JPH04228552A - Production of aluminum alloy sheet for forming - Google Patents

Production of aluminum alloy sheet for forming

Info

Publication number
JPH04228552A
JPH04228552A JP24662190A JP24662190A JPH04228552A JP H04228552 A JPH04228552 A JP H04228552A JP 24662190 A JP24662190 A JP 24662190A JP 24662190 A JP24662190 A JP 24662190A JP H04228552 A JPH04228552 A JP H04228552A
Authority
JP
Japan
Prior art keywords
final
rolling
cold rolling
cold
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24662190A
Other languages
Japanese (ja)
Other versions
JPH06104883B2 (en
Inventor
Toshio Komatsubara
俊雄 小松原
Mamoru Matsuo
守 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP24662190A priority Critical patent/JPH06104883B2/en
Publication of JPH04228552A publication Critical patent/JPH04228552A/en
Publication of JPH06104883B2 publication Critical patent/JPH06104883B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PURPOSE:To improve strength, formability, and external appearance and quality characteristics by specifying the conditions at the final process annealing among process annealings at the time of cold-rolling an Al-Mg-Si alloy sheet and also specifying respective cold drafts at cold rollings before and after the final process annealing. CONSTITUTION:A sheet of Al alloy of Al-Mg-Si type belonging to JIS No.600 type is cold-rolled, while process-annealed between the cold rolling stages. At this time, the ratio between draft A at the cold rolling before the final process annealing and draft B at the final cold rolling after the final process annealing, B/A, is regulated to >=0.8. Moreover, draft of finish cold rolling is regulated to >=30% and continuous annealing is done at 300-580 deg.C to exert process annealing, and further, after the final cold rolling, solution treatment is performed.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は各種陸運車両用の材料、例えば自動車用ボデ
ィシートの材料、あるいは各種電気部品、機械部品用材
料、例えばVTRのシャーシ等に使用される成形加工用
アルミニウム合金板の製造方法に関し、特に強度、成形
性に優れると同時に、フローライン等の外観品質特性に
優れたアルミニウム合金板を製造する方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention is applicable to moldings used for materials for various land transportation vehicles, such as materials for automobile body sheets, and materials for various electrical and mechanical parts, such as chassis for VTRs. The present invention relates to a method of manufacturing an aluminum alloy sheet for processing, and particularly to a method of manufacturing an aluminum alloy sheet that has excellent strength and formability, as well as excellent appearance quality characteristics such as flow lines.

従来の技術 最近では、主として軽量化を主眼として、自動車用ボデ
ィシートやその他各種自動車部品、あるいは各種電気機
械部品等においてアルミニウム合金が多用されるように
なっている。
BACKGROUND OF THE INVENTION Recently, aluminum alloys have come into widespread use in automobile body sheets, various other automobile parts, and various electromechanical parts, mainly with the aim of reducing weight.

ところで従来、各種の成形加工の用途に供されるアルミ
ニウム合金としては、A■−Mg系のJIS 5182
合金O材や5052合金O材、あるいはA■−Mg−S
i系のAA 6009合金T4処理材、6010合金T
4処理材などが最も広く使用されていた。
By the way, conventionally, as aluminum alloys used for various forming processes, A■-Mg series JIS 5182
Alloy O material, 5052 alloy O material, or A■-Mg-S
i-based AA 6009 alloy T4 treated material, 6010 alloy T
4 treated materials were the most widely used.

発明が解決しようとする課題 前述のような成形加工に用いられる従来のアルミニウム
合金のうち、5182合金O材や5052合金O材など
のA■−Mg系合金軟質材は、成形加工後の表面にリュ
ーダースマークが生じ易いところから、特に外観品質が
優れていることが要求される自動車のパネル類等には好
ましくないとされている。
Problems to be Solved by the Invention Among the conventional aluminum alloys used in the above-mentioned forming process, A■-Mg based alloy soft materials such as 5182 Alloy O material and 5052 Alloy O material have a tendency to form on the surface after forming process. Because Lüders marks are easily generated, it is considered undesirable for automobile panels, etc., which require particularly excellent appearance quality.

一方、6009合金T4処理材や6010合金T4処理
材などのA■−Mg−Si系合金は成形加工によるリュ
ーダースマークの発生はなく、また鋼板と同程度の強度
を有するとともに焼付塗装後の強度も鋼板と同程度のも
のが得られているが、その反面、成形加工後にリジング
と称されるフローラインが生じるために外観品質を損な
い、さらには結晶粒サイズが粗いため、強加工部には肌
荒れが生じやすい等の欠点がある。
On the other hand, A■-Mg-Si alloys such as 6009 alloy T4 treated material and 6010 alloy T4 treated material do not produce Lüders marks due to forming processing, and have strength comparable to that of steel sheets, as well as strength after baking coating. However, on the other hand, a flow line called ridging occurs after the forming process, which impairs the appearance quality, and furthermore, the grain size is coarse, so there is a problem in heavily machined parts. It has drawbacks such as easy skin irritation.

この発明は以上の事情を背景としてなされたものであっ
て、陸運車両や電気機械部品等の用途に供される成形加
工用アルミニウム合金板として、従来合金と同等以上の
強度を有すると同時に、フローラインや強加工部の肌荒
れなどが発生しないような特性、すなわち優れた外観品
質特性を有し、しかも優れた成形加工性を有するアルミ
ニウム合金板を得ることができる方法を提供することを
目的とするものである。
This invention was made against the background of the above-mentioned circumstances, and is suitable for use as a forming aluminum alloy plate for applications such as land transportation vehicles and electromechanical parts. The purpose of the present invention is to provide a method capable of obtaining an aluminum alloy plate having characteristics that do not cause surface roughness in lines or heavily processed parts, that is, excellent appearance quality characteristics, and also having excellent formability. It is something.

