JPH04223191A - Phase change type optical recording medium - Google Patents

Phase change type optical recording medium

Info

Publication number
JPH04223191A
JPH04223191A JP2407065A JP40706590A JPH04223191A JP H04223191 A JPH04223191 A JP H04223191A JP 2407065 A JP2407065 A JP 2407065A JP 40706590 A JP40706590 A JP 40706590A JP H04223191 A JPH04223191 A JP H04223191A
Authority
JP
Japan
Prior art keywords
optical recording
recording material
material layer
recording medium
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2407065A
Other languages
Japanese (ja)
Inventor
Haruo Kawakami
春雄 川上
Kenji Ozawa
小沢 賢治
Yoshikazu Sato
嘉一 佐藤
Tanio Urushiya
多二男 漆谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2407065A priority Critical patent/JPH04223191A/en
Publication of JPH04223191A publication Critical patent/JPH04223191A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To achieve improvement of repetitive durability of rewriting operation by a method wherein an optical recording material layer is made to be a thinned film layer of a specific thickness or under and besides, this thinned film layer is formed of a material having such ratio of the number of atoms as Ge2Sb2Te5 admixed with an additive. CONSTITUTION:In a phase change type optical recording medium having Ge, Se, and Te as main constitutive elements of an optical recording material layer, the optical recording material layer is formed by a thinned film layer of under 20 nm film thickness. Further, the thinned film layer is preferably formed of a material produced by adding an additive of maximum 5 atom % to a material having such ratio of the number of atoms as Ge2Sb2Te5. Furthermore, as the additive, Cu, Au, Ag, Co, or Ni may be preferably used excepting Ge-Sb-Te series materials. Thereby, flow of the materials is restrained, and sudden increase of an error rate due to repetition of rewriting operation can be adjusted.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、レーザー光の照射によ
る、光記録材料層の結晶状態の可逆的光学変化を利用す
る光記録媒体であって、Ge、Sb及びTeを光記録材
料層の主構成元素とする相変化型光記録媒体に関するも
のである。
[Field of Industrial Application] The present invention relates to an optical recording medium that utilizes a reversible optical change in the crystalline state of an optical recording material layer by irradiation with laser light, in which Ge, Sb, and Te are added to the optical recording material layer. The present invention relates to a phase change type optical recording medium in which the main constituent element is a phase change type optical recording medium.

【0002】0002

【従来の技術】近年、情報記録の高密度化、大容量化に
対する要求が高まり、国内外でその研究が盛んに行われ
ている。とくに光記録媒体は、従来の磁気記録媒体に比
べ高い記録密度を有し、さらに記録、再生ヘッドと記録
媒体とが非接触状態で情報の記録、再生ができるために
記録媒体の損傷も少なく、加えて長寿命であるなどの特
徴があることから、膨大な情報量を記録、再生する高密
度、大容量の記録方式として有望視されている。この光
記録媒体は用途に応じ再生専用型、追記型、書換型の3
種類に大別することができる。再生専用型は情報の読出
のみが可能な再生専用記録媒体であり、一方、追記型は
、必要に応じて情報を記録し再生することはできるが、
記録した情報の消去は不可能な光記録媒体である。 これに対し書換型は情報の記録、再生と、さらに記録済
の情報を消去して書換ることが可能な光記録媒体であり
、コンピュータ用のデータファイル等としての利用など
に、最も期待の大きいものである。書換型の光記録媒体
については、光磁気方式と相変化方式の2つの記録方式
の開発が進められており、いずれの方式も記録材料や書
込み機構などの点で研究、開発の途上である。上記方式
のうち、相変化方式は一般に、パルス出力と、パルス幅
とを制御されたレーザー光等を媒体の記録表面に集光し
て加熱する。そのレーザー光等の光記録媒体の表面の光
記録材料は、このレーザー光の加熱により相変化し、結
晶状態から非結晶状態への移行又は相転移などを起こす
。光記録媒体は、相変化した状態の、例えば結晶状態と
非結晶状態の、各状態における反射率の違いで情報の記
録と消去を行うものである。
BACKGROUND OF THE INVENTION In recent years, there has been an increasing demand for higher density and larger capacity information recording, and research is being actively conducted both domestically and internationally. In particular, optical recording media have a higher recording density than conventional magnetic recording media, and since information can be recorded and reproduced without contact between the recording and reproducing heads and the recording medium, there is less damage to the recording medium. Additionally, due to its long lifespan, it is seen as a promising high-density, large-capacity recording method for recording and reproducing vast amounts of information. There are three types of optical recording media depending on the purpose: read-only type, write-once type, and rewritable type.
It can be roughly divided into types. A read-only type is a read-only recording medium from which information can only be read, while a write-once type can record and reproduce information as needed.
It is an optical recording medium in which recorded information cannot be erased. On the other hand, rewritable media is an optical recording medium that can record and reproduce information, as well as erase and rewrite recorded information, and has the highest expectations for use as data files for computers. It is something. Regarding rewritable optical recording media, two recording methods, a magneto-optical method and a phase change method, are being developed, and both methods are still in the process of research and development in terms of recording materials, writing mechanisms, etc. Among the above methods, the phase change method generally focuses a laser beam or the like whose pulse output and pulse width are controlled on the recording surface of the medium and heats it. The optical recording material on the surface of the optical recording medium, such as the laser beam, undergoes a phase change due to heating by the laser beam, causing a transition from a crystalline state to an amorphous state or a phase transition. Optical recording media record and erase information based on the difference in reflectance between phase-changed states, for example, a crystalline state and an amorphous state.

【0003】この相変化方式の光記録媒体の通常の構造
は、多くのトラッキング溝を設けたポリカーボネートな
どの基板表面に、ZnSなどのセラミック等よりなる保
護層を形成し、その保護層上に記録材料層を設け、さら
にその記録材料層上にセラミック等よりなる保護層を再
度形成し、さらに有機物の表面保護層を順次堆積させた
構造である。また、保護層と有機物の表面保護層の間に
Al等の反射・冷却層を設けることも行われる。この反
射・冷却層は、基板から入射したレーザー光等を反射し
てレーザー光等の利用効率を上げる目的と、上記記録材
料層が結晶状態から非結晶状態へ変化の際における溶融
状態からの冷却速度を上げる目的とを持っている。記録
材料層が溶融状態にある場合は、セラミック保護層は断
熱層として作用する。なお、上述の光記録媒体に対し、
レーザー光等は媒体の記録材料層を有する側と反対の面
から入射される。
The normal structure of this phase change type optical recording medium is to form a protective layer made of ceramic such as ZnS on the surface of a substrate such as polycarbonate having many tracking grooves, and record data on the protective layer. It has a structure in which a material layer is provided, a protective layer made of ceramic or the like is again formed on the recording material layer, and a surface protective layer of an organic material is sequentially deposited. Furthermore, a reflective/cooling layer made of Al or the like may be provided between the protective layer and the organic surface protective layer. The purpose of this reflective/cooling layer is to reflect laser light, etc. incident from the substrate to increase the utilization efficiency of the laser light, etc., and to cool the recording material layer from its molten state when it changes from a crystalline state to an amorphous state. The purpose is to increase speed. When the recording material layer is in a molten state, the ceramic protective layer acts as a heat insulating layer. In addition, for the above-mentioned optical recording medium,
Laser light and the like are incident on the surface of the medium opposite to the side having the recording material layer.

【0004】この様な相変化型の光記録媒体では、光記
録材料が結晶の状態を初期状態とし、結晶状態の記録材
料をレーザー光等で照射融解した後急冷して、非結晶状
態のスポットを形成した状態を情報記録状態とする。消
去動作は、上記光記録材料の非結晶状態のスポットにレ
ーザー光等を照射しアニールして結晶状態に戻す。この
ように相変化型の光記録媒体は結晶状態と非結晶状態の
反射率差で情報の記録を行う記録媒体である。
In such a phase-change optical recording medium, the optical recording material is initially in a crystalline state, and the crystalline recording material is irradiated with a laser beam or the like and melted, then rapidly cooled to form an amorphous spot. The state in which this is formed is the information recording state. In the erasing operation, a spot in the amorphous state of the optical recording material is irradiated with a laser beam or the like to anneal it and return it to a crystalline state. In this way, a phase change type optical recording medium is a recording medium that records information based on the difference in reflectance between a crystalline state and an amorphous state.

【0005】上述した相変化型光記録媒体の光記録材料
として、Ge2 Sb2 Te5 が結晶組成であるG
e、Sb及びTeを主構成元素とする材料が採用されて
いる。
[0005] As an optical recording material for the above-mentioned phase change type optical recording medium, G having a crystal composition of Ge2 Sb2 Te5 is used.
A material whose main constituent elements are e, Sb, and Te is used.

【0006】[0006]

【発明が解決しようとする課題】このような相変化型の
光記録媒体の最大の問題点は、書換動作の繰り返しの耐
久力である。実用的には106 回の書換動作の繰り返
し、即ち106 回の情報の記録、再生とさらに記録済
の情報を消去の動作の繰り返しを行うことを要求される
。 しかしながら、従来の光記録媒体では、105 回を越
えると媒体上に欠陥が形成されて書換エラーが増加する
と言う問題点がある。
The biggest problem with such phase-change optical recording media is their durability against repeated rewriting operations. Practically speaking, it is required to repeat the rewrite operation 106 times, that is, to repeat the operation of recording and reproducing information 106 times, and further erasing the recorded information. However, conventional optical recording media have a problem in that if the number of rewrites exceeds 105, defects will be formed on the medium and rewriting errors will increase.

【0007】この問題点の原因は、書換動作である結晶
状態から非結晶状態への、或いは逆に非結晶状態から結
晶状態への相変化時に溶融した光記録材料が、媒体の回
転による遠心力或いは保護膜の内部応力等により流動し
、その材料の一部にボイドが発生するためと考えられる
The cause of this problem is that the optical recording material melted during the phase change from a crystalline state to an amorphous state, or conversely from an amorphous state to a crystalline state, during a rewrite operation is affected by the centrifugal force caused by the rotation of the medium. Alternatively, it is thought that the protective film flows due to internal stress or the like, and voids are generated in a part of the material.

【0008】この問題の対応策の一つとして、材料成分
を変えて粘性係数を上げる方法がある。光記録材料であ
るGe、Sb及びTeを主構成元素とした材料は、原子
数比がGe2 Sb2 Te5 の材料で粘性係数が最
小となる。このため材料中のGe、Sb及びTeの比率
がGe2 Sb2 Te5 の原子数比から異なるに従
い、粘性係数が上昇し材料の流動は少なくなる。また、
この材料にGe、Sb又はTe以外の成分を添加する場
合においても、粘性係数は増加し材料の流動は少なくな
る。
One way to deal with this problem is to increase the viscosity coefficient by changing the material components. An optical recording material whose main constituent elements are Ge, Sb, and Te has a minimum viscosity coefficient when the atomic ratio is Ge2 Sb2 Te5. Therefore, as the ratio of Ge, Sb, and Te in the material differs from the atomic ratio of Ge2 Sb2 Te5, the viscosity coefficient increases and the flow of the material decreases. Also,
Even when components other than Ge, Sb, or Te are added to this material, the viscosity coefficient increases and the flow of the material decreases.

【0009】しかしながら、材料の原子数比がGe2 
Sb2 Te5 よりずれるに従い、結晶化の速度が遅
くなり、書換動作における消去時の再結晶の結晶化の比
率、即ちオーバライト時の消去比が低下し、書換動作エ
ラーが増加する。このように、材料に添加物を添加し、
粘性係数を上げるだけではこの問題の解決とはならない
However, the atomic ratio of the material is Ge2
As Sb2 deviates from Te5, the crystallization speed slows down, the crystallization ratio of recrystallization during erasing in a rewriting operation, that is, the erasing ratio during overwriting decreases, and rewriting operation errors increase. In this way, additives are added to the material,
Merely increasing the viscosity coefficient will not solve this problem.

【0010】そこで本発明の目的は、材料の成分を変え
ずに、或いは、上記のような結晶化速度の遅れの影響が
見られない範囲に材料成分の変更を抑えながら、書換時
に溶融した光記録材料層の流動を抑制し、書換動作の繰
り返し耐久性の高い光記録媒体を供給することにある。
[0010] Therefore, an object of the present invention is to reduce the amount of light melted during rewriting without changing the composition of the material, or while suppressing the change in the composition of the material within a range where the effects of the delay in crystallization speed as described above are not observed. The object of the present invention is to suppress the flow of a recording material layer and provide an optical recording medium that has high durability against repeated rewriting operations.

【0011】[0011]

【課題を解決するための手段】上記の課題である、溶融
した光記録材料層の流動を抑える新たな方法として、本
発明において講じた手段は、光記録材料層を20nm未
満の薄膜化層とするものである。
[Means for Solving the Problems] As a new method for suppressing the flow of the molten optical recording material layer, which is the above-mentioned problem, the measures taken in the present invention are to reduce the optical recording material layer to a thin layer of less than 20 nm. It is something to do.

【0012】さらに、その薄膜化層を原子数比がGe2
 Sb2 Te5 の材料に最大5アトミック%の添加
物を添加した材料で形成することが望ましい。なお、添
加物としては、Ge−Sb−Te系の材料の他に、Cu
、Au、Ag、Co又はNiであっても良い。
Furthermore, the thinned layer has an atomic ratio of Ge2.
It is preferable to use a material containing Sb2Te5 and a maximum of 5 atomic percent of additives. In addition to Ge-Sb-Te-based materials, additives include Cu.
, Au, Ag, Co or Ni.

【0013】[0013]

【作用】上記の手段によれば、光記録材料層を薄膜化層
とすることにより、書換時に溶融した光記録材料の流動
における摩擦抵抗係数が増加し、その結果、材料の流動
は抑制される。そして、上記のような膜厚が20nm未
満の流動を抑制された光記録材料層では、書換動作の繰
り返しによるボイドの発生が減少し、この光記録材料層
をもつ光記録媒体における急激なエラーレートの増加が
抑えられる。
[Operation] According to the above means, by making the optical recording material layer a thin layer, the coefficient of frictional resistance in the flow of the molten optical recording material during rewriting increases, and as a result, the flow of the material is suppressed. . In addition, in an optical recording material layer with a thickness of less than 20 nm and with suppressed flow, the occurrence of voids due to repeated rewriting operations is reduced, and the rapid error rate in optical recording media with this optical recording material layer is reduced. increase is suppressed.

【0014】また、この薄膜化層を、原子数比がGe2
 Sb2 Te5 の材料に添加物を加えた材料で形成
する場合には、その材料層の粘性係数が増加することに
よって、上記薄膜化層の作用が増強され、さらに流動が
抑制される。上記の添加物の添加量が、最大5アトミッ
ク%であれば、添加物による書換時の再結晶化速度によ
るエラーレートの影響は見られず、その光記録材料によ
り、実用化可能な書換動作の繰り返し耐久力のある光記
録媒体が形成される。
[0014] Furthermore, this thinned layer has an atomic ratio of Ge2.
In the case of forming the Sb2Te5 material with additives added, the viscosity coefficient of the material layer increases, thereby enhancing the effect of the thinning layer and further suppressing the flow. If the amount of the above-mentioned additive is at most 5 atomic%, there will be no effect on the error rate due to the recrystallization rate during rewriting due to the additive, and the optical recording material will be able to achieve a practical rewriting operation. An optical recording medium with repeated durability is formed.

【0015】[0015]

【実施例】(実施例1)本発明におけるGe−Sb−T
e系の光記録材料の薄膜は、RFマグネトロンスパッタ
法により形成される。光記録媒体基板はポリカーボネー
ト製のディスク状であり、この表面に保護膜であるZn
S膜、光記録材料であるGe2 Sb2 Te5 膜、
逆側の保護膜であるZnS膜、さらに反射・冷却膜であ
るAl膜の順にスパッタ膜を形成する。各膜の膜厚はそ
れぞれ100nm、Xnm、170nm、100nmと
し、光記録材料膜であるGe2 Sb2 Te5 膜の
膜厚Xは15nm、19nm、25nmの3ケースにつ
き書換動作の繰り返し耐久性に対する影響を調べる。各
ケースにおける、書換動作の繰り返し回数とエラーレー
トを添付図1に示す。
[Example] (Example 1) Ge-Sb-T in the present invention
The thin film of e-based optical recording material is formed by RF magnetron sputtering. The optical recording medium substrate is in the shape of a polycarbonate disc, and a protective film of Zn is coated on the surface.
S film, Ge2 Sb2 Te5 film which is an optical recording material,
Sputtered films are formed in this order: a ZnS film as a protective film on the opposite side, and then an Al film as a reflective/cooling film. The thickness of each film is 100nm, Xnm, 170nm, and 100nm, respectively, and the thickness X of the Ge2 Sb2 Te5 film, which is an optical recording material film, is 15nm, 19nm, and 25nm, and the influence on the durability of repeated rewriting operations is investigated. . The number of repetitions of the rewriting operation and the error rate in each case are shown in the attached FIG. 1.

【0016】光記録ディスクの直径は86mmであり、
このディスクを初期化後、3600rpmで回転させな
がら、波長830nmの半導体レーザーによりオーバー
ライトの繰り返しを行う。本実施例の光記録ディスクの
記録容量は約6x105 byteであリ、書込み条件
は、周波数5.8MHz、パルス幅60ns、ピークパ
ワー12mW及びバイアスパワー6mWである。
[0016] The diameter of the optical recording disk is 86 mm,
After initializing this disk, overwriting is repeatedly performed using a semiconductor laser having a wavelength of 830 nm while rotating the disk at 3600 rpm. The recording capacity of the optical recording disk of this embodiment is approximately 6 x 105 bytes, and the writing conditions are a frequency of 5.8 MHz, a pulse width of 60 ns, a peak power of 12 mW, and a bias power of 6 mW.

【0017】書換動作におけるCN比は52dB、消去
比は29dBであり、繰り返しによる変化はない。添付
図1に示すように、本実施例であるGe2 Sb2 T
e5 のみの光記録材料層において、その膜厚が15n
mの場合、106 回の繰り返し書換動作後においても
エラーレートは10−5以下であり、実用化に必要な耐
久性を有している。
The CN ratio in the rewrite operation is 52 dB, and the erasure ratio is 29 dB, and there is no change due to repetition. As shown in the attached Figure 1, Ge2 Sb2 T which is this example
In the optical recording material layer containing only e5, its film thickness is 15 nm.
In the case of m, the error rate is 10-5 or less even after 106 repeated rewriting operations, and has the durability necessary for practical use.

【0018】(実施例2)本実施例における記録媒体は
、実施例1と同様の光記録ディスクであり、その光記録
材料は原子数の比がGe2 Sb2Te5 の材料に、
Sbを5アトミック%添加した材料である。他の条件は
実施例1と同様につき説明を省く。光記録材料膜の膜厚
Xを15nm、19nm、25nmとした3ケースの書
換動作の繰り返し耐久性に対する影響を調べる。本実施
例における、書換動作の繰り返し回数とエラーレートを
添付図2に纏める。
(Example 2) The recording medium in this example is an optical recording disk similar to that in Example 1, and the optical recording material is a material having an atomic ratio of Ge2 Sb2 Te5,
This is a material to which 5 atomic% of Sb is added. The other conditions are the same as in Example 1, so explanations will be omitted. The influence on the durability of repeated rewriting operations will be investigated in three cases in which the thickness X of the optical recording material film is 15 nm, 19 nm, and 25 nm. The number of repetitions of the rewriting operation and the error rate in this embodiment are summarized in the attached FIG. 2.

【0019】書換動作におけるCN比は53dB、消去
比は26dBであり、繰り返しによる変化はないが、さ
らにSbの添加量を増加した場合は、消去比が低下し、
消え残りによる書換動作のエラーレートが増加する。添
付図2に示すように、本実施例であるGe2 Sb2 
Te5 に5アトミック%のSbを添加した光記録材料
層においては、実施例1と比較し全体的にエラーレート
が低下し、その膜厚が19nmの場合、106 回の繰
り返し書換動作後においてもエラーレートは10−5以
下である。
The CN ratio in the rewriting operation is 53 dB, and the erasure ratio is 26 dB, and there is no change with repetition, but when the amount of Sb added is further increased, the erasure ratio decreases,
The error rate of rewriting operations due to unerased data increases. As shown in the attached Figure 2, Ge2 Sb2 which is this example
In the optical recording material layer in which 5 atomic% Sb is added to Te5, the overall error rate is lower than in Example 1, and when the film thickness is 19 nm, there are no errors even after 106 repeated rewriting operations. The rate is below 10-5.

【0020】Sbに替えGe又はTeを添加した場合に
おいても、同様な結果を得る。以上より、Ge−Sb−
Te系の光記録材料層においてGe2 Sb2 Te5
 に添加可能なGe、Sb又はTeの量の上限は5アト
ミック%であり、この光記録材料層の膜厚は20nm未
満であれば実用化に必要な耐久性を有している。
Similar results are obtained when Ge or Te is added instead of Sb. From the above, Ge-Sb-
In the Te-based optical recording material layer, Ge2 Sb2 Te5
The upper limit of the amount of Ge, Sb, or Te that can be added to the optical recording material layer is 5 atomic %, and if the thickness of this optical recording material layer is less than 20 nm, it has the durability necessary for practical use.

【0021】(実施例3)本実施例における記録媒体は
、実施例1と同様の光記録ディスクであり、その光記録
材料は原子数比がGe2 Sb2 Te5 の材料に、
Cuを5アトミック%添加した材料である。他の条件は
実施例1と同様につき説明を省く。光記録材料膜の膜厚
Xを15nm、19nm、25nmとした3ケースの書
換動作の繰り返し耐久性に対する影響を調べる。本実施
例における、書換動作の繰り返し回数とエラーレートを
添付図3に纏める。
(Example 3) The recording medium in this example is an optical recording disk similar to that in Example 1, and the optical recording material is a material with an atomic ratio of Ge2 Sb2 Te5.
This is a material to which 5 atomic% of Cu is added. The other conditions are the same as in Example 1, so explanations will be omitted. The influence on the durability of repeated rewriting operations will be investigated in three cases in which the thickness X of the optical recording material film is 15 nm, 19 nm, and 25 nm. The number of repetitions of the rewriting operation and the error rate in this embodiment are summarized in the attached FIG. 3.

【0022】書換動作におけるCN比、消去比は実施例
2とほぼ同様であり、添加量においても実施例2同様、
5アトミック%を越えた場合は、消去比が低下し、消え
残りによる書換動作のエラーレートが増加する。添付図
3に示すように、本実施例であるGe2 Sb2 Te
5 に、5アトミック%のCuを添加した光記録材料層
においては、実施例2と同様に、実施例1と比較し全体
的にエラーレートが低下し、その膜厚が19nmの場合
、106 回の繰り返し書換動作後においてもエラーレ
ートは10−5以下である。
The CN ratio and erase ratio in the rewriting operation are almost the same as in Example 2, and the amount of addition is also the same as in Example 2.
If it exceeds 5 atomic percent, the erase ratio will decrease and the error rate of rewriting operations due to unerased data will increase. As shown in the attached Figure 3, Ge2 Sb2 Te which is this example
Similarly to Example 2, in the optical recording material layer to which 5 atomic% of Cu was added, the overall error rate decreased compared to Example 1, and when the film thickness was 19 nm, the error rate was 106 times. Even after repeated rewriting operations, the error rate is 10-5 or less.

【0023】Cuに替えAu、Ag、Co又はNiを添
加した場合においても、同様な結果を得る。以上より、
Ge−Sb−Te系の光記録材料層においてGe2 S
b2 Te5 への添加物の添加量の上限は5アトミッ
ク%であり、この光記録材料層の膜厚は20nm未満で
あれば実用化に必要な耐久性を有している。
Similar results are obtained when Au, Ag, Co or Ni is added instead of Cu. From the above,
Ge2S in the Ge-Sb-Te-based optical recording material layer
The upper limit of the amount of additives added to b2 Te5 is 5 atomic %, and if the thickness of this optical recording material layer is less than 20 nm, it has the durability necessary for practical use.

【0024】以上、図1乃至図3に示される実験の結果
は、光記録材料層の膜厚を20nm未満とした場合、実
用段階で要求される106 回の書換動作に対し、急激
なエラーレートの増加のない光記録媒体であることを示
している。また、光記録材料層への各種の添加物の添加
量の上限はいずれも5アトミック%である。さらに、G
e2 Sb2 Te5 のみの光記録材料層であれば1
5nm以下、添加量が5アトミック%の光記録材料層で
は膜厚の上限を20nmとすると、106 回の書換動
作に対し、10−5以下という非常に低い、実用上充分
であるエラーレートの光記録媒体となる。
As described above, the results of the experiments shown in FIGS. 1 to 3 show that when the thickness of the optical recording material layer is less than 20 nm, the error rate sharply increases with respect to the 106 rewriting operations required at the practical stage. This shows that it is an optical recording medium with no increase in . Further, the upper limit of the amount of various additives added to the optical recording material layer is 5 atomic %. Furthermore, G
1 for an optical recording material layer consisting only of e2 Sb2 Te5
If the upper limit of the film thickness is 20 nm for an optical recording material layer with a thickness of 5 nm or less and a doping amount of 5 atomic%, the optical recording material has an extremely low error rate of 10-5 or less, which is sufficient for practical use, for 106 rewriting operations. It becomes a recording medium.

【0025】上記のような結果が得られた理由は、先ず
第1に光記録材料層を薄膜化層としたことである。薄膜
化により、溶融した材料の流動状態における摩擦抵抗係
数が上昇し、その流動を抑えることができるのであるが
、その流動速度と薄膜化層の厚みは以下の様に説明でき
る。光記録媒体の光記録材料層のような薄膜の流動は、
層が極薄膜であること、また、その流動速度は比較的遅
いことより、層流に領域のみを考慮すればよく、さらに
、その流動は、光記録材料層を挟む保護層の表面に形成
される速度境界層中の流動として、以下の式により表さ
れる。
The reason why the above results were obtained is that first, the optical recording material layer was made into a thin layer. By making the film thinner, the coefficient of frictional resistance in the flowing state of the molten material increases and the flow can be suppressed, and the flow rate and the thickness of the thinner layer can be explained as follows. The flow of a thin film such as the optical recording material layer of an optical recording medium is
Since the layer is an extremely thin film and its flow rate is relatively slow, it is only necessary to consider the region of laminar flow, and furthermore, the flow is formed on the surface of the protective layer sandwiching the optical recording material layer. The flow in the velocity boundary layer is expressed by the following equation.

【0026】   u=(dp/dx)・(de2 /4μ)    
・・・・・・(1)                
                u        
    :流動速度(cm/s)          
                       (d
p/dx):圧力勾配               
                 de      
    :有効直径                
                μ        
    :材料の粘性係数    de=4・(流路断
面積)/ぬれぶち長さ               
 =4・a・ρ/2(a+ρ)=2ρ  (a>>ρ)
                         
                   ・・・・・・
(2)                      
                      a  
:記録マーク幅                  
                         
       (〜103 nm)         
                         
          ρ  :光記録材料層膜厚(1)
式において、圧力勾配(dp/dx)は、光記録媒体の
回転による遠心力や保護膜の内部応力など、流動の推進
力の相当するものである。(1)式及び(2)式により
、光記録材料の流動速度uは、流路の有効直径deの二
乗、即ち光記録材料層膜厚ρの二乗に比例することが分
かる。
[0026] u=(dp/dx)・(de2/4μ)
・・・・・・(1)
u
:Flow velocity (cm/s)
(d
p/dx): pressure gradient
de
:Effective diameter
μ
: Viscosity coefficient of material de=4・(flow path cross-sectional area)/wetted edge length
=4・a・ρ/2(a+ρ)=2ρ (a>>ρ)

・・・・・・
(2)
a
: Recording mark width

(~103 nm)

ρ: Optical recording material layer thickness (1)
In the equation, the pressure gradient (dp/dx) corresponds to the driving force of the flow, such as the centrifugal force due to the rotation of the optical recording medium or the internal stress of the protective film. From equations (1) and (2), it can be seen that the flow rate u of the optical recording material is proportional to the square of the effective diameter de of the channel, that is, the square of the optical recording material layer thickness ρ.

【0027】このように、光記録材料層の膜厚を薄くす
ることにより、記録材料層の流動は抑制される。この光
記録材料層の従来の膜厚は、25nm程度以上であり、
この領域ではエラーレートが105 回程度の書換動作
にて急激に増加してしまい、実用化段階に達していない
。 しかし、本発明において実施した20nm未満の薄膜化
層では、実用化に必要な106 回の繰り返し後であっ
ても急激なエラーレートの増加は抑制されている。
As described above, by reducing the thickness of the optical recording material layer, the flow of the recording material layer is suppressed. The conventional film thickness of this optical recording material layer is about 25 nm or more,
In this region, the error rate increases rapidly after approximately 105 rewriting operations, and the method has not reached the stage of practical use. However, in the thin layer of less than 20 nm implemented in the present invention, a rapid increase in error rate is suppressed even after 106 repetitions required for practical use.

【0028】また、前記(1)式で示されるように、流
動速度は粘性係数μに反比例し、粘性係数を制御するこ
とによっても、光記録材料層の流動は抑制されることが
わかる。このように、材料層に添加物を加え、その粘性
係数を増加させることにより光記録材料層の流動は抑制
されるが、一方、材料がGe2 Sb2 Te5 の原
子数比より異なるに従い、光記録材料の書換動作の消去
時に当たる結晶化の速度が遅くなり、消去比が低下し、
記録媒体の書換動作のエラーレートが逆に増大してしま
うという問題点があり、その添加物の適切な比率は求め
られていなかった。本実施例において、Ge2 Sb2
 Te5 を主成分とする光記録材料層に、添加物とし
てGe、Sb又はTeの主成分と同じ成分と、Cu、A
u、Ag、Co又はNi等の成分を添加し実験した結果
、粘性係数の増加により材料層の流動が抑制され、かつ
結晶化速度の遅れによるエラーレートの増加の見られな
い添加量の上限は5アトミック%であることが確認され
た。
Furthermore, as shown by the above equation (1), the flow rate is inversely proportional to the viscosity coefficient μ, and it can be seen that the flow of the optical recording material layer can also be suppressed by controlling the viscosity coefficient. As described above, by adding additives to the material layer and increasing its viscosity coefficient, the flow of the optical recording material layer is suppressed, but on the other hand, as the material differs from the atomic ratio of Ge2 Sb2 Te5, the optical recording material The speed of crystallization during erasing of the rewriting operation slows down, the erasing ratio decreases,
There is a problem in that the error rate of the rewriting operation of the recording medium increases, and an appropriate ratio of the additive has not been sought. In this example, Ge2 Sb2
Additives to the optical recording material layer containing Te5 as the main component include Ge, Sb, or Te, as well as Cu, A
As a result of experiments with the addition of components such as u, Ag, Co, or Ni, the upper limit of the amount added is that the flow of the material layer is suppressed due to an increase in the viscosity coefficient, and the error rate does not increase due to a delay in the crystallization rate. 5 atomic%.

【0029】[0029]

【発明の効果】以上説明したように、本発明は、光記録
媒体における光記録材料層を20nm未満の薄膜化層と
し、さらに、原子数比Ge2 Sb2 Te5 の材料
を主成分とし最大5アトミック%の添加物を添加された
材料により、前記薄膜化層を形成することに特徴を有す
るので、以下の効果を奏す。
As explained above, the present invention makes the optical recording material layer in an optical recording medium thinner to a thickness of less than 20 nm, and further comprises a material with an atomic ratio of Ge2 Sb2 Te5 as the main component and a maximum of 5 atomic %. Since the thin layer is formed using a material to which the following additives have been added, the following effects can be achieved.

【0030】従来のGe−Sb−Te系光記録材料を用
いた光記録媒体では、書換動作の繰り返しによるエラー
レートが、実用化の際に要求される繰り返し回数(10
6 回)以前において急激に増加するため、実用化の段
階に達しているとは言えない。
In optical recording media using conventional Ge-Sb-Te optical recording materials, the error rate due to repeated rewriting operations is lower than the number of repetitions (10
6), so it cannot be said that it has reached the stage of practical application.

【0031】また、エラーレートの増加の原因である材
料層の流動を抑えるため、光記録材料層に添加物を添加
しても、再結晶化速度の遅れの原因となり、この手段の
みでは上記問題の解決ができない。
Furthermore, even if additives are added to the optical recording material layer in order to suppress the flow of the material layer, which is the cause of an increase in the error rate, this will cause a delay in the recrystallization speed, and this method alone will not solve the above problem. cannot be resolved.

【0032】しかし、本発明においては、光記録材料層
を20nm未満の薄膜化層にて構成すると言う手段にて
、材料の流動を抑制し、書換動作の繰り返しによるエラ
ーレートの急激な増加を抑えることが可能である。
However, in the present invention, the flow of the material is suppressed by forming the optical recording material layer with a thin layer of less than 20 nm, thereby suppressing the rapid increase in error rate due to repeated rewriting operations. Is possible.

【0033】さらに、上記の薄膜化に加え、添加量を最
大5アトミック%とした原子数比Ge2 Sb2 Te
5 の材料にて光記録材料層を形成することにより、従
来問題となっていた結晶化速度の遅れを来すことなく、
流動抑制の効果を増強できるので、実用化に必要な10
6 回の書換動作の繰り返し後であっても、エラーレー
トの充分に低い光記録媒体とすることが可能である。
Furthermore, in addition to the above-mentioned thinning, the atomic ratio Ge2 Sb2 Te was added to a maximum of 5 atomic %.
By forming the optical recording material layer using the material No. 5, there is no delay in crystallization speed, which was a problem in the past.
Since the effect of flow suppression can be enhanced, 10
Even after repeating the rewriting operation six times, it is possible to obtain an optical recording medium with a sufficiently low error rate.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第1実施例における、書換動作のエラ
ーレートを繰り返し回数に対し示すグラフ図である。
FIG. 1 is a graph showing the error rate of a rewriting operation versus the number of repetitions in a first embodiment of the present invention.

【図2】本発明の第2実施例における、書換動作のエラ
ーレートを繰り返し回数に対し示すグラフ図である。
FIG. 2 is a graph showing the error rate of a rewrite operation versus the number of repetitions in a second embodiment of the present invention.

【図3】本発明の第3実施例における、書換動作のエラ
ーレートを繰り返し回数に対し示すグラフ図である。
FIG. 3 is a graph showing the error rate of a rewriting operation versus the number of repetitions in a third embodiment of the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  Ge、Sb及びTeを光記録材料層の
主構成元素とする相変化型光記録媒体において、該光記
録材料層は膜厚20nm未満の薄膜化層であることを特
徴とする相変化型光記録媒体。
1. A phase-change optical recording medium containing Ge, Sb, and Te as main constituent elements of an optical recording material layer, characterized in that the optical recording material layer is a thin layer with a thickness of less than 20 nm. Phase change optical recording medium.
【請求項2】  請求項第1項において、前記光記録材
料層は、Ge2 Sb2 Te5 と、5アトミック%
以下の添加物とからなることを特徴とする相変化型光記
録媒体。
2. In claim 1, the optical recording material layer comprises Ge2 Sb2 Te5 and 5 atomic %
A phase change optical recording medium characterized by comprising the following additives.
【請求項3】  請求項第2項において、前記添加物は
、Ge、Sb及びTeからなる群より選ばれた少なくと
も1成分であることを特徴とする相変化型光記録媒体。
3. The phase change optical recording medium according to claim 2, wherein the additive is at least one component selected from the group consisting of Ge, Sb, and Te.
【請求項4】  請求項第2項において、前記添加物は
、Cu、Au、Ag、Co及びNiからなる群より選ば
れた少なくとも1成分であることを特徴とする相変化型
光記録媒体。
4. The phase change optical recording medium according to claim 2, wherein the additive is at least one component selected from the group consisting of Cu, Au, Ag, Co, and Ni.
JP2407065A 1990-12-26 1990-12-26 Phase change type optical recording medium Pending JPH04223191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2407065A JPH04223191A (en) 1990-12-26 1990-12-26 Phase change type optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2407065A JPH04223191A (en) 1990-12-26 1990-12-26 Phase change type optical recording medium

Publications (1)

Publication Number Publication Date
JPH04223191A true JPH04223191A (en) 1992-08-13

Family

ID=18516691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2407065A Pending JPH04223191A (en) 1990-12-26 1990-12-26 Phase change type optical recording medium

Country Status (1)

Country Link
JP (1) JPH04223191A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5492794A (en) * 1993-12-27 1996-02-20 Nec Corporation Information recording medium
US5912104A (en) * 1993-06-18 1999-06-15 Hitachi, Ltd. Information recording medium
CN1326137C (en) * 2004-11-10 2007-07-11 中国科学院上海微系统与信息技术研究所 Phase change material capable of being used for phase transformation memory multi-stage storage

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5912104A (en) * 1993-06-18 1999-06-15 Hitachi, Ltd. Information recording medium
US5492794A (en) * 1993-12-27 1996-02-20 Nec Corporation Information recording medium
CN1326137C (en) * 2004-11-10 2007-07-11 中国科学院上海微系统与信息技术研究所 Phase change material capable of being used for phase transformation memory multi-stage storage

Similar Documents

Publication Publication Date Title
JPH06195747A (en) Optical disc
JPH05159360A (en) Phase shift type optical disk
TW200406006A (en) Information recording medium
KR100465001B1 (en) Reversible Optical Information Medium
JP4140060B2 (en) Optical information recording medium, optical information recording method, and optical information recording apparatus
JP3963781B2 (en) Optical recording medium
Hirotsune et al. New phase‐change rewritable optical recording film having well suppressed material flow for repeated rewriting
JP3882532B2 (en) Optical information recording medium and recording erasing method
JPH04223191A (en) Phase change type optical recording medium
JP3080844B2 (en) Phase change optical disk
JP3138661B2 (en) Phase change optical disk
JP3870702B2 (en) Optical information recording medium and recording / erasing method thereof
JPH02128330A (en) Optical recording medium
JP2991725B2 (en) Optical information recording medium
JP4393806B2 (en) Optical recording medium
JP3523799B2 (en) Phase change recording medium
JP2001010232A (en) Phase change type optical recording medium
JPH07220303A (en) Phase change type disk medium
JP2810092B2 (en) Optical information recording medium
JP2002123977A (en) Write once read many optical recording medium
JPH0573959A (en) Optical recording medium and production thereof
JPH0554428A (en) Optical recording medium
JP2004181742A (en) Phase changing optical recording medium
JPH01149239A (en) Optical information recording medium
JPH0664332A (en) Phase change type optical disk