除く
ことができる。
As described in detail of the invention, the method of manufacturing an optical glass element of the present invention and the manufacturing apparatus used in the method include maintaining a nozzle, a heat processing jig, and a press molding die in a non-oxidizing atmosphere. The molten glass flowing out from the nozzle tip is supplied to the thermal processing jig while being maintained in a non-oxidizing atmosphere, and then the optical processing of the thermal processing jig is continuously performed in the non-oxidizing atmosphere. It is now possible to thermally deform the optical glass molded body on the surface and then continuously press-form the thermally deformed optical glass molded body using a press-forming mold. Adsorption is prevented, and the occurrence of minute bubble-like defects in the optical glass molded body during thermal deformation can be eliminated.

すなわち、本発明によって高精度な光学ガラス素子の大
量生産が可能になり、生産性の向上と製造コストの低減
に著しい効果がある。
That is, the present invention makes it possible to mass-produce high-precision optical glass elements, and has a significant effect on improving productivity and reducing manufacturing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は熱加工治具の断面図、第2図は本発明の一実施
例の光学ガラス素子の製造装置を示す断面図である。 1・・・・・・光学面、2・・・・・・薄膜、3・・・
・・・母材。 代理人の氏名 弁理士 粟野重孝 はか1名第1図 /光学面 3母材
FIG. 1 is a sectional view of a thermal processing jig, and FIG. 2 is a sectional view showing an apparatus for manufacturing an optical glass element according to an embodiment of the present invention. 1... Optical surface, 2... Thin film, 3...
...Base material. Name of agent: Patent attorney Shigetaka Awano (1 person) Figure 1/Optical surface 3 base material

Claims (4)

【特許請求の範囲】[Claims] (1)ノズル先端から流出した溶融ガラスを非酸化性雰
囲気に保持したままで熱加工治具に供給する工程と、前
記供給工程から連続的に非酸化性雰囲気中で熱加工治具
の光学面上で熱変形させる工程と、熱変形させた光学ガ
ラス成形体をプレス成形用金型でプレス成形する工程と
を含んだ光学ガラス素子の製造方法。
(1) A step in which the molten glass flowing out from the nozzle tip is supplied to a thermal processing jig while being maintained in a non-oxidizing atmosphere, and an optical surface of the thermal processing jig is continuously maintained in a non-oxidizing atmosphere from the supply step. A method for producing an optical glass element, comprising the steps of thermally deforming the above, and press-molding the thermally-deformed optical glass molded body using a press mold.
(2)熱加工治具及びプレス成形用金型が化学的に安定
な薄膜で被覆され、かつ所望の形状および光学面を有し
た請求項(1)に記載の光学ガラス素子の製造方法。
(2) The method for manufacturing an optical glass element according to claim (1), wherein the thermal processing jig and the press molding die are coated with a chemically stable thin film and have a desired shape and optical surface.
(3)化学的に安定な薄膜が貴金属、タングステン、タ
ンタル、レニウム、ハフニウムの単体あるいはそれらの
合金である請求項(2)に記載の光学ガラス素子の製造
方法。
(3) The method for manufacturing an optical glass element according to claim (2), wherein the chemically stable thin film is a noble metal, tungsten, tantalum, rhenium, hafnium, or an alloy thereof.
(4)熱加工治具に溶融ガラスを供給するノズルと、溶
融ガラスを熱変形させる熱加工治具と、熱変形させた光
学ガラス成形体をプレス成形するプレス成形用金型とを
、非酸化性雰囲気に保持した同一装置内に設けた光学ガ
ラス素子の製造装置。
(4) A nozzle that supplies molten glass to a thermal processing jig, a thermal processing jig that thermally deforms the molten glass, and a press molding die that press-forms the thermally deformed optical glass molded body in a non-oxidizing manner. Optical glass element manufacturing equipment installed in the same equipment maintained in a neutral atmosphere.
JP4762989A 1989-01-13 1989-02-28 Production of optical glass element and apparatus therefor Pending JPH02225324A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP4762989A JPH02225324A (en) 1989-02-28 1989-02-28 Production of optical glass element and apparatus therefor
DE1990604103 DE69004103T2 (en) 1989-01-13 1990-01-03 Process for the production of an optical object made of glass.
EP90300031A EP0378292B1 (en) 1989-01-13 1990-01-03 Method of manufacturing glass optical element
US07/866,265 US5171347A (en) 1989-01-13 1992-04-10 Method of manufacturing glass optical element
US07/932,228 US5284501A (en) 1989-01-13 1992-08-19 Method of manufacturing glass optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4762989A JPH02225324A (en) 1989-02-28 1989-02-28 Production of optical glass element and apparatus therefor

Publications (1)

Publication Number Publication Date
JPH02225324A true JPH02225324A (en) 1990-09-07

Family

ID=12780514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4762989A Pending JPH02225324A (en) 1989-01-13 1989-02-28 Production of optical glass element and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH02225324A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226220A (en) * 2001-01-26 2002-08-14 Matsushita Electric Ind Co Ltd Optic manufacturing method and method for manufacturing mold for molding optic

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59152229A (en) * 1983-02-16 1984-08-30 Canon Inc Apparatus for forming optical element
JPS62270423A (en) * 1986-05-16 1987-11-24 Minolta Camera Co Ltd Forming of glass lens
JPS62292638A (en) * 1986-06-11 1987-12-19 Matsushita Electric Ind Co Ltd Production of optical glass element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59152229A (en) * 1983-02-16 1984-08-30 Canon Inc Apparatus for forming optical element
JPS62270423A (en) * 1986-05-16 1987-11-24 Minolta Camera Co Ltd Forming of glass lens
JPS62292638A (en) * 1986-06-11 1987-12-19 Matsushita Electric Ind Co Ltd Production of optical glass element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226220A (en) * 2001-01-26 2002-08-14 Matsushita Electric Ind Co Ltd Optic manufacturing method and method for manufacturing mold for molding optic
JP4567893B2 (en) * 2001-01-26 2010-10-20 パナソニック株式会社 Optical element manufacturing method and optical element molding mold manufacturing method

Similar Documents

Publication Publication Date Title
US5284501A (en) Method of manufacturing glass optical element
KR900000622B1 (en) Method for forming of optical glass element
US5087279A (en) Method of producing optical glass element and production apparatus using this method
JP4255292B2 (en) Optical element molding glass material and optical element manufacturing method
EP0378292B1 (en) Method of manufacturing glass optical element
JPS61183134A (en) Die for press-forming optical glass element
JPH02225324A (en) Production of optical glass element and apparatus therefor
JPH0421608B2 (en)
JPH0477320A (en) Method and device for producing optical glass element
JP2875621B2 (en) Method for manufacturing optical glass molded body and method and apparatus for manufacturing optical glass element
JPH02188433A (en) Optical glass molded body and molding method thereof and thermal processing jig utilized therefor
JPH0360435A (en) Production of optical glass element
JPH0345523A (en) Production of optical glass element and production unit therefor
JPH0489326A (en) Optical glass formed body, its production and production apparatus
JPH02258640A (en) Production of optical glass element and production apparatus therefor
JPH0437614A (en) Production of optical glass element
JP2892217B2 (en) Method and apparatus for manufacturing glass material
JP4567893B2 (en) Optical element manufacturing method and optical element molding mold manufacturing method
JPH0572336B2 (en)
JPS62292637A (en) Production of optical glass element
JPH01264937A (en) Press-forming method for optical glass element
JPH0717724A (en) Method and apparatus for producing glass gob
JPH0352415B2 (en)
JPH01111739A (en) Molding die for molded glass
JPH02243522A (en) Mold for forming optical element