JPS6057218B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device

Info

Publication number
JPS6057218B2
JPS6057218B2 JP51125479A JP12547976A JPS6057218B2 JP S6057218 B2 JPS6057218 B2 JP S6057218B2 JP 51125479 A JP51125479 A JP 51125479A JP 12547976 A JP12547976 A JP 12547976A JP S6057218 B2 JPS6057218 B2 JP S6057218B2
Authority
JP
Japan
Prior art keywords
photosensitive resin
aqueous solution
semiconductor device
curve
developing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51125479A
Other languages
Japanese (ja)
Other versions
JPS5351971A (en
Inventor
久志 村岡
雅文 浅野
泰三 大橋
有造 島崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP51125479A priority Critical patent/JPS6057218B2/en
Publication of JPS5351971A publication Critical patent/JPS5351971A/en
Publication of JPS6057218B2 publication Critical patent/JPS6057218B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は半導体装置の製造方法の改良に関する。[Detailed description of the invention] The present invention relates to an improvement in a method for manufacturing a semiconductor device.

従来、半導体装置の製造においては選択拡散や電極取出
しを行なうために酸化珪素被膜の部分的な除去、メサエ
ツチングを実施するためのシリコンの部分的な除去、さ
らには相互配線用の金属蒸着膜の部分除去に写真食刻法
が適用されて来た。 この工程は先ずウェーハに感光性
樹脂を塗布してから熱処理を実施し、つぎにマスク合せ
を行なう。
Conventionally, in the manufacture of semiconductor devices, there have been processes such as partial removal of silicon oxide films for selective diffusion and electrode extraction, partial removal of silicon for mesa etching, and even partial removal of metal vapor deposition films for interconnections. Photo-etching has been applied for removal. In this process, a photosensitive resin is first applied to the wafer, then heat treatment is performed, and then mask alignment is performed.

このマスク合せは感光性樹脂のちに感光する部分と感光
させない個所を設定するのに使用される。前記マスク合
せが終了してから露光、現像、熱処理(ポストベーク)
工程を経て検査に入る。そして食品は食刻工程と残存し
た感光性樹脂の除去工程、さらにそれに続く酸化・拡散
等の次工程へと進められる。 ところで感光性樹脂には
いわゆるネガレジストとポジレジストが知られているが
、ポジレジストとしてはナフトキノンー1;2ジアミド
スルホニルクロライドとノボラック樹脂の縮合物が知ら
れている。
This mask alignment is used to set the parts of the photosensitive resin that will later be exposed to light and the parts that will not be exposed to light. After completing the above mask alignment, exposure, development, and heat treatment (post-bake)
After going through the process, it is inspected. The food then proceeds to the etching process, the removal process of the remaining photosensitive resin, and the subsequent processes such as oxidation and diffusion. By the way, so-called negative resists and positive resists are known as photosensitive resins, and a condensate of naphthoquinone-1;2 diamide sulfonyl chloride and novolak resin is known as a positive resist.

このレジストは露光するとナフトキノンー 1;2ジア
ミド基が紫外線で窒素を放出してケテン基となりさらに
微量の水分によつてアルカリ可溶性のインデルカルボ酸
になる。このようにして、レジストのうち光が照射され
た部分は分解してアルカリ可溶性となり現像によつて溶
解除去されることになる。このポジレジストはネガレジ
ストに比べて解像力、画像ラインの切れが良く、画像ラ
インも直線的に得られる上にひげ状のものは全く発生し
ない等の利点があるが基板との付着力が弱いことと、現
像液がアルカリ溶液(一般には燐酸ナトリウムと珪酸ナ
トリウムの混合液)てあるため、半導体装置がナトリウ
ムで汚染され電気特性上問題が生ずる頻度が大きい。
When this resist is exposed to light, the naphthoquinone-1;2 diamide group releases nitrogen under ultraviolet rays, becomes a ketene group, and further becomes an alkali-soluble indelcarboxylic acid when exposed to a small amount of water. In this way, the portion of the resist that is irradiated with light decomposes and becomes alkali-soluble and is dissolved and removed by development. This positive resist has advantages over negative resists, such as better resolution, sharper image lines, straighter image lines, and no whiskers, but it has weaker adhesion to the substrate. Since the developing solution is an alkaline solution (generally a mixture of sodium phosphate and sodium silicate), semiconductor devices are often contaminated with sodium and problems with electrical characteristics occur.

基板との付着力について米国特許33187573号、
2763573号、2436304号等に示されている
様に有機シラン結合剤で基板表面を処理することにより
強化できる。
U.S. Patent No. 3,318,7573 regarding adhesion to the substrate;
It can be strengthened by treating the surface of the substrate with an organic silane binder as shown in US Pat.

これにより食刻工程時にもレジストが剥離しないように
なつて付着力に関する問題がほぼ解決されるがナトリウ
ムによる汚染の問題は依然とて残されている。一方ポジ
レジスト用の現像液として最近アミノアルコール等アル
カリを含まないものが市販さているが、画像ラインの切
れが悪いか、再現性の乏しい等の欠点がある。
This prevents the resist from peeling off during the etching process and almost solves the problem of adhesion, but the problem of sodium contamination still remains. On the other hand, developers for positive resists that do not contain alkali, such as amino alcohols, have recently been commercially available, but they have drawbacks such as poor image line definition and poor reproducibility.

前記アルカリ性現像液を使用した場合、半導体装置がナ
トリウムでどの程度汚染されるかを調査した。この実験
は(311)のN型4.4Ω儒シリコンウェーハを酸化
前処理をした後酸化工程を行なう。
The extent to which semiconductor devices are contaminated with sodium when the alkaline developer is used was investigated. In this experiment, a (311) N-type 4.4Ω Confucian silicon wafer was pre-oxidized and then subjected to an oxidation process.

ここでナトリウムをゲツタリング(Gettering
)す燐珪化ガラスを被覆した試料と被覆しない試料を作
成し、これらをアルカリ性現像液に浸漬後脱イオン水で
洗浄する。勿論これは入念且つ十分に行なう。次にこれ
らの試料にモス●キャパシタ. (MOS●CapacitOr)を作成後BT試験を行
なつた。
Gettering the sodium here.
) A sample coated with phosphorus silicide glass and a sample not coated are prepared, and these are immersed in an alkaline developer and then washed with deionized water. Of course, do this carefully and thoroughly. Next, add a Moss capacitor to these samples. After creating (MOS●CapacitOr), a BT test was conducted.

この試験結果を第1図A,Bに示す。The test results are shown in Figures 1A and B.

すなをち、同図Aは燐珪化ガラスを被覆しない場合、同
図B!1燐珪化ガラスを被覆した場合の実験結果を.示
している。図から明らかなように燐珪化ガラスを被覆し
た試料(第1図B)に比べ燐珪化ガラスを被覆しない試
料(同図A)は+BT,−Bη拭験の何れに対してもV
FBのシフトが大きく明らかにアルカリイオンの汚染を
受けていることが判る。また現像液に浸漬してから酸化
した試料も■FBの変動が大きく、C−V曲線の変形を
も伴つており、アルカリイオンと同時に金属イオンによ
る汚染の可能性も示唆している。なお、上記BT試験と
はBT処理(BiasTemperatureTrea
tment)の後に行なう試験、NFBは表面電荷量、
VFBはフラットバンド電圧を示す。この発明は上記の
欠点を除去した新規な半導体装置の製造方法を提案する
もので、特に写真食刻法における感光性樹脂の現像及び
除去に関する新方法である。
In other words, the same figure A is the same figure B when the phosphorsilicate glass is not coated! Experimental results when coated with 1-phosphorus silicide glass. It shows. As is clear from the figure, compared to the sample coated with phosphorus silicide glass (Figure 1 B), the sample not coated with phosphorus silicide glass (Figure 1 A) has a lower V for both +BT and -Bη wiping tests.
It can be seen that the FB shift is large and it is clearly contaminated by alkali ions. In addition, samples oxidized after being immersed in a developer exhibited large fluctuations in FB and were accompanied by deformation of the CV curve, suggesting the possibility of contamination by metal ions as well as alkali ions. Note that the above BT test refers to BT processing (Bias TemperatureTrea).
tment), NFB is the amount of surface charge,
VFB indicates flat band voltage. This invention proposes a new method for manufacturing a semiconductor device that eliminates the above-mentioned drawbacks, and is particularly a new method for developing and removing photosensitive resin in photolithography.

即ち、本発明は感光性樹脂の現像に関しては化″学式R
1−ーー申−R4−ー0H]+0H−で表わされるトリ
アルキル(ヒドロキシアルキル)アンモニウム●ハイド
ロキサイド(以後THAH)略称する)の重量比1%な
いし8%の濃度の水溶液を使用し末露光の感光性樹脂の
除去には重量比4%を越え20%以下の濃度のTHAH
水溶液を適用することを特徴とする。
That is, the present invention relates to the development of a photosensitive resin using the chemical formula R.
Using an aqueous solution of trialkyl (hydroxyalkyl) ammonium hydroxide (hereinafter abbreviated as THAH) represented by 1--Syn-R4--0H]+0H- at a concentration of 1% to 8% by weight, late exposure was performed. To remove the photosensitive resin, use THAH at a concentration of more than 4% and less than 20% by weight.
Characterized by applying an aqueous solution.

なお、上記化学式中、Rはアルキル基であり、必ずしも
同一組成である必要はない。ところでTHAHはアルカ
リ性を呈する物質として知られている。一般に、半導体
に接して形成されたシリコン酸化膜中にナトリウムイオ
ンが存在すると、そのナトリウムイオンは可動イオンと
なり、MOS型デバイスやプレーナ型バイポーラデバイ
ス等の特性を著しく低下させる外、半導体表面にナトリ
ウム等のアルカリ性金属イオンが存在すると容易に酸化
膜へ移動して特性を害うことが判明している。従つてこ
のようなアルカリ性溶液は半導体の処理工程で使用され
ていないのが実状であつた。しかし、本発明者等は種々
実験を行なつた結果THAH水溶液が脱脂、無機質によ
る汚染除去ならびに極く薄い酸化膜除去の何れについて
も有効であること、更にTHAH水溶液からシリコン等
の半導体への有害な逆汚染を起4こさない事実を確認し
た。次に本発明者等は前記THAFI水溶液がポジレジ
ストの現像及び除去に適用可能か否かをTHAHの一種
であるコリン〔(CH3)3N(CH2CH2OH)0
H〕を用いて追加調査した。
In addition, in the above chemical formula, R is an alkyl group, and they do not necessarily have to have the same composition. By the way, THAH is known as a substance exhibiting alkalinity. Generally, when sodium ions are present in a silicon oxide film formed in contact with a semiconductor, the sodium ions become mobile ions, which not only significantly deteriorate the characteristics of MOS devices and planar bipolar devices, but also cause sodium ions to form on the semiconductor surface. It has been found that the presence of alkaline metal ions easily migrates to the oxide film and impairs its properties. Therefore, the reality is that such alkaline solutions are not used in semiconductor processing steps. However, as a result of various experiments, the present inventors have found that THAH aqueous solution is effective for degreasing, removing inorganic contamination, and removing extremely thin oxide films. We have confirmed that there is no significant back contamination. Next, the present inventors investigated whether the THAFI aqueous solution was applicable to developing and removing positive resists using choline [(CH3)3N(CH2CH2OH)0
Additional investigation was conducted using H].

即ち縦軸にレジスト残膜率(現像後膜厚/塗布後膜厚)
横軸に露光量をとつた特性曲線をコリン水溶液の濃度を
パラメータとして得た。これが第2図てある。同図にお
いて曲線Aはコリンの重量比1%、曲線Bは同重量比4
%、曲線Cは同重量比6%、曲線Dは同重量比8%の場
合を示している。現像液として理想的なものはレジスト
残膜率がある露光量までは1.0に近く、一定露光量に
達すれば急激に0ななる形状のものである。同図から明
らかな様に、本発明に係る現像液は、従来のアルカリ性
現像液の場合と同様の現像特性を示しており、ポジレジ
ストの現像液として十分利用できることが確認できた。
さらにコリン水溶液1重量%(以後%は重量%を示す)
未満では現像能力が十分でなく、また8%を越えた水溶
液では未露光のレジストも溶解することが判明した。こ
のような現像ならびにレジスト除去にコリン水溶液を適
用した場合得られる半導体装置の特性を調べるために第
1図の結果を得た方法と同じ手段で調査した。この結果
NFB,■FBとも燐珪化ガラス被膜を被着した半導体
装置と何ら変わりなかつた。この結果からもすぐれた処
理液であることが判る。よつて本発明ではポジ型感光性
樹脂の現像には1%ないし8%のTHAH水溶液を、未
露光の前記感光性樹脂除去にもTFIAH水溶液を適用
することにした。次に実施例により本発明を詳述する。
In other words, the vertical axis shows the resist remaining film rate (film thickness after development/film thickness after coating).
A characteristic curve with the exposure amount on the horizontal axis was obtained using the concentration of the choline aqueous solution as a parameter. This is shown in Figure 2. In the same figure, curve A is 1% by weight of choline, and curve B is 4% by weight.
%, curve C shows the case where the same weight ratio is 6%, and curve D shows the case where the same weight ratio is 8%. An ideal developer is one in which the resist remaining film ratio is close to 1.0 up to a certain exposure amount, and rapidly becomes 0 when the constant exposure amount is reached. As is clear from the figure, the developer according to the present invention exhibits development characteristics similar to those of conventional alkaline developers, and it was confirmed that it can be fully used as a developer for positive resists.
Furthermore, 1% by weight of choline aqueous solution (hereinafter % indicates weight%)
It has been found that if the aqueous solution is less than 8%, the developing ability will not be sufficient, and if the aqueous solution exceeds 8%, even unexposed resist will be dissolved. In order to investigate the characteristics of a semiconductor device obtained when a choline aqueous solution is applied to such development and resist removal, the same method as that used to obtain the results shown in FIG. 1 was used. As a result, both NFB and ■FB were no different from semiconductor devices coated with a phosphosilicate glass film. This result also shows that it is an excellent processing solution. Therefore, in the present invention, it was decided to use a 1% to 8% THAH aqueous solution for developing the positive photosensitive resin, and to apply a TFIAH aqueous solution also for removing the unexposed photosensitive resin. Next, the present invention will be explained in detail with reference to Examples.

n型のシリコン基板に珪素酸化物を被着後ポジ型の感光
性樹脂0FPR■(商品名、東京応化工業製)を1.5
μ厚さに被着する。
After depositing silicon oxide on an n-type silicon substrate, 1.5% of positive photosensitive resin 0FPR■ (trade name, manufactured by Tokyo Ohka Kogyo) was applied.
Deposit to μ thickness.

次にホトマスクによるマスク合せを行なうが、その前に
被着した感光性樹脂の溶剤を揮散させるために80℃で
20分間程度の熱処理を行なう。前記マスク合せは露光
及び非露光部分の選択を行なうためのものであるが露光
は被着物表面に平行に配置した光源によつて実施される
。次に現像工程に入る。現像液としては重量比がそれぞ
れ1,4,6,8%のコリン水溶液を用い室温で1分間
浸漬する。その後2分間水洗し乾燥させる。そして各露
光量に対応する部分のレジスト膜厚は薄膜測定器によつ
て測定する。これによつて得られた露光量とレジスト残
膜率をプロットしたものが第2図である。同図中曲線A
がコリンの重量比1%、曲線Bが同重量比4%、曲線C
が同重量比6%、曲線Dが同重量比8%の場合を示す。
第2図に示されるように曲線Aの右側の領域、すなわち
コリンの濃度が1%より小さい場合には更に露光感度(
曲線が横軸が交差する点における露光量)が悪くなり、
露光に必要な露光時間が更に長くなる結果を招来するこ
とは明らかである。一方、レジスト残膜率曲線と縦軸と
の交点に着目するとコリンの濃度が8%すなわち、曲線
Dでは0.5より小さくなり、同じく6%すなわち曲線
Cでは0.6となつている。残膜率が0.5以下では、
レジスト膜厚が半分以下となるので、後の食刻工程にお
ける耐蝕性に不安が残る。従つて、残膜率は0.5以上
であることが好ましく、コリンの濃度も8%程度が上限
であると考えられる。なお現像能力としてはポジレジス
ト樹脂の種類、現像、時間、液温などによつて若干の差
があるが、許容できる残膜率内に収まる。また、半導体
装置の製造には現像工程後加熱を施したのち未現像部分
のエツク等の検査を行なつてから露出した酸化珪素を食
刻工程て除去後洗浄してから未露光感光樹脂を一例とし
て6%のコリン水溶液で除去洗浄工程を行なつた。
Next, mask alignment using a photomask is performed, but before that, a heat treatment is performed at 80° C. for about 20 minutes in order to volatilize the solvent of the photosensitive resin deposited. The mask alignment is for selecting exposed and non-exposed areas, and the exposure is performed by a light source placed parallel to the surface of the adherend. Next, the developing process begins. As the developer, choline aqueous solutions having a weight ratio of 1, 4, 6, and 8%, respectively, are used, and the sample is immersed at room temperature for 1 minute. Then wash with water for 2 minutes and dry. Then, the resist film thickness at a portion corresponding to each exposure amount is measured using a thin film measuring device. FIG. 2 is a plot of the exposure amount and resist remaining film rate obtained in this way. Curve A in the same figure
is 1% by weight of choline, curve B is 4% by weight, curve C is
shows the case where the same weight ratio is 6%, and curve D shows the case where the same weight ratio is 8%.
As shown in Figure 2, in the region to the right of curve A, that is, when the concentration of choline is less than 1%, the exposure sensitivity (
The exposure amount at the point where the curve intersects the horizontal axis) becomes worse,
It is clear that this results in an even longer exposure time required for exposure. On the other hand, focusing on the intersection of the resist residual film ratio curve and the vertical axis, the concentration of choline is 8%, that is, curve D, which is smaller than 0.5, and similarly, 6%, that is, curve C, which is 0.6. When the residual film rate is 0.5 or less,
Since the resist film thickness is less than half, there remains concern about corrosion resistance in the subsequent etching process. Therefore, the residual film ratio is preferably 0.5 or more, and the upper limit of the choline concentration is considered to be about 8%. The developing ability varies slightly depending on the type of positive resist resin, development time, solution temperature, etc., but it falls within an allowable residual film rate. In addition, in the manufacture of semiconductor devices, after the development process, heating is performed, and the undeveloped areas are inspected for marks, etc., and the exposed silicon oxide is removed by an etching process, and then washed, and then the unexposed photosensitive resin is processed. A removal washing step was performed using a 6% choline aqueous solution.

なお、未露光感光樹脂の除去は、比較的濃度のTI(A
H水溶液であつても長時間の除去工程により可能である
が、種々実験を行なつた結果、未露光感光樹脂の除去に
際してはTHAHの重量比が4%を超え20%以下のも
のが好ましいことが判明した。勿論、未露光感光樹脂の
除去に際しても、上述した現像工程の場合と同様、TH
AH水溶液の優れた特性が活かされることは明らかであ
る。これで写真食刻工程を終え、酸化拡散又は蒸着工程
等を実施して半導体装置を完成した。この実施例では半
導体基板に被着した酸化珪素を部分的に写真食刻法て除
去する例を示したが、この他にはメサエツチングをシリ
コン基板に形成・する場合及び相互配線をアルミニウム
で行なう場合にも適用可能であることは勿論である。
Note that the unexposed photosensitive resin is removed using a relatively high concentration of TI (A
Although it is possible to remove THAH using an aqueous solution for a long time, as a result of various experiments, it has been found that when removing unexposed photosensitive resin, it is preferable to use a THAH solution with a weight ratio of more than 4% and less than 20%. There was found. Of course, when removing the unexposed photosensitive resin, TH
It is clear that the excellent properties of the AH aqueous solution can be utilized. The photo-etching process is now completed, and the semiconductor device is completed by performing an oxidation diffusion or vapor deposition process. This example shows an example in which silicon oxide deposited on a semiconductor substrate is partially removed by photoetching, but there are also cases where mesa etching is formed on a silicon substrate and cases where interconnections are made of aluminum. Of course, it is also applicable to

また、この発明による半導体装置の製造方法はTHAH
水溶液を写真食刻に用いられるポジ型感光樹脂の現像な
らびに除去に適用可能としたものであり、・本発明によ
れば従来のものと同程度の残膜率とすることができその
他何の支障もない。しかもアルカリを含まない現像液と
して知られている従来のものに比べて再現性は良く、更
に画像ラインの切れもすぐれている。なお上記TH.A
l(は半導体製)造において最も忌避すべきNalその
他Cu,.Agの如き不純物の含有量が極めて少ないた
め、製造工程における使用によつて残留し、あるいは他
の部材に移動、吸着して半導体装置の電気的特性を害す
ることがない。これはTHAFIがトリメチルアミンと
エチレンオキサイドとから次式如く生成できるためであ
る。次には上記反応によつて10%以上の濃厚溶液を製
造することも容易であり、この際触媒も不要でかつ上記
原料も高純度のものが得られることに基づき純度の良い
コリンが得やすいという利点がある。
Further, the method for manufacturing a semiconductor device according to the present invention includes THAH
This makes it possible to apply an aqueous solution to the development and removal of positive photosensitive resins used in photographic engraving. - According to the present invention, it is possible to achieve a residual film rate comparable to that of conventional methods, and there are no other problems. Nor. In addition, the reproducibility is better than that of conventional developing solutions that do not contain alkali, and image line sharpness is also excellent. In addition, the above TH. A
Nal, Cu, . Since the content of impurities such as Ag is extremely small, it will not remain during use in the manufacturing process, or will not migrate or be adsorbed to other members and impair the electrical characteristics of the semiconductor device. This is because THAFI can be produced from trimethylamine and ethylene oxide as shown in the following formula. Next, it is easy to produce a concentrated solution of 10% or more by the above reaction, and since a catalyst is not required and the raw materials mentioned above can be obtained with high purity, it is easy to obtain choline with good purity. There is an advantage.

上記を一例のTFIAH(テトラメチルアンモニウムハ
イドロキサイド)と比較してみる。
Let's compare the above with one example of TFIAH (tetramethylammonium hydroxide).

ますこの製造は次式R3N+RBr→R,NBrR,N
Br+AgOH.−4.R4N+0H−+AgBr↓の
如くしてAgを使用するため不純物としてAgが残る。
The manufacturing process is as follows: R3N+RBr→R,NBrR,N
Br+AgOH. -4. Since Ag is used as in R4N+0H-+AgBr↓, Ag remains as an impurity.

またTMAH(7)濃度も数%に止まる。参考のために
コリンとTMAHとの不純物量単位(Ppm)を比較し
た(次表)。上述の高純度であることと、高濃度に得ら
れることとは特に半導体の製造には重要てあり、適用範
囲は今後さらに拡張されるものてある。
Furthermore, the TMAH (7) concentration remains at a few percent. For reference, the impurity units (Ppm) of choline and TMAH were compared (see the following table). The above-mentioned high purity and high concentration are particularly important in the production of semiconductors, and the scope of application is expected to be further expanded in the future.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は試料にモス・キャパシタを形成し、これにBη
拭験を施した結果を示した図で、同図Bは燐珪化ガラス
を適用して作成したもの、同図Aは燐珪化ガラス不適用
の場合であり、図中0印はEp(+BT処理)、×印は
Ep(−BT処理)を各々示す。
In Figure 1, a Moss capacitor is formed on the sample, and Bη
This figure shows the results of the wiping test. Figure B is the one created by applying phosphorus silicide glass, Figure A is the case where phosphorus silicide glass is not applied, and the 0 mark in the figure shows the result of Ep (+BT treatment). ), × marks indicate Ep (-BT treatment), respectively.

Claims (1)

【特許請求の範囲】 1 半導体に被着したポジ型感光性樹脂を露光現像する
にあたり、重量比で1%ないし8%の濃度範囲内のトリ
アルキル(ヒドロキシアルキル)アンモニウム、ハイド
ロキサイド水溶液で現像することを特徴とする半導体装
置の製造方法。 2 半導体に被着したポジ型感光性樹脂を露光現像除去
するにあたり、重量比で1%ないし8%の濃度範囲内の
トリアルキル(ヒドロキシアルキル)アンモニウムム、
ハイドロキサイド水溶液で現像を施したのち、未露光の
前記感光性樹脂をトリアルキル(ヒドロキシアルキル)
アンモニウム・ハイドロキサイド水溶液で除去すること
を特徴とする半導体装置の製造方法。
[Claims] 1. When exposing and developing a positive photosensitive resin adhered to a semiconductor, developing with an aqueous solution of trialkyl (hydroxyalkyl) ammonium or hydroxide within a concentration range of 1% to 8% by weight. A method for manufacturing a semiconductor device, characterized in that: 2. Trialkyl (hydroxyalkyl) ammonium in a concentration range of 1% to 8% by weight when removing the positive photosensitive resin adhered to the semiconductor by exposure and development;
After developing with an aqueous hydroxide solution, the unexposed photosensitive resin is converted into trialkyl (hydroxyalkyl).
A method for manufacturing a semiconductor device, characterized in that removal is performed using an ammonium hydroxide aqueous solution.
JP51125479A 1976-10-21 1976-10-21 Manufacturing method of semiconductor device Expired JPS6057218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51125479A JPS6057218B2 (en) 1976-10-21 1976-10-21 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51125479A JPS6057218B2 (en) 1976-10-21 1976-10-21 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5351971A JPS5351971A (en) 1978-05-11
JPS6057218B2 true JPS6057218B2 (en) 1985-12-13

Family

ID=14911099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51125479A Expired JPS6057218B2 (en) 1976-10-21 1976-10-21 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6057218B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5635424A (en) * 1980-08-13 1981-04-08 Toshiba Corp Manufacture of semiconductor device
DE3268203D1 (en) * 1981-04-10 1986-02-13 Shipley Co Metal ion-free photoresist developer composition
JPS5821825A (en) * 1981-08-03 1983-02-08 Toshiba Corp Preparation of semiconductor treating solution
JPS5996731A (en) * 1982-11-25 1984-06-04 Toshiba Corp Manufacture of semiconductor device
JPS59219743A (en) * 1983-05-28 1984-12-11 Tokyo Ohka Kogyo Co Ltd Positive type resist developing solution
JPH0234858A (en) * 1988-11-05 1990-02-05 Toshiba Corp Preparation of developing solution for photoresist

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5264877A (en) * 1975-11-26 1977-05-28 Toshiba Corp Production of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5264877A (en) * 1975-11-26 1977-05-28 Toshiba Corp Production of semiconductor device

Also Published As

Publication number Publication date
JPS5351971A (en) 1978-05-11

Similar Documents

Publication Publication Date Title
US4015986A (en) Method of developing and stripping positive photoresist
JP3381922B2 (en) Method for producing developer with low metal ion content
JP3805373B2 (en) Method for reducing metal ions in a photoresist composition by chelating ion-exchange resin
US3539408A (en) Methods of etching chromium patterns and photolithographic masks so produced
KR100470514B1 (en) Method for producing a surfactant having a low metal ion content and a method for producing a developer containing the surfactant
JPS6057218B2 (en) Manufacturing method of semiconductor device
JP3924317B2 (en) Metal ion reduction in novolak resin solution using anion exchange resin
JP2001506375A (en) Method for reducing metal ion contamination in a photoresist composition containing an organic polar solvent by ion exchange
US4816380A (en) Water soluble contrast enhancement layer method of forming resist image on semiconductor chip
JP2002519192A (en) Reduction method of trace metal ions by ion exchange pack
JPH07335603A (en) Semiconductor substrate treatment method and treatment agent
JPH08316121A (en) Resist pattern forming method
US3998638A (en) Method of developing opaquely coated sensitized matrix with a solution containing sodium meta-silicate
JP3351028B2 (en) Patterning method of aluminum-based metal film
US4997742A (en) Water soluble contrast enhancement composition with 1-oxy-2 diazonaphthalene sulfonamide salt and polyvinyl alcohol
US3701659A (en) Photolithographic masks of semiconductor material
JPS592043A (en) Photoresist developing method
JPS63177518A (en) Formation of pattern
JPS63229452A (en) Resist developing method
JPH0684774A (en) Semiconductor device and its manufacture
JPH01302724A (en) Manufacture of semiconductor device
JPH0743538B2 (en) Wiring pattern forming method
JPS636548A (en) Agent for predeveloping positive type photoresist and method for developing
JP2002270487A (en) Method of forming resist pattern and method of manufacturing semiconductor device using the method
US5173390A (en) Water soluble contrast enhancement composition and method of use