課題を解決するための手段 前述のような課題を解決するため、この発明の成形加工
用アルミニウム合金板の製造方法においては、合金とし
てはJIS 6000番系のA■−Mg−Si系アルミ
ニウム合金を用い、かつ冷間圧延工程に1回または2回
以上の中間焼鈍を挟むとともに、その中間焼鈍のうちの
最終の中間焼鈍の条件と、最終の中間焼鈍を挟む前後の
冷間圧延の圧延率を厳密に規定することとした。
Means for Solving the Problems In order to solve the above-mentioned problems, in the method of manufacturing an aluminum alloy plate for forming according to the present invention, a JIS 6000 series A■-Mg-Si aluminum alloy is used as the alloy. In addition, the cold rolling process includes one or more intermediate annealing, and the conditions of the final intermediate annealing and the rolling rate of the cold rolling before and after the final intermediate annealing are It was decided to stipulate it strictly.

すなわちこの発明の成形加工用アルミニウム合金板の製
造方法は、JIS 6000番系に属するA■−Mg−
Si系のアルミニウム合金からなる連続鋳造薄板もしく
は熱間圧延板に対して、1回または2回以上の中間焼鈍
を挟んで冷間圧延を行なうにあたり、最終の中間焼鈍の
前の冷間圧延における圧延率(A)と最終の中間焼鈍後
の最終冷間圧延における圧延率(B)との比(B/A)
が0.8以上となりかつ最終冷間圧延における圧延率(
B)が30%以上となるように冷間圧延を施し、かつ前
記最終の中間焼鈍を、連続焼鈍により300〜580℃
の範囲内の温度に加熱して保持なしまたは5分以内の保
持によって行ない、さらに最終冷間圧延の後に溶体化処
理を行なうことを特徴とするものである。
That is, the method for manufacturing an aluminum alloy plate for forming according to the present invention is based on A■-Mg-
When performing cold rolling on a continuously cast thin sheet or hot rolled sheet made of Si-based aluminum alloy with one or more intermediate annealing in between, rolling in the cold rolling before the final intermediate annealing. Ratio (B/A) of rolling ratio (A) and rolling ratio (B) in final cold rolling after final intermediate annealing
is 0.8 or more and the rolling rate in the final cold rolling (
B) is cold rolled to 30% or more, and the final intermediate annealing is performed at 300 to 580°C by continuous annealing.
The rolling process is characterized by heating to a temperature within the range of 5 minutes or less, and then carrying out a solution treatment after the final cold rolling.

作用 この発明の製造方法で用いられる合金は、要はJIS 
6000番系に属するA■−Mg−Si系のアルミニウ
ム合金であればよく、その具体的成分量は特に規定しな
いが、一般にはMg0.1〜2.0wt%、Si0.5
〜2.5wt%を必須合金成分として含有し、その他必
要に応じてCu1.5wt%以下、Zn2.0wt%以
下のうち1種または2種を含有し、さらに必要に応じて
Mn0.6wt%以下、Cr0.3wt%以下、Zr0
.3wt%以下を含有し、残部A■および不可避的不純
物とすれば良い。
Function: The alloy used in the manufacturing method of this invention is basically JIS
Any A■-Mg-Si type aluminum alloy belonging to the 6000 series may be used.The specific content of the ingredients is not particularly specified, but in general, Mg0.1 to 2.0wt%, Si0.5
~2.5wt% as an essential alloy component, and if necessary, one or two of Cu1.5wt% or less, Zn2.0wt% or less, and Mn0.6wt% or less, if necessary. , Cr0.3wt% or less, Zr0
.. It is sufficient that the content is 3 wt% or less, and the remainder is A2 and unavoidable impurities.

このような望ましい成分について以下に説明する。Such desirable components will be explained below.

Mg: MgはJIS 6000番系のアルミニウム合金におい
て基本となる合金成分であり、Siと共存してMg2S
iを生成して、析出硬化により強度の向上に寄与する。
Mg: Mg is a basic alloy component in JIS 6000 series aluminum alloys, and coexists with Si to form Mg2S.
i and contributes to improving strength through precipitation hardening.

Mgが0.1wt%未満では強度向上効果が不充分であ
り、一方2.0wt%を越えれば伸び、成形性が低下す
る。したがってMgは0.1〜2.0wt%の範囲内と
することが望ましい。
If Mg is less than 0.1 wt%, the effect of improving strength is insufficient, while if it exceeds 2.0 wt%, elongation occurs and formability decreases. Therefore, it is desirable that Mg be within the range of 0.1 to 2.0 wt%.

Si: Siも6000番系のアルミニウム合金において基本と
なる合金成分である。添加されたSiの一部は金属Si
粒子としてA■合金マトリックス中に存在して、成形加
工性、特に伸びおよび曲げ性を向上させる。また他の一
部のSiはMgと共存してMg2Siを生成し、析出硬
化により強度の向上に寄与する。ここで、Si添加量は
、Mg2Si化学量論組成よりSiが充分に過剰となっ
て、金属Siを生成する状態となることが強度向上のた
めに重要であり、強度向上の観点からは、 Si(wt%)>0.6×Mg(wt%)+0.4(w
t%)を満たすことが望ましい。。なおSiの絶対量が
0.5wt%未満では、強度向上、成形加工性向上の効
果が充分に得られず、一方Si量が2.5wt%を越え
れば伸びおよび成形性が劣化するから、Si量は0.5
〜2.5wt%の範囲内とすることが好ましい。
Si: Si is also a basic alloy component in 6000 series aluminum alloys. Part of the added Si is metal Si
A■ Present as particles in the alloy matrix to improve formability, especially elongation and bendability. In addition, some other Si coexists with Mg to produce Mg2Si, which contributes to improving the strength through precipitation hardening. Here, regarding the amount of Si added, it is important for strength improvement to be in a state where Si is sufficiently excessive compared to the stoichiometric composition of Mg2Si and metal Si is generated. From the viewpoint of strength improvement, Si (wt%)>0.6×Mg(wt%)+0.4(w
t%). . Note that if the absolute amount of Si is less than 0.5 wt%, the effect of improving strength and moldability cannot be sufficiently obtained, while if the amount of Si exceeds 2.5 wt%, elongation and moldability will deteriorate. The amount is 0.5
It is preferably within the range of 2.5 wt%.

Cu、Zn: Cu、Znはいずれも強度向上に寄与する元素であり、
必要に応じていずれか一方または双方が添加される。な
おこれらのうちZnは耐食性向上にも効果があり、マト
リックスの電位を下げることによって孔食を防止するの
に寄与する。但しCuが1.5wt%を越えれば成形性
および耐食性が劣化し、またZnが2.0wt%を越え
れば耐食性が劣化するとともに、室温での経時変化によ
り成形性を低下させる。したがってCuは1.5wt%
以下、Znは2.0wt%以下の範囲内とすることが好
ましい。
Cu, Zn: Both Cu and Zn are elements that contribute to improving strength,
Either one or both may be added as necessary. Of these, Zn is also effective in improving corrosion resistance, and contributes to preventing pitting corrosion by lowering the potential of the matrix. However, if Cu exceeds 1.5 wt%, moldability and corrosion resistance will deteriorate, and if Zn exceeds 2.0 wt%, corrosion resistance will deteriorate and moldability will decrease due to changes over time at room temperature. Therefore, Cu is 1.5wt%
Hereinafter, it is preferable that Zn be within a range of 2.0 wt% or less.

Mn、Cr、Zr: これらの元素はいずれも結晶粒を微細化し、成形加工時
のフローラインの発生を低減するに寄与する元素であっ
て、必要に応じて1種または2種以上が添加される。但
しMnが0.6wt%、Crが0.3wt%、Zrが0
.3wt%を越えれば粗大な金属間化合物が生成されて
成形性が劣化する。したがってMnは0.6wt%以下
、Crは0.3wt%以下、Zrは0.3wt%以下と
することが好ましい。
Mn, Cr, Zr: All of these elements contribute to making crystal grains finer and reducing the occurrence of flow lines during molding, and one or more of these elements may be added as necessary. Ru. However, Mn is 0.6wt%, Cr is 0.3wt%, and Zr is 0.
.. If it exceeds 3 wt%, coarse intermetallic compounds will be produced and formability will deteriorate. Therefore, it is preferable that Mn be 0.6 wt% or less, Cr be 0.3 wt% or less, and Zr be 0.3 wt% or less.

以上の各成分の残部は、基本的にはA■および不可避的
不純物とすれば良いが、そのほか微量のBeを添加した
り、微量のTi、もしくはTiおよびBを添加しても良
い。Beは緻密な酸化皮膜を形成して、素材アルミニウ
ム表面でのA■やMgの酸化を防止し、ひいては耐糸錆
性の著しい向上に寄与する。但しBe添加量が0.01
wt%を越えればその効果は飽和し、コスト上昇を招く
だけであるから、Beの添加量は0.01wt%以下と
することが望ましい。またTiは従来から鋳塊組織の結
晶粒微細化剤としてBとともに添加されることがあった
が、Tiの添加は結晶粒微細化のみならず、耐食性の向
上にも有効である。但しTiの添加量が1.0wt%を
越えれば粗大な金属間化合物を生成して、圧延性、成形
性を劣化させるから、Tiの添加量は1.0wt%以下
とすることが好ましい。またTiとともに添加されるこ
とのあるBは、0.01wt%を越えれば逆に耐食性が
損なわれてしまうから、0.01wt%未満とすること
が好ましい。
The remainder of each of the above components may basically be A and unavoidable impurities, but a trace amount of Be, a trace amount of Ti, or Ti and B may also be added. Be forms a dense oxide film to prevent oxidation of A and Mg on the surface of the aluminum material, which in turn contributes to a significant improvement in thread rust resistance. However, the amount of Be added is 0.01
If it exceeds 0.01 wt %, the effect will be saturated and the cost will increase, so it is desirable that the amount of Be added is 0.01 wt % or less. Furthermore, Ti has traditionally been added together with B as a grain refining agent for the ingot structure, but addition of Ti is effective not only for grain refining but also for improving corrosion resistance. However, if the amount of Ti added exceeds 1.0 wt%, coarse intermetallic compounds will be generated and the rolling properties and formability will deteriorate, so the amount of Ti added is preferably 1.0 wt% or less. Further, B, which may be added together with Ti, is preferably added to less than 0.01 wt% since corrosion resistance will be adversely affected if it exceeds 0.01 wt%.

次にこの発明のアルミニウム合金板の製造方法について
説明する。
Next, a method for manufacturing an aluminum alloy plate according to the present invention will be explained.

先ず前述のような成分組成の合金溶湯を鋳造する。ここ
で鋳造方法としては、DC鋳造法(半連続鋳造法)を適
用しても、連続鋳造圧延法(薄板連続鋳造法)を適用し
ても良い。
First, a molten alloy having the above-mentioned composition is cast. As the casting method here, a DC casting method (semi-continuous casting method) or a continuous casting rolling method (thin plate continuous casting method) may be applied.

DC鋳造によって得られたアルミニウム合金鋳塊に対し
ては450℃〜570℃の範囲内の温度で均質化処理を
施す。このような均質化処理を行なうことによって、成
形加工性を向上させるとともに再結晶粒の安定化を図る
ことができる。均質化処理の温度が450℃未満では上
述の効果が得られず、一方570℃を越えれば共晶融解
が生じるおそれがある。なお均質化処理の時間は1〜4
8時間が望ましい。1時間未満では上述の効果が充分に
得られず、一方48時間を越える長時間の処理は経済的
でない。このような均質化処理後には、常法に従って熱
間圧延を施して、所要の板厚の熱間圧延板とする。
The aluminum alloy ingot obtained by DC casting is subjected to homogenization treatment at a temperature within the range of 450°C to 570°C. By performing such homogenization treatment, it is possible to improve moldability and stabilize recrystallized grains. If the temperature of the homogenization treatment is less than 450°C, the above-mentioned effects cannot be obtained, while if it exceeds 570°C, eutectic melting may occur. Note that the time for homogenization treatment is 1 to 4
8 hours is preferable. If the treatment time is less than 1 hour, the above-mentioned effects cannot be sufficiently obtained, while treatment for a long time exceeding 48 hours is not economical. After such homogenization treatment, hot rolling is performed according to a conventional method to obtain a hot rolled plate having a desired thickness.

一方連続鋳造圧延法によって得た連続鋳造薄板の場合は
、特に熱間圧延を行なう必要はないが、前述のDC鋳造
による鋳塊の場合と同様な均質化処理を施しても良い。
On the other hand, in the case of a continuously cast thin plate obtained by the continuous casting and rolling method, it is not necessary to perform hot rolling, but it may be subjected to the same homogenization treatment as in the case of the ingot produced by DC casting described above.

以上のようにして得られた熱間圧延板もしくは連続鋳造
薄板に対しては、1回または2回以上の中間焼鈍を挟ん
で冷間圧延を行ない、その後溶体化処理を施す。この発
明においては、上述のような冷間圧延工程における最終
の中間焼鈍の前後の冷間圧延の条件および最終の中間焼
鈍の条件が、最終的な組織制御、ひいては成形性の向上
、フローラインの発生防止のために極めて重要である。
The hot rolled plate or continuously cast thin plate obtained as described above is cold rolled with one or more intermediate annealing steps in between, and then subjected to solution treatment. In this invention, the cold rolling conditions before and after the final intermediate annealing in the cold rolling process as described above and the conditions of the final intermediate annealing are controlled to achieve final structure control, improve formability, and improve the flow line. This is extremely important for prevention.

なおここで中間焼鈍は、一般には加工硬化の大きな合金
の冷間圧延性の改善のために行なうのが通常であり、J
IS 6000番系のような軟質な合金の冷間圧延では
中間焼鈍を行なわないのが通常であるが、この発明の方
法においては組織制御のために極めて重要な役割を担っ
ている。
Note that intermediate annealing is generally performed to improve the cold rollability of alloys with large work hardening.
Intermediate annealing is not normally performed during cold rolling of soft alloys such as IS 6000 series, but in the method of the present invention, it plays an extremely important role for microstructural control.

次に冷間圧延工程の条件について説明する。Next, the conditions of the cold rolling process will be explained.

先ず第1には、最終の中間焼鈍の前の冷間圧延における
圧延率(A)と最終の中間焼鈍の後の冷間圧延(最終冷
間圧延)における圧延率(B)との比率(B/A)を0
.8以上とすることが、最終再結晶時(最終冷間圧延後
の溶体化処理による再結晶時)の結晶組織の安定化を図
る上で極めて重要である。ここで、B/Aの比が0.8
未満では、中間焼鈍時の再結晶集合組織が弱いため、そ
の後の最終冷間圧延、溶体化処理によって成形性を阻害
するキューブ方位(立方体方位)と称される(100)
(001)方位の組織が形成されてしまう。
First, the ratio (B) of the rolling rate (A) in cold rolling before final intermediate annealing and the rolling rate (B) in cold rolling after final intermediate annealing (final cold rolling). /A) to 0
.. 8 or more is extremely important for stabilizing the crystal structure during final recrystallization (recrystallization by solution treatment after final cold rolling). Here, the ratio of B/A is 0.8
If the grain size is less than 100, the recrystallized texture during intermediate annealing is weak, so this is called a cube orientation (cubic orientation), which inhibits formability during the subsequent final cold rolling and solution treatment.
A structure with a (001) orientation is formed.

また第2には、最終の中間焼鈍後の最終冷間圧延の圧延
率(B)を30%以上とすることも、最終再結晶時の結
晶組織の安定化を図るために重要である。ここで、最終
冷間圧延の圧延率(B)が30%未満では、最終再結晶
時(溶体化処理時)の結晶粒が粗大化し、あるいは再結
晶せずに成形性が低下してしまう。
Secondly, it is also important to set the rolling ratio (B) of the final cold rolling after the final intermediate annealing to 30% or more in order to stabilize the crystal structure during the final recrystallization. Here, if the rolling ratio (B) of the final cold rolling is less than 30%, the crystal grains during the final recrystallization (during solution treatment) become coarse, or the formability deteriorates without recrystallization.

そして第3には、最終の中間焼鈍を、連続焼鈍により3
00〜580℃の範囲内の温度に加熱して保持なしまた
は5分以下の保持で行なうことが、組織の制御上極めて
重要である。一般に連続焼鈍炉で急速加熱することによ
って特殊な再結晶集合組織が得られることが知られてい
る。アルミニウム合金の場合、圧延集合組織はS方位と
称される(123)(634)に近い方位となっている
が、これを再結晶させれば、R方位と称されるS方位に
近い方位と、成形性、特に深絞り性を著しく低下させる
キューブ方位と称される(100)(001)方位が形
成される。ところが連続焼鈍のような急速加熱で再結晶
させ、さらにその後30%以上の圧延率で最終冷間圧延
を行ない、引続いて溶体化処理を行なうことによって、
成形性を阻害するキューブ方位の形成を抑制することが
できることを見出した。ちなみに、キューブ方位の生成
量を定量的に測定する方法としてX線回折法があり、な
かでも最も簡便な手段として逆極点積分強度測定法があ
る。この方法によって集合組織を持たない標準サンプル
(純アルミ粉末)と比較した(200)積分強度比が5
を越えれば成形性、とりわけ深絞り性が著しく低下する
ことが経験的に判明しているが、この発明の条件にした
がって冷間圧延−最終中間焼鈍−最終冷間圧延を行ない
さらに溶体化処理を行なうことによって、上述の(20
0)積分強度比を5未満に抑制し得ることが知見された
。そしてまた、中間焼鈍時に急速加熱することによって
再結晶させた結晶組織は、均一な組織となって、粗い鋳
塊組織や熱延組織に起因するフローラインを完全に除去
できることが判明した。
Thirdly, the final intermediate annealing is carried out by continuous annealing.
It is extremely important for tissue control to heat to a temperature within the range of 00 to 580° C. without holding or holding for 5 minutes or less. It is generally known that a special recrystallized texture can be obtained by rapid heating in a continuous annealing furnace. In the case of aluminum alloys, the rolling texture has an orientation close to (123) (634), which is called the S orientation, but if this is recrystallized, it becomes an orientation close to the S orientation, which is called the R orientation. , a (100)(001) orientation called a cube orientation is formed, which significantly reduces formability, particularly deep drawability. However, by recrystallizing by rapid heating such as continuous annealing, then final cold rolling at a rolling reduction of 30% or more, and subsequent solution treatment,
It has been found that the formation of cube orientation, which inhibits formability, can be suppressed. Incidentally, there is an X-ray diffraction method as a method for quantitatively measuring the amount of cube orientation produced, and among them, the inverse pole integrated intensity measurement method is the simplest method. By this method, the (200) integrated intensity ratio compared to a standard sample (pure aluminum powder) without texture was 5.
Although it has been empirically found that if the value exceeds the above, the formability, especially the deep drawability, will be significantly reduced. By doing the above (20
0) It was found that the integrated intensity ratio could be suppressed to less than 5. It has also been found that the crystal structure recrystallized by rapid heating during intermediate annealing becomes a uniform structure, and flow lines caused by rough ingot structures and hot rolled structures can be completely removed.

ここで、連続焼鈍による最終の中間焼鈍の加熱温度が3
00℃未満では再結晶せず、適切な集合組織が得られな
いため、最終的にキューブ方位の強い組織が形成されて
しまう。一方加熱温度が580℃を越えれば、共晶融解
のおそれがあるとともに、再結晶粒が粗大化して成形加
工時に肌荒れが発生し、外観不良となるおそれがあり、
また成形性が低下する。また加熱速度が1℃/sec未
満であれば最終板におけるキューブ方位の形成を抑制で
きないが、通常の連続焼鈍であれば1℃/sec以上の
急速加熱を達成することができる。さらに保持時間が5
分を越えた場合は再結晶粒が粗大化するとともに、表面
酸化層の厚さが増大して糸錆性が低下し、また経済性も
低下する。したがって最終の中間焼鈍の条件は前述のよ
うに定める必要がある。
Here, the heating temperature of the final intermediate annealing in continuous annealing is 3
If the temperature is lower than 00°C, recrystallization will not occur and an appropriate texture will not be obtained, resulting in the formation of a structure with strong cube orientation. On the other hand, if the heating temperature exceeds 580°C, there is a risk of eutectic melting, and recrystallized grains will become coarser, resulting in rough skin during molding and poor appearance.
In addition, moldability decreases. Further, if the heating rate is less than 1° C./sec, the formation of cube orientation in the final plate cannot be suppressed, but with normal continuous annealing, rapid heating of 1° C./sec or more can be achieved. An additional retention time of 5
If it exceeds 100%, the recrystallized grains will become coarser, the thickness of the surface oxidized layer will increase, the rust resistance will decrease, and the economical efficiency will also decrease. Therefore, the conditions for the final intermediate annealing must be determined as described above.

最終の中間焼鈍の後には、再び再結晶させて結晶粒を微
細化、安定化させるために溶体化処理を行なう必要があ
る。この最終の再結晶化処理である溶体化処理の条件と
しては、300〜580℃の範囲内の温度に120分以
下保持することが望ましい。
After the final intermediate annealing, it is necessary to perform a solution treatment to recrystallize again to refine and stabilize the crystal grains. As conditions for the solution treatment, which is the final recrystallization treatment, it is desirable to maintain the temperature within the range of 300 to 580° C. for 120 minutes or less.

溶体化処理の温度が300℃未満では再結晶が行なわれ
ず、成形性が低下してしまう。一方580℃を越えれば
共晶融解発生のおそれがあり、また再結晶粒が粗大化し
て肌荒れが発生し、外観不良を招くとともに成形性も低
下し、さらには表面酸化層の厚さが増大して糸錆性が低
下するおそれがある。なおここで再結晶粒粗大化防止の
目安としては、再結晶粒径が150μm以下となる程度
を目安にすれば良い。さらに溶体化処理の時間が120
分を越えれば、表面酸化層の厚さが増大して糸錆性が低
下するおそれがある。なおこの溶体化処理としては、バ
ッチ式、連続式のいずれの熱処理炉を適用しても良い。
If the temperature of the solution treatment is less than 300° C., recrystallization will not occur and the moldability will deteriorate. On the other hand, if the temperature exceeds 580°C, there is a risk of eutectic melting, and the recrystallized grains will become coarser and rough, resulting in poor appearance and reduced formability, and furthermore, the thickness of the surface oxidation layer will increase. There is a risk that thread rust resistance may decrease. Here, as a guideline for preventing coarsening of recrystallized grains, it is sufficient to set the recrystallized grain size to 150 μm or less. Further solution treatment time is 120
If it exceeds 100%, the thickness of the surface oxidized layer increases and there is a risk that thread rust resistance will decrease. Note that for this solution treatment, either a batch type heat treatment furnace or a continuous type heat treatment furnace may be applied.

また溶体化処理後は急速冷却するが、この冷却速度は強
制空冷以上の冷却速度であれば充分である。具体的には
、5℃/sec以上の冷却速度が適当である。
Further, rapid cooling is performed after the solution treatment, and it is sufficient if the cooling rate is higher than forced air cooling. Specifically, a cooling rate of 5° C./sec or more is appropriate.

なお溶体化処理後に強制空冷あるいは水焼入を行なえば
板に反りが発生しやすい。これを除去するために、冷却
後に歪強制加工としてスキンパス、レベリング、ストレ
ッチ等の軽い冷間加工を行なっても良い。但しこれらの
軽い冷間加工を行なえば、成形加工性が若干低下する。
Note that if forced air cooling or water quenching is performed after solution treatment, the plate is likely to warp. In order to remove this, light cold working such as skin pass, leveling, stretching, etc. may be performed as strain forced working after cooling. However, if such light cold working is performed, the moldability will be slightly reduced.

そこで成形加工性を回復させるために、上述の軽い冷間
加工の後に歪除去焼鈍を行なうことが望ましい。この歪
除去焼鈍の条件は、第1図に示すような加熱速度、冷却
速度で、第2図に示すような温度、時間とすることが適
当である。
Therefore, in order to restore formability, it is desirable to perform strain relief annealing after the above-mentioned light cold working. The appropriate conditions for this strain relief annealing are the heating rate and cooling rate as shown in FIG. 1, and the temperature and time as shown in FIG. 2.

なお以上のプロセスのうち、冷間圧延工程においては、
2回以上の中間焼鈍を挟んで冷間圧延を行なっても良い
ことは勿論である。この場合、最終の中間焼鈍は既に述
べたような条件で連続焼鈍によって行なう必要があるが
、それ以前の中間焼鈍は任意の条件で行なえば良く、一
般にはバッチ焼鈍の場合は250〜450℃×0.5〜
24時間、連続焼鈍の場合は300〜580℃で保持な
しまたは5分以下の保持とすれば良い。
Of the above processes, in the cold rolling process,
Of course, cold rolling may be performed with two or more intermediate annealing steps in between. In this case, the final intermediate annealing must be performed by continuous annealing under the conditions already mentioned, but the intermediate annealing before that may be performed under any conditions, and in general, in the case of batch annealing, the temperature is 250 to 450°C 0.5~
In the case of continuous annealing for 24 hours, the temperature may be maintained at 300 to 580°C without holding or for 5 minutes or less.

ここで、上述の中間焼鈍(最終の中間焼鈍よりも前の中
間焼鈍)をバッチ式で行なう場合、加熱温度が250℃
未満では冷間圧延性が改善されないため無意味であり、
一方450℃を越えれば再結晶粒が粗大化するとともに
、表面酸化層の厚みが増大して耐糸錆性が低下するおそ
れがあり、また保持時間が0.5時間未満では充分な冷
間圧延性改善の効果が得られず、一方24時間を越える
ことは経済性を損なうばかりでなく、表面酸化層の厚み
が増大して耐糸錆性が低下するおそれがある。また上述
の中間焼鈍を連続焼鈍によって行なう場合、加熱温度が
300℃未満では冷間圧延性が改善されないため無意味
であり、一方580℃を越えれば共晶溶融が生じるおそ
れがあるほか、再結晶粒が粗大化するとともに、表面酸
化層の厚みが増大して耐糸錆性が低下するおそれがあり
、また保持時間が5分を越えた場合も、再結晶粒が粗大
化するほか、表面酸化層の厚みが増大して耐糸錆性が低
下するおそれがある。
Here, when performing the above-mentioned intermediate annealing (intermediate annealing before the final intermediate annealing) in a batch method, the heating temperature is 250 ° C.
If it is less than that, it is meaningless because the cold rollability will not be improved.
On the other hand, if the temperature exceeds 450°C, the recrystallized grains will become coarser and the thickness of the surface oxidation layer will increase, which may reduce thread rust resistance.If the holding time is less than 0.5 hours, sufficient cold rolling On the other hand, if the heating time exceeds 24 hours, it not only impairs economic efficiency but also increases the thickness of the surface oxidized layer, which may reduce thread rust resistance. In addition, if the above-mentioned intermediate annealing is performed by continuous annealing, it is meaningless if the heating temperature is less than 300°C because the cold rollability will not be improved, while if it exceeds 580°C, there is a risk of eutectic melting and recrystallization. As the grains become coarser, the thickness of the surface oxidation layer increases, which may reduce thread rust resistance.If the holding time exceeds 5 minutes, the recrystallized grains will become coarser and the surface oxidation layer will increase. There is a possibility that the thickness of the layer increases and the thread rust resistance decreases.

以上のようなこの発明の方法により得られたアルミニウ
ム合金板は、成形加工性に優れると同時に強度も高く、
しかも成形加工時におけるフローラインの発生や肌荒れ
の発生もなく、外観品質に著しく優れている。
The aluminum alloy plate obtained by the method of the present invention as described above has excellent formability and high strength.
In addition, there are no flow lines or rough skin during molding, and the appearance quality is extremely excellent.

実施例 第1表の合金番号1〜5に示す成分組成の合金をDC鋳
造法により断面寸法500mm×1200mmのスラブ
に鋳造し、その鋳塊に対し500℃×6時間の均質化処
理を施した後、板厚4mmまで熱間圧延し、さらに第2
表の符号イ〜ヘに示す種々の条件で加工熱処理を施した
。ここで、符号イ〜ホの加工熱処理は、1次冷間圧延後
、中間焼鈍を行ない、その後2次冷延(最終冷延)を行
ない、その後、溶体化処理を行なったもの、また符号ヘ
の場合は、冷間圧延を1回だけ行なって、中間焼鈍およ
びその後の冷間圧延を行なうことなく、溶体化処理を施
したものである。またここで、中間焼鈍は、いずれも連
続焼鈍炉を想定して赤外線ヒータを用いて急速加熱し、
その後水冷した。また溶体化処理は、バッチ電気炉で加
熱保持後、水冷した。
Example Alloys having the compositions shown in alloy numbers 1 to 5 in Table 1 were cast into slabs with cross-sectional dimensions of 500 mm x 1200 mm by DC casting, and the ingots were homogenized at 500°C for 6 hours. After that, the plate was hot rolled to a thickness of 4 mm, and then the second
Processing and heat treatments were performed under various conditions shown in symbols A to F in the table. Here, the processing heat treatments with codes I to E are those in which after primary cold rolling, intermediate annealing is performed, then secondary cold rolling (final cold rolling) is performed, and then solution treatment is performed; In the case of , cold rolling was performed only once and solution treatment was performed without intermediate annealing and subsequent cold rolling. In addition, intermediate annealing is performed by rapid heating using an infrared heater, assuming a continuous annealing furnace.
It was then water cooled. In addition, the solution treatment was performed by heating and holding in a batch electric furnace and then cooling with water.

溶体化処理後の各板の材料特性を調べた結果を第3表に
記す。
Table 3 shows the results of examining the material properties of each plate after solution treatment.

なおここで機械的性質および成形性は、いずれも溶体化
処理後に2週間の室温時効を行なってから測定した。ま
た成形性試験のうち、エリクセン試験はJIS−B法に
よって行ない、張出し性試験はφ100mmの球頭ポン
チを用い、塩ビフィルムを貼った状態で行なった。LD
R(限界絞り比)はφ50mmポンチを使用し、潤滑剤
としてジョンソンワックスを用いて測定した。また曲げ
性(mm)は最小曲げ半径を示す。さらに耳率は、φ6
2mmのブランクをφ32mmのポンチで絞ったときの
耳率を示す。
Note that the mechanical properties and moldability were both measured after aging at room temperature for two weeks after solution treatment. Among the moldability tests, the Erichsen test was conducted according to the JIS-B method, and the stretchability test was conducted using a ball-head punch with a diameter of 100 mm, with a PVC film attached. L.D.
R (limit drawing ratio) was measured using a φ50 mm punch and Johnson wax as a lubricant. Moreover, bendability (mm) indicates the minimum bending radius. Furthermore, the ear rate is φ6
It shows the selvage ratio when a 2 mm blank is squeezed with a φ32 mm punch.

また逆極点積分強度比は、X線回折によって集合組織を
持たない純アルミ粉末(ランダムサンプル)を標準サン
プルとした試料の積分強度との比率を求めた結果を示す
Further, the inverse pole integrated intensity ratio indicates the result of determining the ratio to the integrated intensity of a sample using a pure aluminum powder (random sample) without texture as a standard sample by X-ray diffraction.

さらに各合金板について、結晶粒度および外観特性を調
べた結果を第4表に示す。第4表中において、肌荒れは
曲げサンプルの表面観察で評価し、リシングはφ100
mmのポンチで33mm張出したサンプルの表面観察で
評価した。なおこれらの評価は、A:良好 B:やや目立つ C:非常に目立つ の3段階に分けて評価した。
Furthermore, Table 4 shows the results of examining the grain size and appearance characteristics of each alloy plate. In Table 4, rough skin was evaluated by observing the surface of a bent sample, and lining was
Evaluation was made by observing the surface of a sample that was extended by 33 mm using a mm punch. These evaluations were divided into three levels: A: Good, B: Slightly noticeable, and C: Very noticeable.

第3表から明らかなように、この発明の方法により得ら
れたアルミニウム合金板は、比較法により得らたアルミ
ニウム合金板と比較して同等以上の強度を有し、かつ成
形性は同じ合金成分の試料で比較すれば従来法により得
られたアルミニウム合金板よりも優れている。さらに第
4表から明らかなように、この発明の方法により得られ
たアルミニウム合金板は、肌荒れの発生やリジング(フ
ローライン)の発生もほとんどなく、優れた外観品質特
性を有することが判明した。
As is clear from Table 3, the aluminum alloy plate obtained by the method of the present invention has the same or higher strength as the aluminum alloy plate obtained by the comparative method, and has the same formability as the aluminum alloy plate obtained by the comparative method. When compared with samples of , it is superior to aluminum alloy plates obtained by conventional methods. Further, as is clear from Table 4, the aluminum alloy plate obtained by the method of the present invention was found to have excellent appearance quality characteristics with almost no occurrence of rough skin or ridging (flow lines).

発明の効果 以上の説明から明らかなように、この発明の成形加工用
アルミニウム合金板の製造方法によれば、従来の成形加
工用アルミニウム合金板と同等以上の強度を有するとと
もに、優れた成形性を有し、しかも成形加工時にフロー
ラインや肌荒れ等の発生しない外観品質特性の著しく優
れたアルミニウム合金板を得ることができ、したがって
自動車車体などの陸運車輌の部品あるいは電気機械用部
品などの材料、特に外観品質が良好であることが要求さ
れる部品の材料の製造に最適である。
Effects of the Invention As is clear from the above explanation, the method for producing an aluminum alloy plate for forming according to the present invention has strength equal to or higher than that of conventional aluminum alloy plates for forming, and excellent formability. Moreover, it is possible to obtain an aluminum alloy sheet with extremely excellent appearance quality characteristics that does not cause flow lines or rough skin during forming process, and is therefore suitable for materials such as parts of land transportation vehicles such as automobile bodies or parts for electric machines, etc. Ideal for manufacturing parts materials that require good appearance quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は歪除去焼鈍における加熱速度、冷却速度と温度
との関係を示す線図、第2図は同じく歪除去焼鈍におけ
る保持時間と温度との関係を示す線図である。 出願人 スカイアルミニウム株式会社 代理人 弁理士 豊田 武久
FIG. 1 is a diagram showing the relationship between heating rate, cooling rate, and temperature in strain relief annealing, and FIG. 2 is a diagram showing the relationship between holding time and temperature in strain relief annealing. Applicant Sky Aluminum Co., Ltd. Representative Patent Attorney Takehisa Toyota

Claims (1)

【特許請求の範囲】[Claims] JIS 6000番系に属するA■−Mg−Si系のア
ルミニウム合金からなる連続鋳造薄板もしくは熱間圧延
板に対して、1回または2回以上の中間焼鈍を挟んで冷
間圧延を行なうにあたり、最終の中間焼鈍の前の冷間圧
延における圧延率(A)と最終の中間焼鈍後の最終冷間
圧延における圧延率(B)との比(B/A)が0.8以
上となりかつ最終冷間圧延における圧延率(B)が30
%以上となるように冷間圧延を施し、かつ前記最終の中
間焼鈍を、連続焼鈍により300〜580℃の範囲内の
温度に加熱して保持なしまたは5分以内の保持によって
行ない、さらに最終冷間圧延の後に溶体化処理を行なう
ことを特徴とする成形性に優れた成形加工用アルミニウ
ム合金板の製造方法。
When cold rolling a continuously cast thin plate or hot rolled plate made of A-Mg-Si aluminum alloy belonging to JIS 6000 series with one or more intermediate annealing in between, the final The ratio (B/A) of the rolling ratio (A) in the cold rolling before the intermediate annealing to the rolling ratio (B) in the final cold rolling after the final intermediate annealing is 0.8 or more, and the final cold rolling The rolling ratio (B) in rolling is 30
% or more, and the final intermediate annealing is performed by continuous annealing to a temperature within the range of 300 to 580°C, with no holding or holding for less than 5 minutes, and then final cooling. A method for producing an aluminum alloy plate for forming with excellent formability, the method comprising performing solution treatment after rolling.
JP24662190A 1990-09-17 1990-09-17 Manufacturing method of aluminum alloy sheet for forming Expired - Fee Related JPH06104883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24662190A JPH06104883B2 (en) 1990-09-17 1990-09-17 Manufacturing method of aluminum alloy sheet for forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24662190A JPH06104883B2 (en) 1990-09-17 1990-09-17 Manufacturing method of aluminum alloy sheet for forming

Publications (2)

Publication Number Publication Date
JPH04228552A true JPH04228552A (en) 1992-08-18
JPH06104883B2 JPH06104883B2 (en) 1994-12-21

Family

ID=17151132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24662190A Expired - Fee Related JPH06104883B2 (en) 1990-09-17 1990-09-17 Manufacturing method of aluminum alloy sheet for forming

Country Status (1)

Country Link
JP (1) JPH06104883B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000319741A (en) * 1998-09-10 2000-11-21 Kobe Steel Ltd Al-Mg-Si BASED ALLOY SHEET
CN113637926A (en) * 2021-08-13 2021-11-12 联想(北京)有限公司 Rolling annealing process of 5-series aluminum alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000319741A (en) * 1998-09-10 2000-11-21 Kobe Steel Ltd Al-Mg-Si BASED ALLOY SHEET
CN113637926A (en) * 2021-08-13 2021-11-12 联想(北京)有限公司 Rolling annealing process of 5-series aluminum alloy
CN113637926B (en) * 2021-08-13 2022-10-25 联想(北京)有限公司 Rolling annealing process of 5-series aluminum alloy

Also Published As

Publication number Publication date
JPH06104883B2 (en) 1994-12-21

Similar Documents

Publication Publication Date Title
JPS621467B2 (en)
JPH05263203A (en) Production of rolled sheet of aluminum alloy for forming
EP0646655B1 (en) Method of manufacturing natural aging-retardated aluminum alloy sheet exhibiting excellent formability and excellent bake hardening ability
JP2000087198A (en) MANUFACTURE OF Al-Mg-Si ALLOY SHEET EXCELLENT IN THERMAL CONDUCTIVITY AND STRENGTH
JP2008190022A (en) Al-Mg-Si-BASED ALLOY HOT ROLLED SHEET, AND METHOD FOR PRODUCING THE SAME
JP5367250B2 (en) Aluminum alloy plate for forming and method for producing the same
JPH083702A (en) Production of aluminum alloy sheet material excellent in formability and heating hardenability
JPS626740B2 (en)
JP2008231475A (en) Aluminum alloy sheet for forming workpiece, and producing method therefor
JPS61272342A (en) Aluminum alloy sheet excelling in formability and baking hardening and its production
JP3210419B2 (en) Aluminum alloy sheet for DI can excellent in flange formability and method for producing the same
JP4257185B2 (en) Aluminum alloy plate for forming and method for producing the same
JPH0547615B2 (en)
JP2678404B2 (en) Manufacturing method of aluminum alloy sheet for forming
JPH04228552A (en) Production of aluminum alloy sheet for forming
JP3066091B2 (en) Aluminum alloy rolled plate for hole enlarging and method for producing the same
JP2011144410A (en) METHOD FOR MANUFACTURING HIGHLY FORMABLE Al-Mg-Si-BASED ALLOY SHEET
JP3208234B2 (en) Aluminum alloy sheet for forming process excellent in formability and method for producing the same
JPH0480979B2 (en)
JPH0585630B2 (en)
KR960007633B1 (en) Al-mg alloy & the preparation
JP2678675B2 (en) Method for producing aluminum alloy sheet for forming having excellent deep drawability
JP3359428B2 (en) Manufacturing method of aluminum alloy sheet for forming
JPH07228957A (en) Production of aluminum alloy sheet having excellent formability and quench-hardenability
JPH03170635A (en) Aluminum alloy for forming excellent in corrosion resistance and its manufacture

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees