JP4306217B2 - Method for drying semiconductor substrate after cleaning - Google Patents

Method for drying semiconductor substrate after cleaning Download PDF

Info

Publication number
JP4306217B2
JP4306217B2 JP2002302413A JP2002302413A JP4306217B2 JP 4306217 B2 JP4306217 B2 JP 4306217B2 JP 2002302413 A JP2002302413 A JP 2002302413A JP 2002302413 A JP2002302413 A JP 2002302413A JP 4306217 B2 JP4306217 B2 JP 4306217B2
Authority
JP
Japan
Prior art keywords
semiconductor substrate
drying
holder
processing
processing liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002302413A
Other languages
Japanese (ja)
Other versions
JP2004140126A (en
Inventor
茂 奥内
和成 高石
幹男 岸本
剛 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2002302413A priority Critical patent/JP4306217B2/en
Publication of JP2004140126A publication Critical patent/JP2004140126A/en
Application granted granted Critical
Publication of JP4306217B2 publication Critical patent/JP4306217B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、シリコンウェーハに代表される半導体基板を洗浄した後における乾燥方法に関するものである。
【0002】
【従来の技術】
半導体デバイスの微細化と高集積化が進むに従って、半導体基板の表面汚染が製造歩留りやデバイス特性及び信頼性に与える影響はますます大きくなってきている。半導体基板は様々なデバイス製造工程を経て最終製品に至るが、この間に基板表面は各種の汚染環境に晒される。そこで基板表面から金属不純物や微粒子等を除去するために鏡面研磨ウェーハ加工、酸化、不純物拡散、イオンインプランテーション、化学的気相成長(CVD)、リソグラフィーなど各工程の前後にはその半導体基板を洗浄して乾燥させる洗浄乾燥工程が設けられている。
従来、この洗浄乾燥工程として、多槽浸漬式のウエットステーションが知られている(例えば、特許文献1参照。)。この多槽浸漬式のウエットステーションは、ウェーハ洗浄処理工程に対応して薬液槽を直線的に設け、この薬液層に順次ウェーハを浸漬して洗浄処理し、その後乾燥される。この乾燥は洗浄されたウェーハを純水槽に浸漬し、その後乾燥槽で乾燥させることにより行われるようになっている。
【0003】
【特許文献1】
特開平6−163492号公報
【0004】
【発明が解決しようとする課題】
しかし、ウェーハを純水槽に浸漬した後に引上げてそのウェーハの表面に付着した温純水を乾燥槽で乾燥させることは、その温純水に含有される有機物が乾燥後のウェーハの表面に付着し、その温純水に含まれる有機物汚染を十分に解消させることは困難であった。また、ウェーハを乾燥させるために純水槽と乾燥槽の2つの槽を必要とし、これらの槽を用いることなくウェーハを乾燥できれば、洗浄乾燥工程における全体の槽の数を減少させることができ、設備管理等の面で有利である。
本発明の目的は、洗浄乾燥工程における全体の槽の数を減少させることができ、かつ純水における有機汚染を減少することができる洗浄後の半導体基板の乾燥方法を提供することにある。
【0007】
【課題を解決するための手段】
請求項に係る発明は、供給管12から供給されて処理槽11に貯留された処理液13に半導体基板14を浸漬し処理液13を供給管から供給し続けた状態で処理する工程と、供給管から処理液13の供給を続けながら処理された半導体基板14を処理槽11から引上げながら大気又はN2雰囲気下15〜70℃で乾燥させる工程とを有する洗浄後の半導体基板の乾燥方法であって、引上げながら乾燥するときの処理層に貯留された処理液が20〜70℃の0.001〜0.1Nの硝酸水溶液であることを特徴とする洗浄後の半導体基板の乾燥方法である。
【0008】
請求項に係る発明では、処理槽11に貯留される処理液13が硝酸水溶液であり、純水に比較して有機物汚染は少なく、純水を用いて処理する場合に比較して有機物汚染を減少させることができる。また、硝酸水溶液は、供給管から供給してもその液中に気泡が発生することはなく、この気泡に起因して、引上げられる半導体基板14の表面にウォーターマーク等の面質異常が生じることはなく、有機物汚染を有効に回避することができる。そして、洗浄工程の最終段階で硝酸水溶液を用いるようなものである場合には、更に使用する槽を減少させることができ、洗浄乾燥工程における設備費及びその管理負担を著しく低減させることができる。
【0009】
【発明の実施の形態】
本発明の第1の実施の形態を図面に基づいて詳しく説明する。
図1〜図6に示すように、本発明の洗浄後の半導体基板の乾燥方法には、処理槽11のみが用いられ、この処理槽11の周囲には図示しないヒータ及び冷却チラーが設けられる。処理槽11にはその内底部に一端が沿うように供給管12が設けられ、その供給管12の一端には長手方向に向かって図示しない複数の供給口が形成され、他端から供給した処理液13をその複数の供給口から図の矢印で示すように上方に噴出可能に構成される。供給管12から処理液13を噴出させて処理槽11に処理液を供給すると、その処理槽11には処理液13が貯留されて前述したヒータにより所定の温度に保つように構成される。本発明の方法は、処理槽11に貯留された処理液13に半導体基板14を浸漬して処理する工程と、処理液13の供給を停止して処理された半導体基板14を処理槽11から引上げながら大気又はN2雰囲気下15〜70℃で乾燥させる工程とを有する。ここで、処理槽11に貯留される処理液13は、20〜27℃の0.001〜0.1Nの硝酸水溶液である。以下に本発明の洗浄後の半導体基板の乾燥方法を各工程に分けて説明する。
【0010】
a.浸漬処理工程
