【0001】
【産業上の利用分野】
本発明は、酸化膜及びその形成方法、並びに半導体装置に係わり、特に半導体基板などに付着した有機不純物を除去し、極めて絶縁耐圧等の特性の優れた酸化膜を形成する方法に関する。
【0002】
【背景技術】
背景技術を、基体としてシリコンウエハを例にとって説明する。
【0003】
半導体製造プロセスにおけるシリコンウエハの洗浄は、半導体の生産工程の中で最も重要な工程の一つである。すなわち、シリコンウエハ上には多数の種々の不純物が付着しており、これら不純物の除去は、安定した特性の素子を歩留まり良く製造するためには必要不可欠である。特に、半導体デバイスの高集積化、高性能化にともない、デバイスの微細化、ウエハサイズの大口径化が進む中で、その重要性は益々高くなっている。
【0004】
これらの不純物を除去する方法として、種々の薬液を用いた洗浄がある。
【0005】
本発明者は、洗浄方法とその後に作製したデバイスの関係について、一連の研究を行う過程で、従来の洗浄方法では基板上の有機不純物を完全に取り去ることはできず、残留した有機不純物が酸化膜の絶縁耐圧に大きく影響することを見い出した。例えば現在、有機不純物の除去に一般的に用いられる、H2SO4+H2O2+超純水洗浄、NH4OH+H2O2+超純水洗浄、HCl+H2O2+超純水洗浄等では、洗浄後にも有機物が残留し、より高耐圧の酸化膜を形成するには有機物を完全に除去できる洗浄方法が必要であることが分かった。
【0006】
一方、従来の洗浄方法には、薬液別に独立した洗浄装置または洗浄槽を用い、シリコンウエハを、それぞれの薬液・超純水が貯蔵された洗浄槽に順次浸漬することによって行われるために、前工程におけるウエハ上への残存薬液の持ち込みが避けられず、洗浄槽中の薬液の相互汚染が生じるという問題がある。
【0007】
また、洗浄槽間の移送時に大気中を搬送するために、大気からの有機物汚染や自然酸化膜の生成を招いてしまう。さらに、汚染された薬液を複数回使用することや複数のシリコンウェハを同時に洗浄するため、一つのシリコンウエハから離脱した不純物が他のシリコンウエハに付着してしまうという問題がある。
【0008】
更にこれらの薬液は多量に用いるため廃液処理等の問題があり、また高温処理であるため操作性が悪く、クリーンルームへの負荷が大きくなるという問題がある。
【0009】
【発明が解決しようとする課題】
本発明は、上記問題点を解決し、有機物汚染のない清浄なシリコンウエハ表面に絶縁耐圧等の性能に優れた酸化膜及びその形成方法を提供し、さらには、高集積、高性能の半導体装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の酸化膜形成方法は、不活性ガス雰囲気中で、基体を回転しながらオゾンを含む超純水を基体に供給することにより基体に付着した有機物を除去する有機物除去工程と、該有機物除去工程で生成する酸化膜をフッ化水素酸と接触させて剥離する酸化膜剥離工程と、その後にオゾンを含む超純水と接触させて酸化膜を形成する酸化膜形成工程とを、少なくとも含むことを特徴とする。
【0011】
前記酸化膜形成工程において、オゾンを含む超純水を基体を回転させながら供給するのが好ましい。
【0012】
前記有機物除去工程と前記酸化膜形成工程において、前記超純水中のオゾン濃度は2ppm〜10ppmとするのが好ましく、前記不活性ガス中の有機不純物濃度は、1ppb以下であるのが好ましい。
【0013】
また、前記基体の回転数を100〜3000rpmとするのが好ましく、前記有機物除去工程と前記酸化膜形成工程において、前記オゾンを含む超純水の供給量を100〜500cc/minとするのが好ましい。
【0015】
本発明の半導体装置は、上記の酸化膜形成方法により酸化膜を形成後、熱酸化法あるいはイオンアシスト酸化法により成長させた酸化膜を有することを特徴とする。
【0016】
【作用】
以下に本発明の作用を実施態様例と共に説明する。
【0017】
本発明の酸化膜形成方法は、不活性ガス雰囲気中で行われ、少なくともオゾン添加超純水による有機不純物洗浄除去工程、HF+超純水による酸化膜剥離工程、オゾン添加超純水による酸化膜形成工程、を含む。
【0018】
即ち、有機不純物除去工程では、基体を回転させながら基体表面にオゾン添加超純水を供給し、表面の有機物をオゾン添加超純水で酸化させる。この時、同時に基体表面に酸化膜が形成される。その後超純水(あるいはオゾン添加超純水)でリンスし不純物を洗い流す。
【0019】
酸化膜剥離工程では、表面に生成した酸化膜をフッ化水素酸の超純水希釈液(0.1〜1%程度)と接触させて剥離し、超純水でリンスして薬液及び不純物を洗い流す。
【0020】
酸化膜形成工程では、有機不純物を除去した清浄な基体表面をオゾン添加超純水と接触させて、酸化膜を形成する。この酸化膜の厚さは、0.3〜1.0nmが好ましい。
【0021】
なお、酸化膜剥離工程及び酸化膜形成工程では、それぞれの薬液に浸漬させても良いが、基体を回転しながら薬液を供給して処理するのが好ましい。これにより、基体は常にフレッシュな薬液と接触し、基体面内で均一に処理が進むため、より絶縁体性の高い酸化膜が形成できる。なお、基体回転数は、各工程に最適の回転数に制御することが好ましい。
【0022】
最後に、基体を回転乾燥させて工程を終了する。ここまで、全ての工程は単一槽内で連続して行われるのが好ましい。
【0023】
以下に酸化膜の膜質に影響する要因を個別に説明する。
【0024】
(不活性ガス雰囲気)
本発明では、密閉槽内に不活性ガスをダウンフローで流し続けることが好ましい。不活性ガス雰囲気とすることにより、基体表面が不純物成分に暴露されるのを防止し、有機物の付着、自然酸化膜の形成を防止することができる。
【0025】
酸化膜剥離工程後に、自然酸化膜が生成するとオゾン添加超純水およびその後の熱処理等により形成される酸化膜は不均一となるため絶縁特性が低下する。また、自然酸化膜が生成すると表面の微小な荒れが増加し、オゾン添加超純水およびその後の熱処理等により形成される酸化膜の膜質が劣化する。従って、自然酸化膜の生成を極力防ぐのが望ましい。
【0026】
自然酸化膜の形成には、水分単独あるいは酸素単独の存在によっては自然酸化膜の形成は生ぜず、水分と酸素の両者が並存して生成する。従って、雰囲気を不活性ガス雰囲気とすれば自然酸化膜の形成を防止することができる。かかる観点から、不活性ガス中における酸素の含有量は、100ppb以下とすることが好ましく、10ppb以下とすることがより好ましく、1ppb以下とすることが最も好ましい。また、ガス中の有機不純物量は、1ppb以下とすることが好ましく、10ppt以下とすることがより好ましく、1ppt以下とすることが最も好ましい。このような、不活性ガスとしては、窒素ガスが好ましい。
【0027】
また、密閉槽内の圧力を外部圧力より高めになるように、気体を導入することが好ましい。密閉槽内の圧力を外部より高くなるようにすると、大気の密閉槽内への漏れを防止することができ、有機物付着、自然酸化膜生成をより一層効果的に防止することができる。
【0028】
不活性ガスの密閉槽内への導入は、ダウンフローとすることが好ましい。ダウンフローとした場合、表面から離脱した生成物はガスの流れに沿って下方に落下するため基体への再付着を防止することができ、より清浄度の高い洗浄を行うことができる。
【0029】
なお、不活性ガスは、基体表面に形成される薬液層を乱してしまわない程度の流速とすることが好ましい。
【0030】
(オゾンを含む超純水)
有機物除去工程に用いる場合、オゾン添加超純水中のオゾンの濃度は2ppm〜10ppmとすることが好ましい。2ppm未満では有機物の酸化が不十分となる場合があり、10ppmを超えると、基体表面に形成される酸化膜の厚みが厚くなりすぎ、その除去に時間を要するとともに表面粗度の増加を招いてしまう場合があるからである。
【0031】
酸化膜形成工程に用いる場合、オゾン添加超純水中のオゾンの濃度は2ppm〜10ppmとすることが好ましい。この範囲で、絶縁耐圧の高い酸化膜が得られるとともに、定電流ストレス下における酸化膜のTDDB特性においても最大注入電荷量QBDが増加する。
【0032】
オゾン添加超純水は、例えば超純水を電気分解して得ることができる。なお、オゾンの分解による濃度低下を最小限に抑えるため、ユースポイント最近傍で作製するのが好ましい。
【0033】
(オゾンを含む超純水等薬液の供給及び基体回転)
本発明において、基体を回転しながら薬液等を供給し、有機物除去、酸化膜剥離、酸化膜形成を効率的且つ均一に行うにためは、薬液あるいは超純水の供給は不連続ではなく、流体として連続して行うことが好ましい。即ち、薬液あるいは超純水を、断続的にではなく、水道の蛇口から出てくるような状態で連続的に供給することが重要である。
【0034】
この理由は明かではないが、例えば有機物除去の場合は次のようなものではないかと考えられる。即ち、連続的な薬液流の供給により薬液が基体の表面に供給されると、薬液は、遠心力のため半径方向に広がり表面を被覆し、表面のコンタミネーション源と反応して反応生成物を生成する。この反応生成物は遠心力により薬液とともに表面から即座に除去され、新たな表面が露出する。一方、薬液は連続的に供給されるので、新たに露出した基体の表面と新鮮な薬液とが反応する。このように、絶えず新たな表面と新鮮な薬液との接触が生じているため優れた清浄度で洗浄を行うことができると考えられる。一方、噴射供給の場合には、薬液は噴霧状で供給されるため基体の表面を均一には覆わず、そのため清浄化度の高い洗浄が達成できないものと推測される。
【0035】
以上の連続流をつくり出すノズルとしては、内径が出液口まで均一な直管型を用いることが好ましい。そして、出液口の面を基体に対し水平になるように配置することが好ましい。かかるノズルを用いた場合、出液口から流出する薬液あるいは超純水は、出液口直下にそのまま連続流体として落下し、落下点が基体の回転中心となるようにすれば、落下した薬液は遠心力により面内均一に広がるため面内均一な洗浄を行うことが可能となる。つまり、出液口が絞られているような場合は、出液面から出た薬液は霧状となり連続流体の供給ができなくなる。また、出液面が水平でない場合には、出液口から薬液の量が異なったり、出液口直下に薬液が落下せず、面内均一な薬液の供給ができなくなる。
【0036】
なお、薬液の供給位置は基体の回転中心とすることがより面内均一性を高める点で好ましい。
【0037】
また、本発明では、上記工程の他に複数の薬液洗浄工程を適宜行っても良い。この場合、同一の槽内で行うことができるため、基体の移送時における大気との接触により、有機物の付着、自然酸化膜の生成、粒子の付着等を防止できる。
【0038】
本発明において、基体の回転数は清浄化度、酸化膜の均一性にとって重要なファクターであり、100〜3000rpmとすることが好ましく、2500〜3000rpmとすることがより好ましい。
【0039】
100rpm未満では、薬液の量が少ないと表面全体を薬液で覆うことができず、乾燥部の発生を招いてしまい、洗浄、剥離及び酸化膜形成効率の低下を招くことがある。また、薬液量が多いと薬液は遠心力による広がりを起こす前にあふれる感じで表面から流れてしまうことがある。従って、100rpm未満では最適の薬液供給量に制御することが困難となる。
【0040】
3000rpmを超えると、薬液の一部はミスト状となり、このミスト状の薬液は槽の内壁にぶつかり基体の表面に再付着してせっかくきれいに洗浄された表面を汚染してしまうことがある。
【0041】
薬液の供給量は、100ml/min〜500ml/minが好ましく、300ml/min〜500ml/minがより好ましい。処理自体は短時間に終了するため、大流量でも使用薬液量は従来の方法と比べても大幅に減少する。
【0042】
(打ち水工程)
本発明では、薬液処理を行う前に、基体の回転数を100〜400rpmとして打ち水を行うことが好ましい。また、超純水の供給量は、基体の表面積によっても変化はするが、3インチ〜8インチ径のウエハの場合は、2.5〜10ccの超純水を基体表面に供給することが好ましい。
【0043】
すなわち、2.5cc未満では表面を完全には純水が被覆することができず、また、10ccを超えると、ある一部の超純水のみが流れその流れた跡に一つの流路が形成されてしまい、その後薬液供給を行うと、その流路に優先的に薬液が流れ均一な洗浄ができなくなってしまう。
【0044】
一方、回転数が100rpm未満では、表面全体を打ち水で覆うことができない場合が生じる。すなわち、乾燥部が一部に生じることがある。一方、400rpmを超えると、表面に形成された打ち水層の一部が破壊されてしまう場合があり、その破壊された部分に優先的に薬液が流入し面内不均一な洗浄が行われてしまう場合がある。
【0045】
(裏面洗浄)
基体の表面に薬液を供給するとともに、裏面に薬液を噴射して供給することが好ましい。基体表面から薬液が回り込む場合もあり、裏面の洗浄が不均一となる場合があるためである。
【0046】
(内壁面洗浄)
回転洗浄の場合、遠心力により表面から薬液が飛散するが、この飛散した薬液は洗浄槽内壁に付着し、内壁に付着した薬液が内壁から離脱して基体表面に再付着することがある。そこで、薬液洗浄工程中及び超純水洗浄工程中に、槽の内壁面を超純水により常時洗浄し、付着薬液を内壁面から洗い出すことがより高清浄な洗浄を行う上で好ましい。これにより、汚染された薬液による基体ヘの二次汚染を防止し清浄な基体表面が得られる。
【0047】
【実施例】
以下に本発明の実施例について説明する。
【0048】
(実施例1)
本実施例で用いた酸化膜形成装置を図1に示す。図1において、1は密閉槽本体、2は蓋、3は複数の薬液供給ノズルを束ねたノズルラック、4は裏面洗浄用ノズル、5は回転ウエハ保持台、6は回転モーター、7は不活性ガス導入口、8は廃液口、9はシリコンウエハである。
【0049】
図1の不活性ガス導入口7から窒素ガス(純度99.9999%)を導入しておき、6インチシリコンウェハ15をウエハ保持台4にセットして、蓋2を閉める。ノズルラック3の第1ノズルからウェハ表面に2.5〜10cc超純水を供給し、300rpmで回転させウェハ表面を均一に濡らした。これにより濡れ性が向上し、他工程がスムーズになる。
【0050】
続いて、基板回転数3000rpmで、第2ノズルよりオゾン添加超純水(2ppm)を300cc/minで3分間供給し表面の有機物を酸化させ、同時にウェハ表面に酸化膜を形成した後、第2ノズルのオゾンを止めて超純水でリンスし、オゾン添加超純水及び不純物を洗い流した。
【0051】
次に、基板回転数3000rpmで、第3ノズルから0.5%フッ化水素酸水溶液を300cc/minで2分間供給し、表面の酸化膜を剥離した後、第1ノズルから超純水を供給し、薬液及び不純物を洗い流した。
【0052】
次に、基板回転数3000rpmで、第2ノズルよりオゾン添加超純水を500cc/minで3分間供給し、ウエハ表面に酸化膜を0.6nm形成した。
【0053】
最後に、3000rpmで回転させ、ウエハを乾燥した。
【0054】
これらの工程中は、表面洗浄と同じ薬液を裏面に向かって裏面洗浄ノズル3より常時供給し裏面をも同時に洗浄した。
【0055】
まず、本発明の洗浄方法及び従来の洗浄方法の有機物除去効果を比較するために、種々の方法で有機物除去洗浄を行った後、0.5%フッ化水素酸水溶液で酸化膜を剥離した段階で、シリコン表面に付着している有機物量を測定した。
【0056】
なお、洗浄方法として、(1)80〜90℃のアンモニア/過酸化水素/超純水(0.05:1:5)を用いて浸漬によるバッチ洗浄、(2)80〜90℃の塩酸/過酸化水素/超純水(1:1:6)を用いて浸漬によるバッチ洗浄、(3)80〜90℃の過酸化水素(30%)を用いて浸漬によるバッチ洗浄、(4)80〜90℃の硫酸/過酸化水素(4:1)を用いて浸漬によるバッチ洗浄、(5)オゾン添加超純水(2ppm)を用いて浸漬によるバッチ洗浄、(6)本実施例のスピンによる洗浄、について行った。
【0057】
シリコンウエハを上記洗浄方法で洗浄した後の基板表面のATRスペクトルを図2に示す。なお、図2の縦軸のスケールは、アラキジン酸カドミウムまたはステアリルアミンの膜をラングミュア・ブロジェット法により、シリコンウエハ上に単分子膜を種々の面積形成したものについて、CH2伸縮振動のバンド強度と付着量の検量線を作成し、これから有機不純物の付着量を求めたものである。
【0058】
図2から明らかなように、オゾン添加超純水の有機物除去効果は、他の薬液に比べ優れた洗浄効果を有し、さらにスピン洗浄することによりその効果は一層向上し、有機物を完全に除去できることが分かる。これは、オゾンが有機物分解除去に優れていることを示すと共に、スピン洗浄では、清浄な窒素雰囲気中で洗浄が行われること、常にフレッシュな液が供給されること、ウエハの高速回転に伴う遠心力や高速液流等により、除去効果が向上するものと考えられる。
【0059】
次に、3種類の界面活性剤をウエハに付着させ故意に汚染したウエハについて、同様な試験を行った。結果を図3に示す。図3において、それぞれのスペクトルは、(a)カチオン性、(b)アニオン性、(c)非イオン性界面活性剤の水溶液に浸漬した後、それぞれの方法で洗浄した後のATRスペクトルである。なお、図中の番号(4)〜(6)は図2の洗浄方法の番号と対応する。
【0060】
図3が示すように、本実施例の洗浄は、界面活性剤のような有機不純物に対しても、優れた効果があることが分かる。
【0061】
続いて、上記オゾン添加超純水及び従来の薬液(図2の(1)〜(5)に対応する薬液)で酸化膜を0.5〜0.7nm形成した後、1000℃の酸化炉でドライ酸化して4.8〜5.3nmまで酸化膜を成長させた。その後、1×10-4cm2のAl電極を設けてMOSダイオードを作製し、それぞれの絶縁耐圧を測定した。結果を表1に示す。なお、表1の平均絶縁耐圧とは、電流が1×10-4A流れる電圧値について、100個のMOSダイオードの平均値を示すものである。
【0062】
【表1】
表1が示すように、本実施例のゲート酸化膜(6)は極めて高い絶縁耐圧を示すことが分かる。また、図2との関係から、ウエハ上の残留有機不純物の汚染が、後に形成されるゲート酸化膜の絶縁耐圧の劣化に大きく影響していることが分かる。
【0063】
また、一定ストレス電流下におけるTDDB特性の測定から、最大注入電荷量QBDは、本実施例のゲート酸化膜(6)が最も大きな値となることが分かった。
【0064】
(実施例2)
本実施例においては、実施例1と同様にして液中で酸化膜を形成した後、Arと酸素ガス(300:8)の混合ガスのプラズマ中で、基板温度450℃の低温で酸化膜を成長させるアルゴンイオンアシスト酸化法により、ゲート酸化膜(7nm)を成長させ、実施例1と同様にしてMOSダイオードを作製した。アルゴンイオンのエネルギーは9eVとなるようにバイアスを印加した。また、従来のMOSダイオードについても、同様にして作製した。
【0065】
作製したMOSダイオードのゲート酸化膜の絶縁耐圧を表2に示す。薬液の番号は表1と対応しており、また参考のため液中で酸化膜を形成しないで直接イオンアシスト酸化法で酸化膜を形成したものを(参考例)として示した。
【0066】
【表2】
表2から明らかなように、本実施例のゲート酸化膜は低温での酸化膜成長であるにもかかわらず、高い絶縁耐圧が得られ、極薄酸化膜の信頼性が大きく向上する。即ち、本発明により半導体デバイスの低温プロセスを実現することが可能となる。
【0067】
また、参考例との比較により、イオンアシスト酸化前に液中で酸化膜を形成しておくことにより、ゲート酸化膜の耐圧は2倍以上向上することが分かる。
【0068】
以上の実施例においては、液中で酸化膜を形成後、イオンアシスト酸化装置へのウエハの設置はN2ガスシール中を搬送して行った。これは、図4に示すようにウエハをクリーンルーム中に放置するだけで表面に有機物が付着するため、大気中を搬送することにより、再び表面に有機不純物等が付着するのを防ぐためである。
【0069】
【発明の効果】
本発明によれば、例えばシリコンウエハの酸化膜を特性を大幅に改善することが可能となり、また低温プロセスにおいても高特性の酸化膜を形成することが可能となるため、より高性能、高集積半導体デバイスを実現することができる。
【0070】
また、硫酸、塩酸等を使用しなくて良いため廃液処理等が容易になるとともに、完全な密閉系での工程であるため、現場作業員の危険性も減少できる。
【図面の簡単な説明】
【図1】本発明の酸化膜形成に好適な装置の射視図である。
【図2】洗浄後の有機不純物の残留量を示すグラフである。
【図3】界面活性剤の除去効果を示すグラフである。
【図4】クリーンルーム中に放置した場合の有機不純物の付着量の変化を示すグラフである。
【符号の説明】
1 密閉槽本体、
2 蓋、
3 複数の薬液供給ノズルを束ねたノズルラック、
4 裏面洗浄用ノズル、
5 回転ウエハ保持台、
6 回転モーター、
7 不活性ガス導入口、
8 廃液口、
9 シリコンウエハ。[0001]
[Industrial application fields]
The present invention relates to an oxide film, a method for forming the oxide film, and a semiconductor device, and more particularly, to a method for removing an organic impurity adhering to a semiconductor substrate and forming an oxide film having extremely excellent characteristics such as withstand voltage.
[0002]
[Background]
The background art will be described by taking a silicon wafer as an example of the substrate.
[0003]
Cleaning of a silicon wafer in a semiconductor manufacturing process is one of the most important steps in a semiconductor production process. That is, a large number of various impurities adhere to the silicon wafer, and removal of these impurities is indispensable for manufacturing a device having stable characteristics with a high yield. In particular, as semiconductor devices are highly integrated and have high performance, their importance is increasing as device miniaturization and wafer size increase.
[0004]
As a method for removing these impurities, there is cleaning using various chemical solutions.
[0005]
In the course of conducting a series of studies on the relationship between the cleaning method and the device produced thereafter, the inventor cannot completely remove the organic impurities on the substrate with the conventional cleaning method, and the remaining organic impurities are oxidized. It was found that the dielectric strength of the film is greatly affected. For example, H 2 SO 4 + H 2 O 2 + ultra pure water cleaning, NH 4 OH + H 2 O 2 + ultra pure water cleaning, HCl + H 2 O 2 + ultra pure water cleaning, etc. that are generally used for removing organic impurities at present. Then, it was found that the organic matter remains after the cleaning, and a cleaning method capable of completely removing the organic matter is necessary to form a higher breakdown voltage oxide film.
[0006]
On the other hand, the conventional cleaning method uses a separate cleaning device or cleaning tank for each chemical solution, and is performed by sequentially immersing silicon wafers in a cleaning tank storing each chemical solution and ultrapure water. There is a problem that the chemical solution in the cleaning tank is inevitably brought in on the wafer in the process, and the chemical solution in the cleaning tank is cross-contaminated.
[0007]
Moreover, since it conveys in air | atmosphere at the time of the transfer between washing tanks, it will cause the production | generation of the organic matter contamination from the air | atmosphere, or a natural oxide film. Furthermore, since the contaminated chemical solution is used a plurality of times and a plurality of silicon wafers are cleaned at the same time, there is a problem that impurities detached from one silicon wafer adhere to other silicon wafers.
[0008]
Further, since these chemical solutions are used in a large amount, there are problems such as waste liquid treatment, and because of the high temperature treatment, there is a problem that the operability is poor and the load on the clean room is increased.
[0009]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems, provides an oxide film excellent in performance such as withstand voltage on a clean silicon wafer surface free from organic contamination, and a method for forming the same, and further provides a highly integrated and high-performance semiconductor device The purpose is to provide.
[0010]
[Means for Solving the Problems]
An oxide film forming method of the present invention includes an organic substance removing step of removing organic substances attached to a substrate by supplying ultrapure water containing ozone to the substrate while rotating the substrate in an inert gas atmosphere, and removing the organic substance Including at least an oxide film peeling step in which an oxide film generated in the process is brought into contact with hydrofluoric acid and then brought into contact with ultrapure water containing ozone to form an oxide film. It is characterized by.
[0011]
In the oxide film forming step, it is preferable to supply ultrapure water containing ozone while rotating the substrate.
[0012]
In the organic substance removing step and the oxide film forming step, the ozone concentration in the ultrapure water is preferably 2 ppm to 10 ppm, and the organic impurity concentration in the inert gas is preferably 1 ppb or less.
[0013]
Moreover, it is preferable that the rotation speed of the substrate is 100 to 3000 rpm, and in the organic substance removing step and the oxide film forming step, it is preferable that the supply amount of the ultrapure water containing ozone is 100 to 500 cc / min. .
[0015]
The semiconductor device of the present invention is characterized by having an oxide film grown by the thermal oxidation method or ion-assisted oxidation method after the oxide film is formed by the above oxide film formation method.
[0016]
[Action]
Hereinafter, the operation of the present invention will be described together with embodiments.
[0017]
The oxide film forming method of the present invention is performed in an inert gas atmosphere, at least an organic impurity cleaning / removing step using ozone-added ultrapure water, an oxide film removing step using HF + ultrapure water, and an oxide film forming using ozone-added ultrapure water Process.
[0018]
That is, in the organic impurity removal step, ozone-added ultrapure water is supplied to the surface of the substrate while rotating the substrate, and organic substances on the surface are oxidized with ozone-added ultrapure water. At the same time, an oxide film is formed on the substrate surface. Then rinse with ultrapure water (or ozone added ultrapure water) to wash away impurities.
[0019]
In the oxide film peeling step, the oxide film formed on the surface is peeled off by contacting with an ultrapure water diluted solution of hydrofluoric acid (about 0.1 to 1%) and rinsed with ultrapure water to remove chemicals and impurities. Wash away.
[0020]
In the oxide film forming step, a clean substrate surface from which organic impurities have been removed is brought into contact with ozone-added ultrapure water to form an oxide film. The thickness of this oxide film is preferably 0.3 to 1.0 nm.
[0021]
In the oxide film peeling step and the oxide film forming step, the substrate may be immersed in each chemical solution, but it is preferable to perform the treatment by supplying the chemical solution while rotating the substrate. As a result, the substrate is always in contact with a fresh chemical solution, and the process proceeds uniformly within the surface of the substrate, so that an oxide film with higher insulating properties can be formed. Note that the substrate rotation speed is preferably controlled to an optimum rotation speed for each process.
[0022]
Finally, the substrate is rotated and dried to finish the process. So far, it is preferable that all the processes are continuously performed in a single tank.
[0023]
The factors affecting the quality of the oxide film will be described individually below.
[0024]
(Inert gas atmosphere)
In the present invention, it is preferable to keep the inert gas continuously flowing in the closed tank. By setting the inert gas atmosphere, it is possible to prevent the surface of the substrate from being exposed to impurity components, and to prevent the adhesion of organic substances and the formation of a natural oxide film.
[0025]
If a natural oxide film is formed after the oxide film peeling step, the oxide film formed by ozone-added ultrapure water and the subsequent heat treatment or the like becomes non-uniform, so that the insulating characteristics are deteriorated. In addition, when a natural oxide film is formed, minute surface roughness increases, and the quality of the oxide film formed by ozone-added ultrapure water and subsequent heat treatment or the like deteriorates. Therefore, it is desirable to prevent the formation of a natural oxide film as much as possible.
[0026]
In the formation of a natural oxide film, the formation of a natural oxide film does not occur due to the presence of water alone or oxygen alone, and both water and oxygen are produced side by side. Therefore, if the atmosphere is an inert gas atmosphere, the formation of a natural oxide film can be prevented. From this point of view, the oxygen content in the inert gas is preferably 100 ppb or less, more preferably 10 ppb or less, and most preferably 1 ppb or less. Further, the amount of organic impurities in the gas is preferably 1 ppb or less, more preferably 10 ppt or less, and most preferably 1 ppt or less. As such an inert gas, nitrogen gas is preferable.
[0027]
Moreover, it is preferable to introduce | transduce gas so that the pressure in an airtight tank may become higher than an external pressure. When the pressure in the sealed tank is increased from the outside, leakage of the atmosphere into the sealed tank can be prevented, and organic matter adhesion and natural oxide film generation can be more effectively prevented.
[0028]
The introduction of the inert gas into the sealed tank is preferably a down flow. In the case of downflow, the product detached from the surface falls downward along the gas flow, so that it can be prevented from reattaching to the substrate, and cleaning with higher cleanliness can be performed.
[0029]
The inert gas preferably has a flow rate that does not disturb the chemical layer formed on the substrate surface.
[0030]
(Ultra pure water containing ozone)
When using for an organic substance removal process, it is preferable that the density | concentration of ozone in ozone addition ultrapure water shall be 2 ppm-10 ppm. If it is less than 2 ppm, the oxidation of the organic matter may be insufficient. If it exceeds 10 ppm, the thickness of the oxide film formed on the substrate surface becomes too thick, and it takes time to remove it and causes an increase in surface roughness. This is because it may end up.
[0031]
When used in the oxide film forming step, the concentration of ozone in the ozone-added ultrapure water is preferably 2 ppm to 10 ppm. Within this range, an oxide film having a high withstand voltage is obtained, and the maximum injected charge amount Q BD also increases in the TDDB characteristics of the oxide film under constant current stress.
[0032]
The ozone-added ultrapure water can be obtained, for example, by electrolyzing ultrapure water. In order to minimize the decrease in concentration due to the decomposition of ozone, it is preferable to produce it near the use point.
[0033]
(Supplying chemical solution such as ultrapure water containing ozone and rotating the substrate)
In the present invention, in order to efficiently and uniformly perform organic substance removal, oxide film peeling, and oxide film formation by supplying a chemical solution while rotating the substrate, the supply of the chemical solution or ultrapure water is not discontinuous, It is preferable to carry out continuously. That is, it is important to supply the chemical solution or ultrapure water continuously, not intermittently, but in a state of coming out of a tap.
[0034]
The reason for this is not clear, but for example, in the case of organic matter removal, it may be considered as follows. That is, when a chemical solution is supplied to the surface of the substrate by continuous supply of the chemical solution, the chemical solution spreads in the radial direction due to centrifugal force, covers the surface, and reacts with the surface contamination source to produce a reaction product. Generate. This reaction product is immediately removed from the surface together with the chemical solution by centrifugal force, and a new surface is exposed. On the other hand, since the chemical solution is continuously supplied, the surface of the newly exposed substrate reacts with the fresh chemical solution. In this way, it is considered that cleaning can be performed with an excellent cleanliness because a new surface is constantly in contact with a fresh chemical solution. On the other hand, in the case of spray supply, since the chemical solution is supplied in the form of a spray, the surface of the substrate is not uniformly covered, and it is assumed that cleaning with a high degree of cleaning cannot be achieved.
[0035]
As the nozzle for producing the above continuous flow, it is preferable to use a straight pipe type in which the inner diameter is uniform up to the liquid outlet. And it is preferable to arrange | position so that the surface of a liquid outlet may become horizontal with respect to a base | substrate. When such a nozzle is used, the chemical liquid or ultrapure water flowing out from the liquid outlet drops as a continuous fluid directly under the liquid outlet, and if the drop point is the center of rotation of the substrate, the dropped chemical liquid is In-plane uniform cleaning is possible because the centrifugal force spreads uniformly in the plane. That is, when the liquid outlet is constricted, the chemical liquid that has come out from the liquid outlet surface becomes mist-like and cannot be supplied with a continuous fluid. In addition, when the liquid discharge surface is not horizontal, the amount of the chemical liquid is different from the liquid discharge port, or the chemical liquid does not fall directly under the liquid discharge port, so that it is impossible to supply the chemical liquid uniformly in the surface.
[0036]
In addition, it is preferable that the supply position of the chemical solution is the center of rotation of the base in terms of further improving the in-plane uniformity.
[0037]
In the present invention, a plurality of chemical liquid cleaning steps may be appropriately performed in addition to the above steps. In this case, since it can be performed in the same tank, it is possible to prevent adhesion of organic substances, generation of a natural oxide film, adhesion of particles, and the like due to contact with the atmosphere during transfer of the substrate.
[0038]
In the present invention, the rotation speed of the substrate is an important factor for the degree of cleanliness and the uniformity of the oxide film, and is preferably 100 to 3000 rpm, more preferably 2500 to 3000 rpm.
[0039]
If it is less than 100 rpm, if the amount of the chemical solution is small, the entire surface cannot be covered with the chemical solution, resulting in the generation of a drying section, which may lead to cleaning, peeling, and a reduction in oxide film formation efficiency. Moreover, when there is much chemical | medical solution amount, a chemical | medical solution may flow from the surface with the feeling of overflowing before causing the spread by a centrifugal force. Therefore, if it is less than 100 rpm, it becomes difficult to control to the optimal chemical supply amount.
[0040]
If it exceeds 3000 rpm, a part of the chemical solution becomes mist, and this mist-shaped chemical solution may collide with the inner wall of the tank and redeposit on the surface of the substrate to contaminate the cleanly cleaned surface.
[0041]
The supply amount of the chemical solution is preferably 100 ml / min to 500 ml / min, more preferably 300 ml / min to 500 ml / min. Since the process itself is completed in a short time, the amount of the chemical solution used is greatly reduced even at a large flow rate compared to the conventional method.
[0042]
(Punching process)
In the present invention, before performing the chemical treatment, it is preferable to perform water spraying with the rotation speed of the substrate set to 100 to 400 rpm. The amount of ultrapure water supplied varies depending on the surface area of the substrate, but in the case of a wafer having a diameter of 3 to 8 inches, it is preferable to supply 2.5 to 10 cc of ultrapure water to the surface of the substrate. .
[0043]
That is, if the surface is less than 2.5 cc, the surface cannot be completely covered with pure water, and if it exceeds 10 cc, only a part of the ultrapure water flows and one flow path is formed in the trace. If the chemical solution is supplied thereafter, the chemical solution preferentially flows through the flow path, and uniform cleaning cannot be performed.
[0044]
On the other hand, if the rotational speed is less than 100 rpm, the entire surface may not be covered with water. That is, a dry part may arise in part. On the other hand, if it exceeds 400 rpm, a part of the striking water layer formed on the surface may be destroyed, and the chemical solution will preferentially flow into the destroyed part, resulting in uneven cleaning in the surface. There is a case.
[0045]
(Backside cleaning)
While supplying a chemical | medical solution to the surface of a base | substrate, it is preferable to inject and supply a chemical | medical solution to a back surface. This is because the chemical solution may circulate from the surface of the substrate, and the cleaning of the back surface may be uneven.
[0046]
(Inner wall cleaning)
In the case of rotational cleaning, the chemical solution scatters from the surface due to centrifugal force. The scattered chemical solution adheres to the inner wall of the cleaning tank, and the chemical solution attached to the inner wall may detach from the inner wall and reattach to the substrate surface. In view of this, it is preferable that the inner wall surface of the tank is always washed with ultrapure water during the chemical solution washing step and the ultrapure water washing step, and the attached chemical solution is washed out from the inner wall surface in order to achieve a higher level of cleaning. As a result, secondary contamination of the substrate by the contaminated chemical solution is prevented, and a clean substrate surface can be obtained.
[0047]
【Example】
Examples of the present invention will be described below.
[0048]
(Example 1)
The oxide film forming apparatus used in this example is shown in FIG. In FIG. 1, 1 is a closed tank body, 2 is a lid, 3 is a nozzle rack in which a plurality of chemical solution supply nozzles are bundled, 4 is a back surface cleaning nozzle, 5 is a rotating wafer holder, 6 is a rotating motor, and 7 is inactive. A gas introduction port, 8 is a waste liquid port, and 9 is a silicon wafer.
[0049]
Nitrogen gas (purity 99.9999%) is introduced from the inert gas inlet 7 of FIG. 1, a 6 inch silicon wafer 15 is set on the wafer holder 4 and the lid 2 is closed. 2.5 to 10 cc ultrapure water was supplied from the first nozzle of the nozzle rack 3 to the wafer surface and rotated at 300 rpm to wet the wafer surface uniformly. This improves wettability and smoothes other processes.
[0050]
Subsequently, ozone-added ultrapure water (2 ppm) was supplied from the second nozzle at 300 cc / min for 3 minutes at a substrate rotation speed of 3000 rpm to oxidize organic substances on the surface, and at the same time, an oxide film was formed on the wafer surface. The ozone in the nozzle was stopped and rinsed with ultrapure water to wash away the ozone-added ultrapure water and impurities.
[0051]
Next, at a substrate rotation speed of 3000 rpm, a 0.5% hydrofluoric acid aqueous solution is supplied from the third nozzle at 300 cc / min for 2 minutes, and after removing the oxide film on the surface, ultrapure water is supplied from the first nozzle. The chemical solution and impurities were washed away.
[0052]
Next, at a substrate rotation speed of 3000 rpm, ozone-added ultrapure water was supplied from the second nozzle at 500 cc / min for 3 minutes to form an oxide film of 0.6 nm on the wafer surface.
[0053]
Finally, the wafer was dried by rotating at 3000 rpm.
[0054]
During these steps, the same chemical solution as the front surface cleaning was always supplied from the back surface cleaning nozzle 3 toward the back surface, and the back surface was simultaneously cleaned.
[0055]
First, in order to compare the organic substance removal effect of the cleaning method of the present invention and the conventional cleaning method, after removing the organic substance by various methods, the oxide film was peeled off with a 0.5% hydrofluoric acid aqueous solution. Then, the amount of organic substances adhering to the silicon surface was measured.
[0056]
As cleaning methods, (1) batch cleaning by dipping using ammonia / hydrogen peroxide / ultra pure water (0.05: 1: 5) at 80 to 90 ° C., and (2) hydrochloric acid / 80 to 90 ° C. Batch cleaning by immersion using hydrogen peroxide / ultra pure water (1: 1: 6), (3) Batch cleaning by immersion using hydrogen peroxide (30%) at 80-90 ° C., (4) 80- Batch cleaning by immersion using sulfuric acid / hydrogen peroxide (4: 1) at 90 ° C., (5) Batch cleaning by immersion using ozone-added ultrapure water (2 ppm), (6) Cleaning by spin of this example , Went about.
[0057]
FIG. 2 shows an ATR spectrum of the substrate surface after the silicon wafer is cleaned by the above cleaning method. The scale of the vertical axis in FIG. 2 shows the band intensity of CH 2 stretching vibration for cadmium arachidate or stearylamine films formed with various areas of monomolecular films on a silicon wafer by the Langmuir-Blodgett method. A calibration curve of the amount of adhesion was created, and the amount of adhesion of organic impurities was determined from this.
[0058]
As is clear from FIG. 2, the organic substance removal effect of ozone-added ultrapure water has an excellent cleaning effect compared to other chemicals, and further improved by spin cleaning, and the organic substance is completely removed. I understand that I can do it. This indicates that ozone is excellent for organic substance decomposition and removal, and in spin cleaning, cleaning is performed in a clean nitrogen atmosphere, a fresh liquid is always supplied, and centrifugation accompanied by high-speed rotation of the wafer. The removal effect is considered to be improved by force, high-speed liquid flow, and the like.
[0059]
Next, a similar test was performed on a wafer intentionally contaminated by attaching three types of surfactants to the wafer. The results are shown in FIG. In FIG. 3, each spectrum is an ATR spectrum after being immersed in an aqueous solution of (a) cationic, (b) anionic, and (c) nonionic surfactant and then washed by each method. Note that numbers (4) to (6) in the figure correspond to the numbers of the cleaning methods in FIG.
[0060]
As shown in FIG. 3, it can be seen that the cleaning of this example has an excellent effect on organic impurities such as surfactants.
[0061]
Subsequently, after forming an oxide film with a thickness of 0.5 to 0.7 nm using the ozone-added ultrapure water and the conventional chemical solution (chemical solutions corresponding to (1) to (5) in FIG. 2), Dry oxidation was performed to grow an oxide film to 4.8 to 5.3 nm. Thereafter, a 1 × 10 −4 cm 2 Al electrode was provided to fabricate a MOS diode, and the respective dielectric strength voltages were measured. The results are shown in Table 1. In addition, the average withstand voltage in Table 1 indicates an average value of 100 MOS diodes with respect to a voltage value at which a current flows at 1 × 10 −4 A.
[0062]
[Table 1]
As shown in Table 1, it can be seen that the gate oxide film (6) of the present example exhibits a very high breakdown voltage. Further, it can be seen from the relationship with FIG. 2 that the contamination of the residual organic impurities on the wafer greatly affects the deterioration of the withstand voltage of the gate oxide film to be formed later.
[0063]
Further, from the measurement of the TDDB characteristic under a constant stress current, it was found that the maximum injected charge amount Q BD had the largest value in the gate oxide film (6) of this example.
[0064]
(Example 2)
In this example, after forming an oxide film in a liquid in the same manner as in Example 1, the oxide film was formed at a low substrate temperature of 450 ° C. in a mixed gas plasma of Ar and oxygen gas (300: 8). A gate oxide film (7 nm) was grown by an argon ion assisted oxidation method for growth, and a MOS diode was fabricated in the same manner as in Example 1. A bias was applied so that the energy of argon ions was 9 eV. A conventional MOS diode was manufactured in the same manner.
[0065]
Table 2 shows the withstand voltage of the gate oxide film of the fabricated MOS diode. The numbers of the chemical solutions correspond to those in Table 1, and for reference, an oxide film formed by a direct ion-assisted oxidation method without forming an oxide film in the solution is shown as (Reference Example).
[0066]
[Table 2]
As is apparent from Table 2, although the gate oxide film of this embodiment is grown at a low temperature, a high withstand voltage is obtained and the reliability of the ultrathin oxide film is greatly improved. That is, the low temperature process of the semiconductor device can be realized by the present invention.
[0067]
In addition, it can be seen from comparison with the reference example that the breakdown voltage of the gate oxide film is improved more than twice by forming the oxide film in the liquid before ion-assisted oxidation.
[0068]
In the above embodiment, after the oxide film was formed in the liquid, the wafer was placed in the ion-assisted oxidizer by carrying it through the N 2 gas seal. This is because organic substances adhere to the surface simply by leaving the wafer in a clean room, as shown in FIG. 4, so that organic impurities and the like are prevented from adhering to the surface again by transporting in the atmosphere.
[0069]
【The invention's effect】
According to the present invention, for example, the characteristics of an oxide film on a silicon wafer can be greatly improved, and a high-quality oxide film can be formed even in a low-temperature process. A semiconductor device can be realized.
[0070]
Further, since it is not necessary to use sulfuric acid, hydrochloric acid or the like, waste liquid treatment can be facilitated, and the risk of on-site workers can be reduced because the process is a completely closed system.
[Brief description of the drawings]
FIG. 1 is a perspective view of an apparatus suitable for forming an oxide film according to the present invention.
FIG. 2 is a graph showing the residual amount of organic impurities after cleaning.
FIG. 3 is a graph showing the effect of removing a surfactant.
FIG. 4 is a graph showing a change in the adhesion amount of organic impurities when left in a clean room.
[Explanation of symbols]
1 Sealed tank body,
2 lid,
3 Nozzle rack that bundles multiple chemical supply nozzles,
4 Nozzle for back surface cleaning,
5 rotating wafer holder,
6 Rotating motor,
7 Inert gas inlet,
8 Waste liquid outlet,
9 Silicon wafer.