JPH04224B2 - - Google Patents

Info

Publication number
JPH04224B2
JPH04224B2 JP58126723A JP12672383A JPH04224B2 JP H04224 B2 JPH04224 B2 JP H04224B2 JP 58126723 A JP58126723 A JP 58126723A JP 12672383 A JP12672383 A JP 12672383A JP H04224 B2 JPH04224 B2 JP H04224B2
Authority
JP
Japan
Prior art keywords
ion
sensitive
hydrophobic
membrane
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58126723A
Other languages
Japanese (ja)
Other versions
JPS6018750A (en
Inventor
Toshihide Kuryama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP58126723A priority Critical patent/JPS6018750A/en
Publication of JPS6018750A publication Critical patent/JPS6018750A/en
Publication of JPH04224B2 publication Critical patent/JPH04224B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells

Description

【発明の詳細な説明】 本発明は半導体マルチイオンセンサの製造方法
に関し、特に半導体の電界効果を化学−電気変換
に使用する半導体イオンセンサを集積化してなる
半導体マルチイオンセンサの製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor multi-ion sensor, and more particularly to a method of manufacturing a semiconductor multi-ion sensor that integrates semiconductor ion sensors that use the electric field effect of semiconductors for chemical-electrical conversion. be.

従来溶液中のイオン濃度を測定する半導体イオ
ンセンサの一種に電界効果型トランジスタを用い
たイオンセンサ(on ensitive ield
ffect ransistor、以下ISFETと略す)が知ら
れている。該ISFETは通常のMOSFETにおいて
金属ゲート電極がイオンを感じて電圧を発生する
イオン感応膜に置き換えられた構造を持ち、イオ
ン選択性を持つイオン感応膜を使用することによ
り溶液中の特定のイオンの濃度を測定できるもの
である。
Conventionally , an ion sensor using a field effect transistor is a type of semiconductor ion sensor that measures the ion concentration in a solution .
ffect transistor (hereinafter abbreviated as ISFET) is known. The ISFET has a structure in which the metal gate electrode of a normal MOSFET is replaced with an ion-sensitive membrane that senses ions and generates a voltage.By using an ion-selective ion-sensitive membrane, it detects specific ions in a solution. It is capable of measuring concentration.

該イオン選択性を持つイオン感応膜の例として
は水素イオン測定用の窒化シリコン膜、五酸化タ
ンタル、ナトリウムイオン測定用のナトリウムア
ルミノシリケートガラスなどの無機材料の他に、
疎水性高分子膜中にニユートラルキヤリヤーやイ
オン交換体を固定化して形成されるイオン感応膜
があり。たとえばバリノマイシンを疎水性高分子
膜に固定化したカリウムイオン(K+)を選択的
に検出するイオン感応膜やカルシウムイオン交換
体を疎水性高分子膜に固定化したカルシウムイオ
ン(Ca++)を選択的に検出するイオン感応膜な
どが知られている。
Examples of ion-sensitive membranes with ion selectivity include inorganic materials such as silicon nitride membranes for hydrogen ion measurements, tantalum pentoxide, and sodium aluminosilicate glass for sodium ion measurements.
There is an ion-sensitive membrane formed by immobilizing a neutral carrier or ion exchanger in a hydrophobic polymer membrane. For example, an ion-sensitive membrane that selectively detects potassium ions (K + ) has valinomycin immobilized on a hydrophobic polymer membrane, and a calcium ion (Ca ++ ) membrane that has a calcium ion exchanger immobilized on a hydrophobic polymer membrane. Ion-sensitive membranes for selective detection are known.

一方、該ISFETの半導体部分は通常の半導体
集積回路用MOSFETとほぼ同様の製造技術によ
り製作されるので、微小化、集積化が容易に行う
ことができる。したがつて、複数の異なるイオン
感応膜をそれぞれ1つの半導体チツプ内につくら
れた複数の電界効果トランジスタの上に設けるこ
とにより、溶液中の複数のイオン濃度を同時に測
定できる微小なマルチイオンの製作が可能とな
り、多成分からなる微量溶液の測定、たとえば微
量血液のイオン濃度測定に適したものとなる。
On the other hand, since the semiconductor portion of the ISFET is manufactured using substantially the same manufacturing technology as that of a normal MOSFET for semiconductor integrated circuits, miniaturization and integration can be easily achieved. Therefore, by providing a plurality of different ion-sensitive membranes on a plurality of field effect transistors each formed within a single semiconductor chip, it is possible to create a microscopic multi-ion structure that can simultaneously measure the concentration of multiple ions in a solution. This makes it suitable for measuring trace amounts of solutions consisting of multiple components, for example, measuring the ion concentration of trace amounts of blood.

近年、光硬化性の高分子膜たとえばネガ型フオ
トレジストあるいはネガ型フオトレジストと塩化
ビニルの混合物に可塑剤を添化した膜をイオン選
択性物質を固定化する膜として用い、半導体ウエ
ーハ上に塗布した後ISFETのイオン感応膜部分
に光を照射し、該ISFET上にのみイオン感応膜
を設ける技術が報告されている。この方法により
半導体ウエーハ上の複数のISFETに一種類の疎
水性高分子からなるイオン感応膜を同時に設ける
ことが可能になつた。
In recent years, photocurable polymer films, such as negative photoresists or a mixture of negative photoresists and vinyl chloride with a plasticizer added, have been used as films to immobilize ion-selective substances and coated on semiconductor wafers. A technique has been reported in which the ion-sensitive film portion of the ISFET is then irradiated with light and the ion-sensitive film is provided only on the ISFET. This method made it possible to simultaneously provide ion-sensitive membranes made of one type of hydrophobic polymer to multiple ISFETs on a semiconductor wafer.

しかし、上記の方法を複数種の疎水性高分子イ
オン感応膜を持つマルチイオンセンサの製作に適
用した場合、最初に設けた疎水性高分子膜と次に
塗布される疎水性高分子膜は互いに混ざり、該
ISFETの感度が低下したりイオン選択性がそこ
なわれたりするという欠点が生じた。
However, when the above method is applied to the fabrication of a multi-ion sensor that has multiple types of hydrophobic polymer ion-sensitive membranes, the first hydrophobic polymer membrane and the next applied hydrophobic polymer membrane are different from each other. mix, match
The drawbacks were that the sensitivity of the ISFET decreased and the ion selectivity was impaired.

本発明の目的は、このような従来の欠点を除去
し、互いに異なる成分を持つ疎水性高分子膜を複
数個同一チツプ上にイオン感応膜として混ざりあ
うことなく容易に形成することができる半導体マ
ルチイオンセンサの製造方法を提供することにあ
る。
The purpose of the present invention is to eliminate such conventional drawbacks and to provide a semiconductor multilayer film that can easily form a plurality of hydrophobic polymer films having different components on the same chip without mixing as ion-sensitive films. An object of the present invention is to provide a method for manufacturing an ion sensor.

本発明によれば複数個の異なるイオン感応膜を
もつ半導体電界効果型イオンセンサが集積化され
てなる半導体マルチイオンセンサの製造方法にお
いて、半導体ウエーハ上に多数設けられたチツプ
の第1のイオンセンサ部に第1の疎水性膜からな
るイオン感応膜を形成した後、該第1の疎水性イ
オン感応膜をそれよりも大きい面積を持つ親水性
膜により覆い、次に第2の光硬化型疎水性膜から
なるイオン感応膜を該半導体ウエーハ上に塗布し
た後、露光、現像により第2のイオンセンサ部に
のみ残し、その後該親水性膜だけ溶剤により除去
することを特徴とする半導体マルチイオンセンサ
の製造方法が得られる。
According to the present invention, in a method for manufacturing a semiconductor multi-ion sensor in which semiconductor field-effect ion sensors having a plurality of different ion-sensitive films are integrated, a first ion sensor of a plurality of chips provided on a semiconductor wafer is provided. After forming an ion-sensitive film made of a first hydrophobic film on the part, the first hydrophobic ion-sensitive film is covered with a hydrophilic film having a larger area, and then a second photocurable hydrophobic film is formed. A semiconductor multi-ion sensor characterized in that after an ion-sensitive film made of a hydrophilic film is coated on the semiconductor wafer, it remains only on the second ion sensor portion by exposure and development, and then only the hydrophilic film is removed with a solvent. A manufacturing method is obtained.

以下本発明についてその一実施例を図面を参照
して説明する。第1図〜第5図は本発明による半
導体マルチイオンセンサの製造方法の一実施例を
説明するための図で主要工程における断面図であ
る。同図はシリコンウエーハ上に互いに異なる疎
水性イオン感応膜を持つ2個のISFETを形成す
る場合について示している。第1図〜第5図にお
いて、1はp形シリコン基板、2は高不純物濃度
n形領域、3は高不純物濃度p形領域、4は絶縁
膜、5は第1疎水性イオン感応膜、6は親水性保
護膜、7は第2疎水性イオン感応膜である。次に
製造工程を順を追つて説明する。p形シリコンウ
エーハに不純物を拡散して高不純物濃度n形領域
2と高不純物濃度p形領域3を形成した後、絶縁
膜2をシリコンの熱酸化及び窒化シリコンのケミ
カル・ベーパ・デイポジシヨンにより設ける。そ
の後、ウエーハ上に光により硬化する特性をもつ
第1の疎水性イオン感応膜を塗布し、露光・現像
により所定のISFETの位置に第1の疎水性イオ
ン感応膜を設ける(第1図)。次に光により硬化
する特性を持つ親水性膜をウエーハ表面に塗布
し、露光、現像により、第1の疎水性イオン感応
膜を十分覆う領域に残す(第2図)。その後、第
2の光により硬化する特性を持つ疎水性イオン感
応膜7をウエーハ表面に塗布する(第3図)。こ
のとき第1の疎水性イオン感応膜5は、親水性膜
6により覆われているので、第2の疎水性イオン
感応膜と接着したり、混ざることはない。次に所
定のフオトマスクを用い露光し、現像により第2
の疎水性イオン感応膜を第2のISFETの位置に
設ける(第4図)。その後、親水性保護膜6を親
水性溶剤により取り除くと、互いに異なるイオン
感応膜を持つ2種類のISFETを同一チツプ上に
形成することができた(第5図)。
An embodiment of the present invention will be described below with reference to the drawings. FIGS. 1 to 5 are cross-sectional views of main steps for explaining an embodiment of the method for manufacturing a semiconductor multi-ion sensor according to the present invention. This figure shows the case where two ISFETs having different hydrophobic ion-sensitive films are formed on a silicon wafer. 1 to 5, 1 is a p-type silicon substrate, 2 is a high impurity concentration n-type region, 3 is a high impurity concentration p-type region, 4 is an insulating film, 5 is a first hydrophobic ion-sensitive film, and 6 is a p-type silicon substrate. is a hydrophilic protective film, and 7 is a second hydrophobic ion-sensitive film. Next, the manufacturing process will be explained step by step. After diffusing impurities into a p-type silicon wafer to form a high impurity concentration n-type region 2 and a high impurity concentration p-type region 3, an insulating film 2 is provided by thermal oxidation of silicon and chemical vapor deposition of silicon nitride. Thereafter, a first hydrophobic ion-sensitive film having the property of being cured by light is applied onto the wafer, and the first hydrophobic ion-sensitive film is provided at a predetermined ISFET position by exposure and development (Fig. 1). Next, a hydrophilic film having properties of being cured by light is applied to the wafer surface, and is left in an area sufficiently covering the first hydrophobic ion-sensitive film by exposure and development (FIG. 2). Thereafter, a hydrophobic ion-sensitive film 7 having a property of being cured by the second light is applied to the wafer surface (FIG. 3). At this time, the first hydrophobic ion-sensitive membrane 5 is covered with the hydrophilic membrane 6, so it does not adhere or mix with the second hydrophobic ion-sensitive membrane. Next, it is exposed to light using a predetermined photomask, and developed to create a second
A hydrophobic ion-sensitive membrane is provided at the position of the second ISFET (Fig. 4). Thereafter, when the hydrophilic protective film 6 was removed using a hydrophilic solvent, two types of ISFETs having different ion-sensitive films could be formed on the same chip (FIG. 5).

以上の工程において、第1の疎水性イオン感応
膜としてカルシウムイオン交換体と可塑剤を含ん
だネガ型フオトレジスト、第2の疎水性イオン感
応膜としてバリノマイシンと可塑剤を含んだネガ
型フオトレジストを用いることにより、カルシウ
ムイオン濃度とカリウムイオン濃度を測定できる
マルチイオンセンサが製作できた。このとき、親
水性膜6としてはたとえば光重合性を持つたプル
ラン膜を用いればよく、プルランは、水により現
像できまた温水に容易に溶解するためイオン感応
膜に悪影響を与えることなく使用できた。
In the above steps, a negative photoresist containing a calcium ion exchanger and a plasticizer is used as the first hydrophobic ion-sensitive membrane, and a negative photoresist containing valinomycin and a plasticizer is used as the second hydrophobic ion-sensitive membrane. By using this method, we were able to create a multi-ion sensor that can measure calcium ion and potassium ion concentrations. At this time, the hydrophilic membrane 6 may be, for example, a photopolymerizable pullulan membrane. Pullulan can be developed with water and is easily dissolved in hot water, so it can be used without adversely affecting the ion-sensitive membrane. .

本発明によれば、2種類の疎水性イオン感応膜
はスピンコートなどの方法で容易にウエーハ上に
設けられ、かつ親水性膜により互いに分離されて
製造されるため疎水性膜同士が接着したり混ざり
合つたりすることなく独立に設けることができ、
性能をそこなうことなく互いに異なる疎水性イオ
ン感応膜をもつISFETを同一チツプ上に製造で
きた。
According to the present invention, two types of hydrophobic ion-sensitive films are easily provided on a wafer by a method such as spin coating, and are separated from each other by a hydrophilic film, so that the hydrophobic films do not adhere to each other. Can be installed independently without mixing,
We were able to fabricate ISFETs with different hydrophobic ion-sensitive membranes on the same chip without sacrificing performance.

本発明による方法は、3種類以上の疎水性イオ
ン感応膜をもつ半導体マルチイオンセンサに適用
できることは明らかである。
It is clear that the method according to the invention can be applied to semiconductor multi-ion sensors having three or more types of hydrophobic ion-sensitive membranes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第5図は本発明による半導体マルチイ
オンセンサの製造方法の一実施例を説明するため
の図で、主要工程における断面図で、同図におい
て、1はp形シリコン基板、2は高不純物濃度n
形領域、3は高不純物濃度p形領域、4は絶縁
膜、5は第1疎水性イオン感応膜、6は親水性保
護膜、7は第2疎水性イオン感応膜である。
1 to 5 are diagrams for explaining one embodiment of the method for manufacturing a semiconductor multi-ion sensor according to the present invention, and are cross-sectional views of main steps. In the diagram, 1 is a p-type silicon substrate, 2 is a High impurity concentration n
3 is a high impurity concentration p-type region, 4 is an insulating film, 5 is a first hydrophobic ion-sensitive film, 6 is a hydrophilic protective film, and 7 is a second hydrophobic ion-sensitive film.

Claims (1)

【特許請求の範囲】[Claims] 1 複数個の異なるイオン感応膜をもつ半導体電
界効果型イオンセンサが集積化されてなる半導体
マルチイオンセンサの製造方法において、半導体
ウエーハ上に多数設けられたチツプの第1のイオ
ンセンサ部に第1の疎水性膜からなるイオン感応
膜を形成した後、該第1の疎水性イオン感応膜を
それよりも大きい面積を持つ親水性膜により覆
い、次に第2の光硬化型疎水性膜からなるイオン
感応膜を該半導体ウエーハ上に塗布した後、露
光、現像により第2のイオンセンサ部にのみ残
し、その後該親水性膜だけを溶剤により除去する
ことを特徴とする半導体マルチイオンセンサの製
造方法。
1. In a method for manufacturing a semiconductor multi-ion sensor in which semiconductor field-effect ion sensors having a plurality of different ion-sensitive membranes are integrated, a first ion sensor section of a plurality of chips provided on a semiconductor wafer is provided with a first ion sensor section. After forming an ion-sensitive membrane consisting of a hydrophobic membrane, the first hydrophobic ion-sensitive membrane is covered with a hydrophilic membrane having a larger area, and then a second photocurable hydrophobic membrane is formed. A method for producing a semiconductor multi-ion sensor, which comprises coating an ion-sensitive film on the semiconductor wafer, leaving it only on the second ion sensor portion by exposure and development, and then removing only the hydrophilic film with a solvent. .
JP58126723A 1983-07-12 1983-07-12 Preparation of semiconductive multiple ion sensor Granted JPS6018750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58126723A JPS6018750A (en) 1983-07-12 1983-07-12 Preparation of semiconductive multiple ion sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58126723A JPS6018750A (en) 1983-07-12 1983-07-12 Preparation of semiconductive multiple ion sensor

Publications (2)

Publication Number Publication Date
JPS6018750A JPS6018750A (en) 1985-01-30
JPH04224B2 true JPH04224B2 (en) 1992-01-06

Family

ID=14942275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58126723A Granted JPS6018750A (en) 1983-07-12 1983-07-12 Preparation of semiconductive multiple ion sensor

Country Status (1)

Country Link
JP (1) JPS6018750A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009045475B4 (en) * 2009-10-08 2023-06-29 Robert Bosch Gmbh Gas-sensitive semiconductor device and use thereof

Also Published As

Publication number Publication date
JPS6018750A (en) 1985-01-30

Similar Documents

Publication Publication Date Title
KR100375908B1 (en) Dry microlithography
US4302530A (en) Method for making substance-sensitive electrical structures by processing substance-sensitive photoresist material
GB2030358A (en) Ion selective-field-effect sensor
US4644380A (en) Substance-sensitive electrical structures
JPH04224B2 (en)
Park et al. Effect of membrane structure on the performance of field-effect transistor potassium-sensitive sensor
JPS6039547A (en) Multi-enzyme sensor
JPS6057218B2 (en) Manufacturing method of semiconductor device
JPH03278432A (en) Forming method for wiring of semiconductor device
JPH03222409A (en) Manufacture of semiconductor device
JPH07130751A (en) Method of patterning aluminum system metal film
TWI817274B (en) Method for defining multiple resist patterns
JPS6047950A (en) Fet multi-sensor
US6309804B1 (en) Reducing contamination induced scumming, for semiconductor device, by acid treatment
JPH0548419B2 (en)
JPS61234349A (en) Manufacture of semiconductor multi-biosensor
JPH0544986B2 (en)
JPS60252253A (en) Fet sensor
JPH0319540B2 (en)
KR0163405B1 (en) Ion sensor using ph-isfet
EP0599975A1 (en) Batch deposition of polymeric ion sensor membranes
JPS61198051A (en) Formation of electrode for semiconductor ion sensor
JPH0926669A (en) Production of photoresist film pattern and production of processed body
JPS6158236A (en) Pattern forming method
JPS63186139A (en) Method for selective inactivation of enzyme immobilized film