先ず、半導体基板14を乾燥する際には、先の洗浄工程における洗浄液等を除去するために、最初処理槽11内で半導体基板14を処理液13により処理する。この処理は、処理槽11に貯留されて所定の温度に保たれた処理液13に処理すべき半導体基板14を浸漬させることにより行われる。図1に示すように、この浸漬に際して、半導体基板14は第1ホルダ16に保持され、その半導体基板14とともに第1ホルダ16を下降させて第2ホルダ21に複数の半導体基板14を保持させる。第2ホルダ21に保持された状態で半導体基板14は処理槽11に貯留された処理液13中に浸漬される。ここで、第1ホルダ16は起立した半導体基板14の底の側部を保持して複数枚の半導体基板14を垂直に保持するように構成され、第2ホルダ21は処理槽11に予め設けられる。第2ホルダ21は、第1ホルダ16と同様に、半導体基板14の底の側部を保持して複数枚の半導体基板14を垂直に保持するものであり、複数枚の半導体基板14を垂直に保持する図示しない複数の溝が形成される。
【0011】
処理すべき複数枚の半導体基板14の処理液13中への浸漬は、第1ホルダ16の上部を保持して移動可能に構成されたホルダアーム18により行われ、そのホルダアーム18が半導体基板14を保持した第1ホルダ16の上部を保持し、その状態で図1の実線矢印で示すように下降して、半導体基板14を第1ホルダ16とともに処理液13中に浸漬させる。複数枚の半導体基板14が第2ホルダ21に保持された後、第1ホルダ16は引上げられる。図2に示すようにウェーハ14が第2ホルダ21に保持されて処理液13に浸漬された状態で、供給管12からは処理液13が垂直状態の複数枚の半導体基板の下端に向けて供給し続けられ、複数枚の半導体基板は処理液13が供給されている状態でその処理液13により処理される。
【0012】
b.引上げ乾燥工程
半導体基板14は処理後に乾燥させられる。図3に示すように、処理された半導体基板14を第2ホルダ21とともに処理槽11から1〜5mm/secの比較的ゆっくりした速度で引上げながら大気又はN2雰囲気下15〜70℃で乾燥させる。この引上げに関しては、供給管12から処理液13の供給は停止される。処理液13の供給を停止した状態で、第2ホルダ21を複数枚の半導体基板14とともに比較的緩やかな速度で引上げると、複数枚の半導体基板14は処理液13の液面から緩やかに出現して乾燥させられる。このとき、液面から出現する半導体基板14の乾燥を促すための不活性ガスをその出現した半導体基板14に吹き付けることもできる。
【0013】
ここで、処理槽11に貯留される処理液13は、20〜27℃の0.001〜0.1Nの硝酸水溶液であるので、純水に比較して有機物汚染は少なく、純水を用いて処理する場合に比較して有機物汚染を減少させることができる。この場合、供給管12からは処理液13の供給を続けながら処理された半導体基板14を処理槽11から引上げながら大気又はN 2 雰囲気下15〜70℃で乾燥させることができる。硝酸水溶液は、供給管から供給してもその液中に気泡が発生することはなく、この気泡に起因して、引上げられる半導体基板14の表面にウォーターマークが生じることはなく、有機物汚染を有効に回避することができる。そして、洗浄工程の最終段階で硝酸水溶液を用いるようなものである場合には、更に使用する槽を減少させることができ、洗浄乾燥工程における設備費及びその管理負担を著しく低減させることができる。
【0014】
図4及び図5に示すように、引上げられた複数枚の半導体基板14はその後第1ホルダ16に保持されて移動させられる。図6に示すように、複数枚の半導体基板14が第1ホルダ16に保持されて移動した後の第2ホルダ21は再び下降し、供給管12からは処理液13が再び供給され、次に乾燥すべき半導体基板を受け入れる最初の状態に戻る。ここで、半導体基板14の第2ホルダ21により保持されていた部分は、その半導体基板14が第1ホルダ16に保持された状態でその部分に付着残存した処理液13も揮発し、第2ホルダ21により実際に保持されている半導体基板14表面下部であっても、半導体基板14表面上部と同様に十分に乾燥させることができる。
【0016】
【実施例】
次に本発明の実施例を比較例とともに詳しく説明する。
参考例1
半導体基板として通常の研磨工程を経た未洗浄のシリコンウェーハ25枚を下記の条件にてそれぞれ洗浄処理した。
先ず、これらのウェーハをSC−1溶液(H2O:H22(30%):NH4OH(29%)=10:1:0.5の混合液)に浸漬し、60℃で4分間処理した。次に、これらのウェーハを60℃の電解イオン水に4分間浸漬した。次に、前述したSC−1溶液に再び浸漬して60℃で4分間処理し、その後60℃の電解イオン水に再び4分間浸漬した。その後電解イオン水から取り出して更に別の槽に貯留された60℃の電解イオン水にそれらのシリコンウェーハを浸漬して更に4分間処理し、洗浄処理を終了させた。
【0017】
このように洗浄処理されたシリコンウェーハ25枚を下記の条件にてそれぞれ乾燥させた。
先ず、洗浄処理されたシリコンウェーハ25枚を第1ホルダ16に保持させて、その半導体基板14とともに第1ホルダ16を処理槽11に貯留された処理液13中に浸漬させ、処理槽11中に設けられた第2ホルダ21に保持させた。処理液としてはO3濃度が10ppmである20℃のオゾン溶存水を用いた。25枚の半導体基板14が第2ホルダ21に保持された後に第1ホルダ16を引上げ、供給管12から20℃のオゾン溶存水13を供給し続けた状態で25枚の半導体基板を4分間そのオゾン溶存水中に浸漬して処理した。その後、供給管12からオゾン溶存水13の供給を停止し、処理された半導体基板14を第2ホルダ21とともに処理槽11から1mm/secの比較的ゆっくりした速度で引上げながら乾燥させた。
【0018】
<比較例1>
参考例1同一の条件で洗浄処理されたシリコンウェーハを25枚用意した。そして、処理液として温度が60℃の温純水を使用し、処理槽11から2mm/secの速度で引上げながら乾燥させたことを除いて、参考例1と同一の条件で25枚のシリコンウェーハを乾燥させた。
<比較例2>
参考例1同一の条件で洗浄処理されたシリコンウェーハを25枚用意した。そして、この25枚のシリコンウェーハをスピン乾燥機にかけて回転数750〜800rpmの回転速度で3分間回転させて乾燥させた。
<比較試験>
参考例1及び比較例1,2のそれぞれ乾燥させた後の25枚のシリコンウェーハの表面に残留する粒径が0.1μm以上の大きさのパーティクルの数をパーティクルカウンタでカウントすることにより、ウェーハ表面に残留するパーティクル数を算出した。
また、それら25枚のシリコンウェーハの表面に付着する有機物質の量をGC−MSで計測することにより、その物質量を求めた。これらの結果を表1に示す。
【0019】
【表1】

Figure 0004306217
【0020】
表1より明らかなように、比較例1及び比較例2の方法で乾燥されたウェーハ表面に残留するパーティクル数はそれぞれ平均で10.5個及び15.3個と残留しているパーティクルが多かった。特にスピン乾燥である比較例2では最大パーティクル数も40とかなり多くなっていた。これに対して参考例1の方法で洗浄されたウェーハ表面に残留するパーティクル数は平均で9.2個と少なかった。また、有機物量においても、比較例1及び比較例2の方法で乾燥されたウェーハではそれぞれ0.60ng/cm2及び0.65ng/cm2と多いけれども、参考例1の方法で洗浄されたウェーハでは0.29ng/cm2と少なかった。このことから、参考例1の乾燥方法は比較例1及び2の乾燥方法より微粒子を良く洗浄することが判明した。
【0022】
【発明の効果】
以上述べたように、処理液を供給管から供給し続けた状態で処理する工程と、供給管から処理液の供給を続けながら処理された半導体基板を処理槽から引上げながら大気又はN2雰囲気下15〜70℃で乾燥させる工程とを含む乾燥方法であっても、引上げながら乾燥するときの処理層に貯留された処理液が20〜70℃の0.001〜0.1Nの硝酸水溶液でるので、供給管から供給してもその液中に気泡が発生することはなく、この気泡に起因して、引上げられる半導体基板の表面にウォーターマークが生じることはなく、有機物汚染を有効に回避することができる。そして、洗浄工程の最終段階で硝酸水溶液を用いるようなものである場合には、更に使用する槽を減少させることができ、洗浄乾燥工程における設備費及びその管理負担を著しく低減させることができる。
【図面の簡単な説明】
【図1】処理槽に貯留された処理液に半導体基板を浸漬させる状態を示す図。
【図2】供給管から処理液を供給しながら半導体基板を処理している状態を示す図。
【図3】処理液の供給を停止して半導体基板を処理液から引上げながら乾燥している状態を示す図。
【図4】半導体基板を保持する第1ホルダが下降している状態を示す図。
【図5】その第1ホルダにより半導体基板を保持させた状態を示す図。
【図6】第2ホルダが下降して処理液が再び供給された状態を示す図。
【符号の説明】
11 処理槽
12 供給管
13 処理液
14 半導体基板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a drying method after cleaning a semiconductor substrate typified by a silicon wafer.
[0002]
[Prior art]
As semiconductor devices are miniaturized and highly integrated, the influence of surface contamination of semiconductor substrates on manufacturing yield, device characteristics, and reliability is increasing. A semiconductor substrate passes through various device manufacturing processes to reach a final product. During this time, the substrate surface is exposed to various contaminated environments. Therefore, in order to remove metal impurities and fine particles from the substrate surface, the semiconductor substrate is cleaned before and after each process such as mirror polishing wafer processing, oxidation, impurity diffusion, ion implantation, chemical vapor deposition (CVD), lithography, etc. Then, a washing / drying step for drying is provided.
Conventionally, a multi-bath immersion type wet station is known as this washing and drying process (see, for example, Patent Document 1). This multi-bath immersion type wet station is provided with a chemical bath linearly corresponding to the wafer cleaning process, and the wafer is sequentially immersed in the chemical layer for cleaning treatment, and then dried. This drying is performed by immersing the cleaned wafer in a pure water tank and then drying it in the drying tank.
[0003]
[Patent Document 1]
JP-A-6-163492 [0004]
[Problems to be solved by the invention]
However, after the wafer is immersed in the pure water tank, the hot pure water that has been pulled up and adhered to the surface of the wafer is dried in the drying tank. It has been difficult to sufficiently eliminate organic contamination contained therein. In addition, two tanks, a pure water tank and a drying tank, are required to dry the wafer. If the wafer can be dried without using these tanks, the number of the entire tanks in the cleaning and drying process can be reduced. It is advantageous in terms of management.
The objective of this invention is providing the drying method of the semiconductor substrate after washing | cleaning which can reduce the number of the whole tank in a washing | cleaning drying process, and can reduce the organic contamination in a pure water.
[0007]
[Means for Solving the Problems]
The invention according to claim 1 is a process in which the semiconductor substrate 14 is immersed in the processing liquid 13 supplied from the supply pipe 12 and stored in the processing tank 11, and the processing liquid 13 is continuously supplied from the supply pipe. A method for drying a semiconductor substrate after cleaning, comprising a step of drying the semiconductor substrate 14 that has been processed while continuing to supply the processing liquid 13 from the supply pipe at 15 to 70 ° C. in the atmosphere or N 2 atmosphere while being pulled up from the processing tank 11. in matching, drying method of a semiconductor substrate after cleaning, characterized in that the treatment layer process liquid stored in the nitrate aqueous solution of 0.001~0.1N of 20 to 70 ° C. at the time of drying while pulling is there.
[0008]
In the invention according to claim 1, the processing liquid 13 is stored in the treating tank 11 is a nitric acid aqueous solution, less the organic contaminants as compared to pure water, compared to organic contaminants when treated with pure water Can be reduced. Further, nitric acid aqueous solution is not that bubbles are generated in the liquid in be supplied from the supply pipe, due to the bubble, surface quality abnormality such as watermarks generated on the surface of the semiconductor substrate 14 is pulled In other words, organic contamination can be effectively avoided. When the final stage of the washing step is like using nitric acid aqueous solution can be further it is possible to decrease the vessel to be used, significantly reducing the equipment cost and administrative burden in the washing and drying step .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of the present invention will be described in detail with reference to the drawings.
As shown in FIGS. 1 to 6, only the processing tank 11 is used in the method for drying a cleaned semiconductor substrate according to the present invention, and a heater and a cooling chiller (not shown) are provided around the processing tank 11. The treatment tank 11 is provided with a supply pipe 12 so that one end thereof is along the inner bottom thereof, and a plurality of supply ports (not shown) are formed at one end of the supply pipe 12 in the longitudinal direction. The liquid 13 is configured to be ejected upward from the plurality of supply ports as indicated by arrows in the figure. When the processing liquid 13 is ejected from the supply pipe 12 and the processing liquid is supplied to the processing tank 11, the processing liquid 13 is stored in the processing tank 11 and is maintained at a predetermined temperature by the heater described above. The method of the present invention includes a step of immersing the semiconductor substrate 14 in the processing liquid 13 stored in the processing tank 11 and processing, and pulling up the processed semiconductor substrate 14 from the processing tank 11 by stopping the supply of the processing liquid 13. And a step of drying at 15 to 70 ° C. under air or N 2 atmosphere. Here, the treatment liquid 13 stored in the treatment tank 11 is a 0.001 to 0.1 N nitric acid aqueous solution at 20 to 27 ° C. The method for drying a semiconductor substrate after cleaning according to the present invention will be described below in each process.
[0010]
a. Immersion treatment process First, when the semiconductor substrate 14 is dried, the semiconductor substrate 14 is first treated with the treatment liquid 13 in the treatment tank 11 in order to remove the washing liquid and the like in the previous washing process. This processing is performed by immersing the semiconductor substrate 14 to be processed in the processing liquid 13 stored in the processing tank 11 and maintained at a predetermined temperature. As shown in FIG. 1, during this immersion, the semiconductor substrate 14 is held by the first holder 16, and the first holder 16 is lowered together with the semiconductor substrate 14 to hold the plurality of semiconductor substrates 14 in the second holder 21. The semiconductor substrate 14 is immersed in the processing liquid 13 stored in the processing tank 11 while being held by the second holder 21. Here, the first holder 16 is configured to hold the side of the bottom of the upstanding semiconductor substrate 14 to hold the plurality of semiconductor substrates 14 vertically, and the second holder 21 is provided in the processing tank 11 in advance. . Similar to the first holder 16, the second holder 21 holds the side of the bottom of the semiconductor substrate 14 and holds the plurality of semiconductor substrates 14 vertically, and holds the plurality of semiconductor substrates 14 vertically. A plurality of grooves (not shown) to be held are formed.
[0011]
The immersion of the plurality of semiconductor substrates 14 to be processed into the processing liquid 13 is performed by a holder arm 18 configured to be movable while holding the upper portion of the first holder 16, and the holder arm 18 is the semiconductor substrate 14. The upper part of the first holder 16 holding the above is held, and in this state, the semiconductor substrate 14 is lowered as indicated by the solid line arrow in FIG. 1, and the semiconductor substrate 14 is immersed in the processing liquid 13 together with the first holder 16. After the plurality of semiconductor substrates 14 are held by the second holder 21, the first holder 16 is pulled up. As shown in FIG. 2, with the wafer 14 held by the second holder 21 and immersed in the processing liquid 13, the processing liquid 13 is supplied from the supply pipe 12 toward the lower ends of a plurality of semiconductor substrates in a vertical state. Then, the plurality of semiconductor substrates are processed by the processing liquid 13 in a state where the processing liquid 13 is supplied.
[0012]
b. Pull-up drying process The semiconductor substrate 14 is dried after the treatment. As shown in FIG. 3, the processed semiconductor substrate 14 is dried at 15 to 70 ° C. in the air or N 2 atmosphere while being pulled up from the processing tank 11 together with the second holder 21 at a relatively slow speed of 1 to 5 mm / sec. . Regarding this pulling, the supply of the processing liquid 13 from the supply pipe 12 is stopped. When the supply of the processing liquid 13 is stopped and the second holder 21 is pulled up together with the plurality of semiconductor substrates 14 at a relatively gentle speed, the plurality of semiconductor substrates 14 appear gradually from the liquid surface of the processing liquid 13. And dried. At this time, an inert gas for promoting drying of the semiconductor substrate 14 appearing from the liquid surface can be sprayed on the semiconductor substrate 14 appearing.
[0013]
Here, since the treatment liquid 13 stored in the treatment tank 11 is a 0.001 to 0.1N nitric acid aqueous solution at 20 to 27 ° C., there is less organic contamination than pure water, and pure water is used. Organic contamination can be reduced compared with the case of processing. In this case, the semiconductor substrate 14 that has been processed while continuing to supply the processing liquid 13 from the supply pipe 12 can be dried at 15 to 70 ° C. in the atmosphere or N 2 atmosphere while being pulled up from the processing tank 11 . Even if the aqueous nitric acid solution is supplied from the supply pipe, bubbles are not generated in the liquid, and due to the bubbles, a watermark is not generated on the surface of the semiconductor substrate 14 to be pulled up, and organic matter contamination is effective. Can be avoided. When the aqueous nitric acid solution is used at the final stage of the cleaning process, the number of tanks to be used can be further reduced, and the equipment cost and its management burden in the cleaning and drying process can be significantly reduced.
[0014]
As shown in FIGS. 4 and 5, the plurality of pulled-up semiconductor substrates 14 are then held by the first holder 16 and moved. As shown in FIG. 6, the second holder 21 after the plurality of semiconductor substrates 14 are held and moved by the first holder 16 is lowered again, the processing liquid 13 is supplied again from the supply pipe 12, and then Return to the initial state of accepting the semiconductor substrate to be dried. Here, the portion of the semiconductor substrate 14 held by the second holder 21 volatilizes the processing liquid 13 remaining on the portion while the semiconductor substrate 14 is held by the first holder 16, and the second holder Even the lower part of the surface of the semiconductor substrate 14 actually held by the substrate 21 can be sufficiently dried in the same manner as the upper part of the surface of the semiconductor substrate 14.
[0016]
【Example】
Next, examples of the present invention will be described in detail together with comparative examples.
< Reference Example 1 >
As a semiconductor substrate, 25 uncleaned silicon wafers that had undergone a normal polishing process were each cleaned under the following conditions.
First, these wafers are immersed in an SC-1 solution (mixture of H 2 O: H 2 O 2 (30%): NH 4 OH (29%) = 10: 1: 0.5) at 60 ° C. Treated for 4 minutes. Next, these wafers were immersed in electrolytic ion water at 60 ° C. for 4 minutes. Next, it was immersed again in the SC-1 solution described above, treated at 60 ° C. for 4 minutes, and then immersed again in electrolytic ion water at 60 ° C. for 4 minutes. Thereafter, the silicon wafer was immersed in 60 ° C. electrolytic ionic water taken out from the electrolytic ionic water and stored in another tank, followed by further treatment for 4 minutes, and the cleaning treatment was terminated.
[0017]
The 25 silicon wafers thus cleaned were each dried under the following conditions.
First, 25 silicon wafers that have been cleaned are held in the first holder 16, and the first holder 16 together with the semiconductor substrate 14 is immersed in the processing solution 13 stored in the processing bath 11. The second holder 21 provided was held. As the treatment solution, 20 ° C. ozone-dissolved water having an O 3 concentration of 10 ppm was used. After the 25 semiconductor substrates 14 are held by the second holder 21, the first holder 16 is pulled up, and the 25 semiconductor substrates are moved for 4 minutes in a state in which the ozone-dissolved water 13 at 20 ° C. is continuously supplied from the supply pipe 12. It was processed by immersing in ozone-dissolved water. Thereafter, the supply of the ozone-dissolved water 13 from the supply pipe 12 was stopped, and the treated semiconductor substrate 14 was dried while being pulled up from the treatment tank 11 together with the second holder 21 at a relatively slow speed of 1 mm / sec.
[0018]
<Comparative Example 1>
Reference Example 1 25 silicon wafers cleaned under the same conditions were prepared. Then, 25 silicon wafers were dried under the same conditions as in Reference Example 1 except that warm pure water having a temperature of 60 ° C. was used as a treatment liquid and the treatment tank 11 was dried while being pulled up at a rate of 2 mm / sec. I let you.
<Comparative example 2>
Reference Example 1 25 silicon wafers cleaned under the same conditions were prepared. Then, these 25 silicon wafers were put on a spin dryer and rotated at a rotational speed of 750 to 800 rpm for 3 minutes to be dried.
<Comparison test>
By counting the number of particles having a particle size of 0.1 μm or more remaining on the surface of 25 silicon wafers after drying each of Reference Example 1 and Comparative Examples 1 and 2, the wafer is counted. The number of particles remaining on the surface was calculated.
Further, the amount of the organic material adhering to the surfaces of these 25 silicon wafers was measured by GC-MS to determine the amount of the material. These results are shown in Table 1.
[0019]
[Table 1]
Figure 0004306217
[0020]
As is clear from Table 1, the average number of particles remaining on the wafer surfaces dried by the methods of Comparative Example 1 and Comparative Example 2 was 10.5 and 15.3 on average, respectively. . In particular, in Comparative Example 2 in which spin drying was performed, the maximum number of particles was as large as 40. In contrast, the average number of particles remaining on the wafer surface cleaned by the method of Reference Example 1 was as small as 9.2. Also, the wafer also in organic matter, but each in the wafer that has been dried by the method of Comparative Example 1 and Comparative Example 2 many and 0.60ng / cm 2 and 0.65ng / cm 2, which was washed with Reference Example 1 METHOD Then, it was as small as 0.29 ng / cm 2 . From this, it was found that the drying method of Reference Example 1 washed fine particles better than the drying methods of Comparative Examples 1 and 2.
[0022]
【The invention's effect】
As described above, the process is performed in a state where the processing liquid is continuously supplied from the supply pipe, and the semiconductor substrate that is processed while the supply of the processing liquid is continued from the supply pipe is lifted from the processing tank in the atmosphere or N 2 atmosphere. even dry method and a step of drying at 15 to 70 ° C., with nitric acid aqueous solution of 0.001~0.1N process liquid stored in the processing layer is 20 to 70 ° C. at the time of drying while pulling Oh Runode not bubbles are generated in the liquid in be supplied from the supply pipe, due to the bubble, never watermark generated on the surface of the semiconductor substrate is pulled up, effectively the organic contaminants It can be avoided. When the final stage of the washing step is like using nitric acid aqueous solution can be further it is possible to decrease the vessel to be used, significantly reducing the equipment cost and administrative burden in the washing and drying step .
[Brief description of the drawings]
FIG. 1 is a diagram showing a state in which a semiconductor substrate is immersed in a processing solution stored in a processing tank.
FIG. 2 is a diagram showing a state in which a semiconductor substrate is being processed while supplying a processing liquid from a supply pipe.
FIG. 3 is a diagram showing a state where the supply of the processing liquid is stopped and the semiconductor substrate is dried while being pulled up from the processing liquid.
FIG. 4 is a view showing a state where a first holder holding a semiconductor substrate is lowered.
FIG. 5 is a view showing a state in which a semiconductor substrate is held by the first holder.
FIG. 6 is a view showing a state where the second holder is lowered and the processing liquid is supplied again.
[Explanation of symbols]
11 treatment tank 12 supply pipe 13 treatment liquid 14 semiconductor substrate

Claims (1)

供給管(12)から供給されて処理槽(11)に貯留された処理液(13)に半導体基板(14)を浸漬し前記処理液(13)を前記供給管から供給し続けた状態で処理する工程と、
前記供給管から前記処理液(13)の供給を続けながら処理された前記半導体基板(14)を前記処理槽(11)から引上げながら大気又はN2雰囲気下15〜70℃で乾燥させる工程とを有する洗浄後の半導体基板の乾燥方法であって、
前記引上げながら乾燥するときの処理層に貯留された処理液が20〜70℃の0.001〜0.1Nの硝酸水溶液である
ことを特徴とする洗浄後の半導体基板の乾燥方法。
The semiconductor substrate (14) is immersed in the processing liquid (13) supplied from the supply pipe (12) and stored in the processing tank (11), and the processing liquid (13) is continuously supplied from the supply pipe. And a process of
Drying the semiconductor substrate (14) processed while continuing to supply the processing liquid (13) from the supply pipe at 15 to 70 ° C. in the atmosphere or N 2 atmosphere while pulling up from the processing tank (11). A method for drying a semiconductor substrate after cleaning, comprising:
Drying method after cleaning the semiconductor substrate, wherein the treatment layer process liquid stored in the nitrate aqueous solution of 0.001~0.1N of 20 to 70 ° C. at the time of drying while the pulling.
JP2002302413A 2002-10-17 2002-10-17 Method for drying semiconductor substrate after cleaning Expired - Fee Related JP4306217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002302413A JP4306217B2 (en) 2002-10-17 2002-10-17 Method for drying semiconductor substrate after cleaning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002302413A JP4306217B2 (en) 2002-10-17 2002-10-17 Method for drying semiconductor substrate after cleaning

Publications (2)

Publication Number Publication Date
JP2004140126A JP2004140126A (en) 2004-05-13
JP4306217B2 true JP4306217B2 (en) 2009-07-29

Family

ID=32450476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002302413A Expired - Fee Related JP4306217B2 (en) 2002-10-17 2002-10-17 Method for drying semiconductor substrate after cleaning

Country Status (1)

Country Link
JP (1) JP4306217B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6428806B2 (en) * 2017-02-07 2018-11-28 栗田工業株式会社 Semiconductor substrate cleaning apparatus and semiconductor substrate cleaning method
CN108962720A (en) * 2017-05-18 2018-12-07 上海新昇半导体科技有限公司 A kind of drying means of silicon wafer

Also Published As

Publication number Publication date
JP2004140126A (en) 2004-05-13

Similar Documents

Publication Publication Date Title
US5489557A (en) Methods for processing semiconductors to reduce surface particles
KR100220926B1 (en) A cleaning method for hydrophobic silicon wafers
KR19990083075A (en) Sc-2 based pre-thermal treatment wafer cleaning process
WO2006068127A1 (en) Method for producing epitaxial silicon wafer
CN101325152B (en) Process for cleaning, drying and hydrophilizing a semiconductor wafer
JPH09275084A (en) Method of cleaning semiconductor substrate
JP4292872B2 (en) Manufacturing method of silicon epitaxial wafer
JP4482844B2 (en) Wafer cleaning method
JP3526284B2 (en) Substrate surface treatment method
JP4306217B2 (en) Method for drying semiconductor substrate after cleaning
WO1997008742A1 (en) Procedure for drying silicon
JP2002203824A (en) Method for cleaning wafer
KR20060044388A (en) Etching composition and method for etching a substrate
US6451124B1 (en) Process for the chemical treatment of semiconductor wafers
US20090071507A1 (en) Process for cleaning a semiconductor wafer
JP3595681B2 (en) Manufacturing method of epitaxial wafer
JPH01140728A (en) Cleaning and drying of object
JP4059016B2 (en) Semiconductor substrate cleaning and drying method
JP4357456B2 (en) Semiconductor substrate cleaning method
JP2648556B2 (en) Surface treatment method for silicon wafer
JPH056884A (en) Cleaning method for silicon wafer
JP3996730B2 (en) Manufacturing method of semiconductor parts
JP4620714B2 (en) Washing and drying equipment
KR100786521B1 (en) Method for cleaning silicon epitaxial wafer, method for manufacturing silicon epitaxial wafer using the same and wafer manufactured by the method
TW202331909A (en) Substrate processing device and substrate processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090305

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4306217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees