JPH04225526A - Impurity recovery on the surface of semiconductor substrate and impurity recovery device - Google Patents

Impurity recovery on the surface of semiconductor substrate and impurity recovery device

Info

Publication number
JPH04225526A
JPH04225526A JP40811790A JP40811790A JPH04225526A JP H04225526 A JPH04225526 A JP H04225526A JP 40811790 A JP40811790 A JP 40811790A JP 40811790 A JP40811790 A JP 40811790A JP H04225526 A JPH04225526 A JP H04225526A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
impurities
gas
container
closed container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP40811790A
Other languages
Japanese (ja)
Other versions
JP2568756B2 (en
Inventor
Yoshitaka Dansui
慶孝 暖水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2408117A priority Critical patent/JP2568756B2/en
Publication of JPH04225526A publication Critical patent/JPH04225526A/en
Application granted granted Critical
Publication of JP2568756B2 publication Critical patent/JP2568756B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To easily recover impurities with no contamination from an embironment for supermicroimpurity analysis on the surface of a semiconductor substrate. CONSTITUTION:Method and device for recovery of impurities on the surface of a semiconductive substrate 8, in which trace impurity analysis in the depth direction from the surface of the semiconductor substrate 8 is made possible by supplying hydrogen peroxide gas and fluoric acid gas of high purity from the storage containers 2, 3 set up on the outside of a closed container 1, and an oxidation process by hydrogen peroxide gas, a decomposition process by fluoric acid gas and a cracked liquid recovery process are repeatedly performed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、半導体基板の表面の不
純物の超微量不純物分析用の試料を調整するための半導
体基板の表面の不純物回収方法および不純物回収装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for recovering impurities on the surface of a semiconductor substrate for preparing a sample for analyzing ultra-trace amounts of impurities on the surface of a semiconductor substrate.

【0002】0002

【従来の技術】従来の半導体基板の表面の不純物回収装
置としては、例えば特開昭60−69531号公報に示
されている。図2はこの従来の半導体基板の表面の不純
物回収装置の概略縦断面図であり、図において、31は
密閉容器、32はその密閉容器31内に配設されたフッ
化水素ガス発生用フッ化水素酸貯蔵容器、33はウエハ
キャリアであり、半導体基板を保持するためにある。3
4は分解液受容器であり、貯蔵容器32を加熱すること
によりフッ化水素ガスを発生させて半導体薄膜を分解し
、分解された分解液を受容するためにある。
2. Description of the Related Art A conventional device for recovering impurities from the surface of a semiconductor substrate is disclosed in, for example, Japanese Patent Laid-Open No. 69531/1983. FIG. 2 is a schematic vertical cross-sectional view of this conventional device for recovering impurities from the surface of a semiconductor substrate. The hydrogen acid storage container 33 is a wafer carrier and is for holding semiconductor substrates. 3
A decomposition liquid receiver 4 is provided to generate hydrogen fluoride gas by heating the storage container 32 to decompose the semiconductor thin film and to receive the decomposed liquid.

【0003】0003

【発明が解決しようとする課題】このような従来の半導
体基板の表面の不純物回収装置では、フッ化水素ガスの
発生量を制御することができない。また、貯蔵容器32
を密閉容器31内に設置するため、密閉容器31の容積
を大きくする必要がある。またフッ化水素ガスを半導体
基板の表面で結露させ分解液を回収するために、多量の
フッ化水素ガスが必要である。さらに半導体基板の表面
から内部の深さ方向に分布する不純物を回収することが
できないという課題を有していた。
SUMMARY OF THE INVENTION In such a conventional device for recovering impurities from the surface of a semiconductor substrate, it is not possible to control the amount of hydrogen fluoride gas generated. In addition, the storage container 32
is installed in the closed container 31, it is necessary to increase the volume of the closed container 31. Furthermore, a large amount of hydrogen fluoride gas is required to cause dew condensation on the surface of the semiconductor substrate and to recover the decomposed liquid. Furthermore, there is a problem in that impurities distributed in the depth direction from the surface of the semiconductor substrate cannot be recovered.

【0004】本発明は上記課題を解決するもので、環境
からの汚染なしに容易に半導体基板の表面から内部の深
さ方向に分布する不純物の回収ができる半導体基板の表
面の不純物回収方法および不純物回収装置を提供するこ
とを目的とする。
The present invention solves the above problems, and provides a method for recovering impurities from the surface of a semiconductor substrate, which can easily recover impurities distributed from the surface of the semiconductor substrate in the depth direction inside the semiconductor substrate without contamination from the environment. The purpose is to provide a collection device.

【0005】[0005]

【課題を解決するための手段】本発明は上記目的を達成
するために、半導体基板を酸化する工程と、酸化膜を分
解する工程と、分解液を回収する工程とを繰り返し行う
不純物回収方法と、密閉容器内に不活性ガスを供給およ
び排出する配管を備えた密閉容器と、密閉容器外に設置
した少なくとも2個の薬品を貯蔵する加熱手段を備えた
貯蔵容器と、さらにこの貯蔵容器に不活性ガスを供給す
る配管を備え、また清浄化した水を密閉容器内の半導体
基板に供給する定量ポンプを備えた構成による。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides an impurity recovery method in which the steps of oxidizing a semiconductor substrate, decomposing an oxide film, and recovering a decomposed liquid are repeated. , a closed container equipped with piping for supplying and discharging an inert gas into the closed container, a storage container equipped with heating means for storing at least two chemicals installed outside the closed container, and a storage container equipped with a heating means for storing at least two chemicals. The structure includes piping for supplying active gas and a metering pump for supplying purified water to the semiconductor substrate in the sealed container.

【0006】[0006]

【作用】本発明は上記した構成により、不純物を含まな
い高純度の過酸化水素ガスが半導体基板の表面を酸化し
、引き続き酸化膜を分解する高純度のフッ化水素ガスを
供給し半導体基板の表面の不純物を溶かした分解液が得
られることになる。
[Operation] According to the above-described structure, the present invention oxidizes the surface of the semiconductor substrate with high-purity hydrogen peroxide gas that does not contain impurities, and then supplies high-purity hydrogen fluoride gas that decomposes the oxide film to oxidize the surface of the semiconductor substrate. A decomposed liquid with surface impurities dissolved will be obtained.

【0007】[0007]

【実施例】図1は本発明の一実施例における半導体基板
の表面の不純物回収装置の概略構成図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic diagram of an apparatus for recovering impurities from the surface of a semiconductor substrate according to an embodiment of the present invention.

【0008】図において、1は密閉容器、2、3は薬品
を貯蔵する貯蔵容器であり、貯蔵容器2、3と密閉容器
1はガス供給管4、5により接続されている。また貯蔵
容器2、3は不活性ガス配管6、7を備えている。半導
体基板8を半導体基板支持部9にのせ半導体基板押さえ
10で固定する。11は不活性ガス供給配管で、12は
排出配管である。13は純水を半導体基板の表面に定量
的に供給するための定量ポンプで、配管14から純水を
供給して配管15により密閉容器1内の半導体基板8上
に滴下する。 16は分解液16aを採取する治具である。なお図にお
いて、17,18は貯蔵容器2,3の加熱手段、19,
20はガス供給管4,5のバルプ、21は不活性ガス供
給配管11のバルブ、22は半導体基板支持部9の回転
手段である。
In the figure, 1 is a closed container, 2 and 3 are storage containers for storing chemicals, and the storage containers 2 and 3 and the closed container 1 are connected by gas supply pipes 4 and 5. The storage containers 2 and 3 are also equipped with inert gas pipes 6 and 7. A semiconductor substrate 8 is placed on a semiconductor substrate support 9 and fixed with a semiconductor substrate holder 10. 11 is an inert gas supply pipe, and 12 is a discharge pipe. Reference numeral 13 denotes a metering pump for quantitatively supplying pure water to the surface of the semiconductor substrate, which supplies pure water from a pipe 14 and drips it onto the semiconductor substrate 8 in the closed container 1 through a pipe 15. 16 is a jig for collecting the decomposition liquid 16a. In the figure, 17, 18 are heating means for the storage containers 2, 3, 19,
20 is a valve of the gas supply pipes 4 and 5; 21 is a valve of the inert gas supply pipe 11; and 22 is a means for rotating the semiconductor substrate support section 9.

【0009】以上のように構成されたこの実施例の半導
体基板の表面の不純物回収装置において、以下にその動
作を説明する。
The operation of the apparatus for recovering impurities from the surface of a semiconductor substrate of this embodiment constructed as described above will be explained below.

【0010】例えば、薬品を貯蔵する貯蔵容器2にフッ
化水素酸を満たしておき、貯蔵容器3に過酸化水素水を
満たしておく。加熱手段17,18によって加熱する。 加熱温度は30℃程度が好ましい。温度を上げ過ぎると
ガスの発生量は増加するが、ミストも発生しやすくなり
、不純物がそのミストと共に密閉容器1へ導入されてし
まうからである。まずバルブ19は閉めておき、不活性
ガスN2の供給も行なわない。バルブ20を開き配管7
よりN2を流し密閉容器1内に過酸化水素ガスを供給す
る。過酸化水素ガスにより半導体基板8は酸化される。 このとき半導体基板8の酸化速度は約0.5A/時間で
ある。ある時間過酸化水素ガスを供給した後、バルブ2
0を閉じる。次にバルブ21を開けN2ガスを密閉容器
1内に供給して密閉容器内の過酸化水素ガスをN2で置
換する。過酸化水素ガスとフッ酸ガスが共存されると半
導体基板の表面の過酸化水素ガスの濃度とフッ酸ガスの
濃度の違いにより半導体基板8の位置によるエッチング
速度が異なり深さ方向の不純物測定が困難となる。過酸
化水素ガスを完全に置換した後バルブ21を閉じ、バル
ブ19を開き分解ガスであるフッ酸ガスを密閉容器1内
へ供給する。フッ酸ガスにより酸化膜分解完了後、バル
ブ19を閉じ、バルブ21を開き密閉容器1内のフッ酸
ガスをN2で置換する。次に回転手段22により半導体
基板支持部9を回転させる。続いて、配管15より半導
体基板8上に純水を滴下させる。従来フッ酸ガスを半導
体基板8の表面で結露させるために多量のフッ酸ガスを
供給する必要があったが、純水によってフッ酸ガスで分
解された不純物を溶解させることによりフッ酸ガスの供
給を減少させることができる。滴下させた後回転を止め
遠心力により半導体基板8の外周に集まった分解液16
aを治具16により採取する。その後、例えばフレーム
レス原子吸光でこの分解液16aの不純物を測定するこ
とにより半導体基板8の表面の不純物濃度の測定を行な
うことができる。
For example, a storage container 2 for storing chemicals is filled with hydrofluoric acid, and a storage container 3 is filled with a hydrogen peroxide solution. Heating is performed by heating means 17 and 18. The heating temperature is preferably about 30°C. This is because if the temperature is raised too much, the amount of gas generated will increase, but mist will also be generated more easily, and impurities will be introduced into the closed container 1 along with the mist. First, the valve 19 is closed and the inert gas N2 is not supplied. Open valve 20 and pipe 7
Then, N2 is supplied to supply hydrogen peroxide gas into the closed container 1. The semiconductor substrate 8 is oxidized by the hydrogen peroxide gas. At this time, the oxidation rate of the semiconductor substrate 8 is approximately 0.5 A/hour. After supplying hydrogen peroxide gas for a certain period of time, valve 2
Close 0. Next, the valve 21 is opened and N2 gas is supplied into the closed container 1 to replace the hydrogen peroxide gas in the closed container with N2. When hydrogen peroxide gas and hydrofluoric acid gas coexist, the etching rate differs depending on the position of the semiconductor substrate 8 due to the difference in the concentration of hydrogen peroxide gas and hydrofluoric acid gas on the surface of the semiconductor substrate, making it difficult to measure impurities in the depth direction. It becomes difficult. After the hydrogen peroxide gas is completely replaced, the valve 21 is closed, and the valve 19 is opened to supply hydrofluoric acid gas, which is a cracked gas, into the closed container 1. After the oxide film is completely decomposed by the hydrofluoric acid gas, the valve 19 is closed and the valve 21 is opened to replace the hydrofluoric acid gas in the closed container 1 with N2. Next, the semiconductor substrate support portion 9 is rotated by the rotation means 22 . Subsequently, pure water is dripped onto the semiconductor substrate 8 from the pipe 15. Conventionally, it was necessary to supply a large amount of hydrofluoric acid gas to cause dew condensation on the surface of the semiconductor substrate 8, but now the hydrofluoric acid gas can be supplied by dissolving impurities decomposed by the hydrofluoric acid gas with pure water. can be reduced. After dropping, the rotation is stopped and the decomposed liquid 16 collects around the outer periphery of the semiconductor substrate 8 due to centrifugal force.
A is collected using the jig 16. Thereafter, the impurity concentration on the surface of the semiconductor substrate 8 can be measured by measuring the impurities in the decomposed liquid 16a using, for example, flameless atomic absorption.

【0011】以上のような構成および操作により密閉容
器1内で反応させるため、環境からの不純物による汚染
を低減することができ、微量の不純物量の測定が可能と
なる。また上記の過酸化水素ガスによる酸化工程、フッ
酸ガスによる分解工程、純水による分解液回収工程を繰
り返し行なうことにより、半導体基板8の表面から内部
の深さ方向の不純物濃度を知ることができる。
[0011] Since the reaction is carried out in the closed container 1 with the above-described configuration and operation, contamination by impurities from the environment can be reduced, and it is possible to measure minute amounts of impurities. Furthermore, by repeatedly performing the above-mentioned oxidation process using hydrogen peroxide gas, decomposition process using hydrofluoric acid gas, and decomposition liquid recovery process using pure water, it is possible to know the impurity concentration in the depth direction from the surface of the semiconductor substrate 8. .

【0012】なお、本発明の不純物回収装置を構成する
材料は半導体基板8の表面の不純物を測定する場合に妨
害となる不純物を含まないものであればいかなるもので
もよいが、特に酸性やアルカリ性のガスを用いることか
ら、フッ素系樹脂やその他高分子樹脂、例えばポリエチ
レンやポリプロピレン、またセラミックスや不動態化処
理を行なったステンレスで構成するのがよい。
The material constituting the impurity recovery device of the present invention may be any material as long as it does not contain impurities that would interfere when measuring impurities on the surface of the semiconductor substrate 8. In particular, acidic or alkaline materials may be used. Since gas is used, it is preferable to use a fluororesin or other polymeric resin such as polyethylene or polypropylene, ceramics, or passivated stainless steel.

【0013】また過酸化水素ガスによる酸化工程を省い
て、フッ酸ガスのみを供給することにより、半導体基板
8の表面に付着した不純物のみを回収することができる
。なお本実施例では酸化性ガスの原料として過酸化水素
を用いているが、酸化速度を変えるためにアンモニア水
、硝酸等を用いてもよいことは言うまでもない。
Furthermore, by omitting the oxidation step using hydrogen peroxide gas and supplying only hydrofluoric acid gas, only the impurities attached to the surface of the semiconductor substrate 8 can be recovered. Although hydrogen peroxide is used as the raw material for the oxidizing gas in this embodiment, it goes without saying that aqueous ammonia, nitric acid, etc. may also be used to change the oxidation rate.

【0014】[0014]

【発明の効果】以上の実施例から明らかなように本発明
によれば、密閉容器外に設置された貯蔵容器から純度の
高い過酸化水素ガスとフッ素酸ガスを密閉容器内に供給
し、過酸化水素ガスによる酸化工程、フッ酸ガスによる
分解工程、分解液回収工程を繰り返し行なうことにより
、半導体基板の表面から内部の深さ方向の微量な不純物
の分析が可能となる半導体基板の表面不純物回収方法お
よび不純物回収装置を提供できる。
Effects of the Invention As is clear from the above embodiments, according to the present invention, highly purified hydrogen peroxide gas and fluoric acid gas are supplied into the closed container from a storage container installed outside the closed container, and By repeating the oxidation process using hydrogen oxide gas, the decomposition process using hydrofluoric acid gas, and the decomposition liquid recovery process, it is possible to analyze minute impurities from the surface of the semiconductor substrate to the depth inside the semiconductor substrate.Semiconductor substrate surface impurity recovery A method and an apparatus for recovering impurities can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例における半導体基板の表面の
不純物回収装置の概略構成図
FIG. 1 is a schematic configuration diagram of an apparatus for recovering impurities from the surface of a semiconductor substrate in an embodiment of the present invention.

【図2】従来の半導体基板の表面の不純物回収装置の概
略構成図
[Figure 2] Schematic diagram of a conventional device for recovering impurities from the surface of a semiconductor substrate

【符号の説明】[Explanation of symbols]

1  密閉容器 2,3  貯蔵容器 4,5  ガス供給管 6,7  不活性ガスを供給する配管 8  半導体基板 9  半導体基板支持部 10  半導体基板押さえ 11  密閉容器内に不活性ガスを供給する配管12 
 排出配管 13  定量ポンプ 17,18  加熱手段 22  回転手段
1 Sealed containers 2, 3 Storage containers 4, 5 Gas supply pipes 6, 7 Piping 8 for supplying inert gas Semiconductor substrate 9 Semiconductor substrate support 10 Semiconductor substrate holder 11 Piping 12 for supplying inert gas into the sealed container
Discharge piping 13 Metering pumps 17, 18 Heating means 22 Rotating means

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】半導体基板を酸化する工程と、酸化膜を分
解する工程と、分解液を回収する工程とを繰り返し行な
うことを特徴とする半導体基板の表面の不純物回収方法
1. A method for recovering impurities on the surface of a semiconductor substrate, comprising repeatedly performing the steps of oxidizing the semiconductor substrate, decomposing the oxide film, and recovering a decomposition liquid.
【請求項2】密閉容器と、その密閉容器外に設置されそ
の密閉容器とガス供給管で接続された少なくとも2個の
薬品を貯蔵する貯蔵容器と、その貯蔵容器を加熱する加
熱手段と、前記貯蔵容器に不活性ガスを供給する複数の
配管とを備えたことを特徴とする半導体基板の表面の不
純物回収装置。
2. A sealed container, a storage container for storing at least two chemicals installed outside the sealed container and connected to the sealed container by a gas supply pipe, and a heating means for heating the storage container; A device for recovering impurities on the surface of a semiconductor substrate, comprising a plurality of pipes for supplying an inert gas to a storage container.
【請求項3】密閉容器内に半導体基板を保持する手段を
設けたことを特徴とする請求項2記載の半導体基板の表
面の不純物回収装置。
3. The device for recovering impurities on the surface of a semiconductor substrate according to claim 2, further comprising means for holding the semiconductor substrate within the closed container.
【請求項4】密閉容器外に、密閉容器内の半導体基板を
回転させる手段を設けたことを特徴とする請求項2また
は3記載の半導体基板の表面の不純物回収装置。
4. The device for recovering impurities on the surface of a semiconductor substrate according to claim 2 or 3, further comprising a means for rotating the semiconductor substrate inside the closed container provided outside the closed container.
【請求項5】密閉容器外に清浄化した水を配管を通して
密閉容器内の半導体基板に供給する定量ポンプを設けた
ことを特徴とする請求項2,3または4記載の半導体基
板の表面の不純物回収装置。
5. Impurities on the surface of a semiconductor substrate according to claim 2, 3 or 4, further comprising a metering pump for supplying purified water to the semiconductor substrate inside the hermetic container through piping outside the hermetic container. Collection device.
【請求項6】密閉容器内に不活性ガスを供給する配管と
、密閉容器内のガスを排出する配管とを設けたことを特
徴とする請求項2,3,4または5記載の半導体基板の
表面の不純物回収装置。
6. The semiconductor substrate according to claim 2, 3, 4, or 5, further comprising a pipe for supplying an inert gas into the closed container and a pipe for discharging the gas inside the closed container. Surface impurity recovery device.
JP2408117A 1990-12-27 1990-12-27 Semiconductor substrate surface impurity recovery system Expired - Fee Related JP2568756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2408117A JP2568756B2 (en) 1990-12-27 1990-12-27 Semiconductor substrate surface impurity recovery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2408117A JP2568756B2 (en) 1990-12-27 1990-12-27 Semiconductor substrate surface impurity recovery system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP17468796A Division JPH08321535A (en) 1996-07-04 1996-07-04 Recovery method of impurities

Publications (2)

Publication Number Publication Date
JPH04225526A true JPH04225526A (en) 1992-08-14
JP2568756B2 JP2568756B2 (en) 1997-01-08

Family

ID=18517611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2408117A Expired - Fee Related JP2568756B2 (en) 1990-12-27 1990-12-27 Semiconductor substrate surface impurity recovery system

Country Status (1)

Country Link
JP (1) JP2568756B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0657924A2 (en) * 1993-12-09 1995-06-14 Kabushiki Kaisha Toshiba Method for analyzing an impurity on a semiconductor substrate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS617639A (en) * 1984-06-22 1986-01-14 Toshiba Corp Decomposing device foe semiconductor thin film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS617639A (en) * 1984-06-22 1986-01-14 Toshiba Corp Decomposing device foe semiconductor thin film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0657924A2 (en) * 1993-12-09 1995-06-14 Kabushiki Kaisha Toshiba Method for analyzing an impurity on a semiconductor substrate
EP0657924A3 (en) * 1993-12-09 1996-07-10 Toshiba Kk Method for analyzing an impurity on a semiconductor substrate.

Also Published As

Publication number Publication date
JP2568756B2 (en) 1997-01-08

Similar Documents

Publication Publication Date Title
JP2944099B2 (en) Method and instrument for measuring impurity
US4828660A (en) Method and apparatus for the continuous on-site chemical reprocessing of ultrapure liquids
US4855023A (en) Method and apparatus for the continuous on-site chemical reprocessing of ultrapure liquids used in semiconductor wafer cleaning
US5395482A (en) Ultra high purity vapor phase treatment
US6174740B1 (en) Method for analyzing impurities within silicon wafer
WO2003036706A1 (en) Method and apparatus for etching silicon wafer and method for analysis of impurities
JPH04225526A (en) Impurity recovery on the surface of semiconductor substrate and impurity recovery device
JP4514267B2 (en) Impurity extraction method and impurity extraction apparatus for semiconductor substrate
JPH08321535A (en) Recovery method of impurities
JP2010008048A (en) Method of etching silicon wafer surface oxide film, metal contamination analysis method of silicon wafer with oxide film, and method of manufacturing silicon wafer with oxide film
JP2604037B2 (en) Semiconductor processing equipment
JP2002368052A (en) Method for desorbing silicon and method for analyzing impurities in silicon wafer
JP4732908B2 (en) Substrate processing method and substrate processing apparatus
JP2004109072A (en) Analysis method for metal impurity in solution
EP0339561B1 (en) Impurity measuring method
JPH05283381A (en) Recovery of contaminant metal element on silicon wafer surface
JP4204434B2 (en) Method and apparatus for recovering object to be measured around wafer
JP2005077133A (en) Analyzing sample producing method, analyzing method of substance present on semiconductor substrate and analyzing sample producing apparatus
JP3669728B2 (en) Oxide film, method for forming the same, and semiconductor device
JPH10253511A (en) Container for sample for impurity analysis
JPH0198944A (en) Surface analysis of silicon semiconductor substrate
JP2772035B2 (en) Method for measuring the amount of impurities on the wafer surface
JPH01189558A (en) Analyzing method of surface of si semiconductor substrate
KR20190128221A (en) Method for analyzing metal contamination of silicon wafers and manufacturing method of silicon wafers
JP3373019B2 (en) Semiconductor wafer vapor processing equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees