JPH04221032A - High strength and high conductivity copper alloy for die for plastic molding and its manufacture - Google Patents

High strength and high conductivity copper alloy for die for plastic molding and its manufacture

Info

Publication number
JPH04221032A
JPH04221032A JP41330490A JP41330490A JPH04221032A JP H04221032 A JPH04221032 A JP H04221032A JP 41330490 A JP41330490 A JP 41330490A JP 41330490 A JP41330490 A JP 41330490A JP H04221032 A JPH04221032 A JP H04221032A
Authority
JP
Japan
Prior art keywords
copper alloy
strength
plastic molding
subjected
conductivity copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP41330490A
Other languages
Japanese (ja)
Inventor
Yasuo Hirano
康雄 平能
Hidehiko So
宗 秀彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Nikko Kyodo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, Nikko Kyodo Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP41330490A priority Critical patent/JPH04221032A/en
Publication of JPH04221032A publication Critical patent/JPH04221032A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To offer a copper alloy material for a die for plastic molding easy to manufacture, high in high strength and high temp. strength and furthermore excellent in thermal conductivity. CONSTITUTION:This copper alloy has features of contg., by weight, 1.0 to 4.0% Ti, contg., as accessory components, 0.001 to 3.0% of one or >= two kinds among the group constituted of Zn, P, Sn, As, Cr, Mg, Mn, Sb, Fe, Co, Al, Zr, Be, Ag, Pb, B, Ni, Si and Lanthanoide series elements and the balance Cu with inevitable impurities. This copper alloy is subjected to hot forging, is thereafter subjected to soln. treatment at >=600 deg.C, is subsequently cooled at >=1 deg.C/sec cooling rate, is thereafter subjected to cold working at >=20% draft and is subsequently subjected to aging treatment at 250 to 500 deg.C.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は特に高強度で熱伝導度が
大きいプラスチック成形金型用銅合金およびその製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy for plastic molds having particularly high strength and high thermal conductivity, and a method for producing the same.

【0002】0002

【従来の技術】プラスチック成形金型用の材料としては
鉄鋼材料や銅合金が多く使用されているが、成形サイク
ルの時間短縮を目的として熱伝導度の大きい金型材料が
要求されている。これらの材料の問題点としては鉄鋼材
料は高温強度が優れているものの熱伝導性が低く、金型
の内外側での温度勾配が大きく金型が割れ易く、寿命が
短いという欠点があった。また銅合金は熱伝導度が高い
ものの強度不足であるためプラスチック成形時に圧縮応
力により変形し易い欠点を有していた。その強度を向上
させるために金属元素を添加することが考えられるが、
一般に金属元素の添加は熱伝導度が低下し成形サイクル
が長くなってしまう問題があった。
2. Description of the Related Art Steel materials and copper alloys are often used as materials for plastic molds, but mold materials with high thermal conductivity are required for the purpose of shortening the molding cycle time. The problems with these materials are that although steel materials have excellent high-temperature strength, they have low thermal conductivity, a large temperature gradient between the inside and outside of the mold, making the mold easily cracked, and a short lifespan. Further, although copper alloys have high thermal conductivity, they lack strength and therefore have the disadvantage of being easily deformed by compressive stress during plastic molding. It is possible to add metal elements to improve its strength, but
Generally, the addition of metal elements has the problem of lowering thermal conductivity and lengthening the molding cycle.

【0003】0003

【発明が解決しようとする課題】そこで現在では、生産
性を向上させるため製品の成形サイクルをいかにして短
縮するかが課題であり、そのためには高強度で高温強度
が高く、熱伝導率が高い金型用材料が望まれている。
[Problem to be solved by the invention] Therefore, the current challenge is how to shorten the molding cycle of products in order to improve productivity. High quality mold materials are desired.

【0004】プラスチック成形金型用の材料に要求され
る特性値は、高強度で高温強度にも優れ、かつ熱伝導率
に優れていることである。
Characteristic values required for materials for plastic molding molds are high strength, excellent high-temperature strength, and excellent thermal conductivity.

【0005】本発明はかかる点に鑑みなされたものであ
り、製造性が容易で、高強度で高温強度が高く、しかも
熱伝導率に優れた材料を提供することを目的としている
[0005] The present invention has been made in view of these points, and an object of the present invention is to provide a material that is easy to manufacture, has high strength and high temperature strength, and has excellent thermal conductivity.

【0006】[0006]

【課題を解決するための手段】本発明に係るプラスチッ
ク成形金型用銅合金は、上記目的を達成するためにTi
:1.0〜4.0wt%を含有し、副成分としてZn,
P,Sn,As,Cr,Mg,Mn,Sb,Fe,Co
,Al,Zr,Be,Ag,Pb,B,Ni,Si,ラ
ンタノイド系元素からなる群の1種または2種以上を0
.001〜3.0wt%含有し、残部Cuおよび不可避
的不純物からなることを特徴としており、またこの銅合
金を熱間鍛造後600℃以上で溶体化処理を行ない、そ
の後1℃/秒以上の冷却速度で冷却した後、加工度20
%以上で冷間加工を行なった後250〜500℃で時効
処理を行なうことを特徴とするものである。
[Means for Solving the Problems] In order to achieve the above object, the copper alloy for plastic molding molds according to the present invention contains Ti.
: Contains 1.0 to 4.0 wt%, and Zn, as subcomponents.
P, Sn, As, Cr, Mg, Mn, Sb, Fe, Co
, Al, Zr, Be, Ag, Pb, B, Ni, Si, and one or more of the lanthanoid elements.
.. 001 to 3.0 wt%, with the balance consisting of Cu and unavoidable impurities, and after hot forging, this copper alloy is subjected to solution treatment at 600°C or higher, and then cooled at 1°C/second or higher. After cooling at a speed of 20
% or more and then aging treatment at 250 to 500°C.

【0007】以下に本発明に係るプラスチック成形金型
用銅合金について詳細に説明する。Tiは溶体化処理後
時効処理を行なうことによりCu中に析出するため導電
率を低下させることなく強度を向上させる元素である。
[0007] The copper alloy for plastic molds according to the present invention will be explained in detail below. Ti is an element that improves strength without reducing electrical conductivity because it precipitates in Cu by aging treatment after solution treatment.

【0008】Ti添加量を1.0〜4.0wt%とする
のは、1.0wt%未満では要求強度が得られず、また
TiのCu中への固溶限は4.3wt%であり、4.0
wt%を超えるTiを含有すると実質的に溶体化処理が
不可能になるため、粗大なCu3Ti 粒の存在により
脆くなり製造性が著しく劣化する。そのためTiの含有
量の上限を4.0wt%とする。
[0008] The reason why the amount of Ti added is 1.0 to 4.0 wt% is because if it is less than 1.0 wt%, the required strength cannot be obtained, and the solid solubility limit of Ti in Cu is 4.3 wt%. , 4.0
If it contains more than wt% of Ti, solution treatment becomes virtually impossible, and the presence of coarse Cu3Ti grains makes it brittle and significantly degrades manufacturability. Therefore, the upper limit of the Ti content is set to 4.0 wt%.

【0009】その上、副成分としてのZn,P,Sn,
As,Cr,Mg,Mn,Sb,Fe,Co,Al,Z
r,Be,Ag,Pb,B,Ni,Si,ランタノイド
系元素はCu中に析出、または固溶し強度を向上させる
元素であるが、その添加量を0.001〜3.0wt%
とするのは0.001wt%未満ではその効果がなく、
逆に3.0wt%を超えると強度は向上するものの導電
性が著しく劣化し、また製造性も劣化するためである。
In addition, Zn, P, Sn,
As, Cr, Mg, Mn, Sb, Fe, Co, Al, Z
r, Be, Ag, Pb, B, Ni, Si, and lanthanoid elements are elements that precipitate or form a solid solution in Cu and improve strength, but the amount added is 0.001 to 3.0 wt%.
The reason is that there is no effect if it is less than 0.001wt%,
On the other hand, if it exceeds 3.0 wt%, the strength will improve, but the conductivity will be significantly degraded and the manufacturability will also deteriorate.

【0010】さらに、溶体化処理温度を600℃以上と
するのは、600℃未満では溶体化が不十分であり、そ
の後の時効処理で高強度の材料が得られないからである
。その後の冷却速度を1℃/秒以上とするのは、1℃/
秒以下の冷却速度ではTiの析出反応が起こり、その後
の加工性が劣化するためである。
Furthermore, the reason why the solution treatment temperature is set to 600° C. or higher is because solution treatment is insufficient at lower than 600° C., and a high-strength material cannot be obtained in the subsequent aging treatment. The subsequent cooling rate should be 1°C/sec or more.
This is because a cooling rate of less than a second causes a precipitation reaction of Ti, which deteriorates subsequent workability.

【0011】その後加工度20%以上で冷間加工を行な
うのは、強度を向上させるためであり、20%未満では
目標とする硬度は得られないためである。また、250
〜500℃で時効処理を行なう理由は、250℃未満で
は目標とする強度を得るためには時間がかかりすぎ、ま
た500℃を超える温度で時効処理を行なうと析出する
Ti量が少なく、十分な硬度および熱伝導性が得られな
いからである。
[0011] The reason why cold working is then performed at a working degree of 20% or more is to improve the strength, and if the working degree is less than 20%, the target hardness cannot be obtained. Also, 250
The reason for performing aging treatment at ~500°C is that it takes too much time to obtain the target strength at temperatures below 250°C, and when aging treatment is performed at temperatures above 500°C, the amount of Ti precipitated is small, making it difficult to obtain sufficient strength. This is because hardness and thermal conductivity cannot be obtained.

【0012】0012

【実施例】次に、本発明に係る高強度高熱伝導性プラス
チック成形金型用銅合金を評価した結果について比較合
金と併せて説明する。
[Example] Next, the results of evaluating the high-strength, high-thermal-conductivity copper alloy for plastic molding molds according to the present invention will be explained together with comparative alloys.

【0013】表1の成分の合金を熱間鍛造したのち20
mmの厚さに皮削りを行なった。その後溶体化処理を適
宜行なった。その後冷間加工を行ない時効処理を行なっ
た。
[0013] After hot forging the alloy having the components shown in Table 1,
The skin was shaved to a thickness of mm. Thereafter, solution treatment was performed as appropriate. After that, cold working was performed and aging treatment was performed.

【0014】こうして得られた材料から引張試験、シャ
ルピー衝撃試験および熱伝導率測定用の試験片を採取し
た。そして、各合金について室温および300℃におけ
る特性値を測定した結果を表1に示す。
Test pieces for tensile tests, Charpy impact tests and thermal conductivity measurements were taken from the material thus obtained. Table 1 shows the results of measuring the characteristic values of each alloy at room temperature and 300°C.

【0015】[0015]

【表1】[Table 1]

【0016】表1から明らかなように、本発明合金が良
好な高温強度、熱伝導性、耐衝撃性を有しているのに対
し、比較合金のNo.12は溶体化処理温度が低すぎて
十分な強度が得られず、耐衝撃も低いことが判る。また
No.13は冷却速度が遅すぎて同様に十分な強度、耐
衝撃性が得られない。同様にNo.14は冷間加工度が
低すぎるため十分な強度、耐衝撃性が得られない。さら
にNo.15は時効温度が低いため10時間という長い
時間時効しても十分な強度、耐衝撃性が得られない。反
対にNo.16は時効温度が高すぎるため固溶するTi
が多すぎ熱伝導率が低い。さらにNo.17はTi量が
少ないため十分な強度、耐衝撃性が得られない。またN
o.18はTi量が多すぎるため鍜造中に割れが発生し
、特性値は評価できなかった。さらにNo.19は副成
分が多すぎるため強度と耐衝撃性は十分であるが熱伝導
率が低い結果となった。
As is clear from Table 1, the alloy of the present invention has good high-temperature strength, thermal conductivity, and impact resistance, whereas the comparative alloy No. It can be seen that in No. 12, the solution treatment temperature was too low and sufficient strength could not be obtained, and the impact resistance was also low. Also No. No. 13 has a cooling rate that is too slow and similarly fails to provide sufficient strength and impact resistance. Similarly, No. No. 14 has a too low degree of cold working, so sufficient strength and impact resistance cannot be obtained. Furthermore, No. Since the aging temperature of No. 15 is low, sufficient strength and impact resistance cannot be obtained even after aging for as long as 10 hours. On the contrary, No. 16 is a solid solution of Ti because the aging temperature is too high.
There are too many and the thermal conductivity is low. Furthermore, No. In No. 17, sufficient strength and impact resistance cannot be obtained because the amount of Ti is small. Also N
o. In No. 18, the amount of Ti was too large, so cracks occurred during forging, and the characteristic values could not be evaluated. Furthermore, No. Sample No. 19 contained too many subcomponents, so the strength and impact resistance were sufficient, but the thermal conductivity was low.

【0017】[0017]

【発明の効果】以上説明した本発明合金は高強度で高温
強度に優れ、耐衝撃性も優れており、また熱伝導率も高
いためプラスチック成形の所要時間が大幅に短縮でき、
生産性の向上が期待できる効果は大きい。さらに本発明
の製造方法によれば、溶体化が十分であり、その後の時
効処理で高強度の材料が得られ、かつ加工性が良好なプ
ラスチック成形金型用材料が得られ、さらに加工度20
%以上で冷間加工を行なうから、目標とする高い硬度が
容易に得られる。また250〜500℃で時効処理を行
なうから、十分な硬度および熱伝導性が得られる。
[Effects of the Invention] The alloy of the present invention described above has high strength, excellent high-temperature strength, excellent impact resistance, and high thermal conductivity, so the time required for plastic molding can be significantly shortened.
The expected effect of improving productivity is significant. Further, according to the production method of the present invention, a material for plastic molding molds that can be sufficiently solutionized, a material with high strength can be obtained by subsequent aging treatment, and has good workability can be obtained.
% or more, the target high hardness can be easily obtained. Furthermore, since the aging treatment is performed at 250 to 500°C, sufficient hardness and thermal conductivity can be obtained.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  Ti:1.0〜4.0wt%を含有し
、残部Cuおよび不可避的不純物からなることを特徴と
する高強度高熱伝導性プラスチック成形金型用銅合金。
1. A high-strength, high-thermal-conductivity copper alloy for plastic molding molds, which contains Ti: 1.0 to 4.0 wt%, with the remainder consisting of Cu and unavoidable impurities.
【請求項2】  Ti:1.0〜4.0wt%を含有し
、副成分としてZn,P,Sn,As,Cr,Mg,M
n,Sb,Fe,Co,Al,Zr,Be,Ag,Pb
,B,Ni,Si,ランタノイド系元素からなる群の1
種または2種以上を0.001〜3.0wt%含有し、
残部Cuおよび不可避的不純物からなることを特徴とす
る高強度高熱伝導性プラスチック成形金型用銅合金。
[Claim 2] Contains Ti: 1.0 to 4.0 wt%, and Zn, P, Sn, As, Cr, Mg, M as subcomponents.
n, Sb, Fe, Co, Al, Zr, Be, Ag, Pb
, B, Ni, Si, one of the group consisting of lanthanoid elements
Contains 0.001 to 3.0 wt% of one or more species,
A high-strength, high-thermal-conductivity copper alloy for plastic molds, characterized in that the remainder consists of Cu and unavoidable impurities.
【請求項3】  第1項および第2項記載の銅合金にお
いて熱間鍛造後600℃以上で溶体化処理を行ない、そ
の後1℃/秒以上の冷却速度で冷却し、その後加工度2
0%以上で冷間加工を行なった後250〜500℃で時
効処理を行なうことを特徴とする高強度高熱伝導性プラ
スチック成形金型用銅合金の製造方法。
3. After hot forging, the copper alloy according to item 1 and item 2 is subjected to solution treatment at a temperature of 600°C or more, and then cooled at a cooling rate of 1°C/sec or more, and then the working degree is 2.
A method for producing a high-strength, high-thermal-conductivity copper alloy for plastic molds, which comprises performing cold working at 0% or more and then aging treatment at 250 to 500°C.
JP41330490A 1990-12-21 1990-12-21 High strength and high conductivity copper alloy for die for plastic molding and its manufacture Pending JPH04221032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41330490A JPH04221032A (en) 1990-12-21 1990-12-21 High strength and high conductivity copper alloy for die for plastic molding and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41330490A JPH04221032A (en) 1990-12-21 1990-12-21 High strength and high conductivity copper alloy for die for plastic molding and its manufacture

Publications (1)

Publication Number Publication Date
JPH04221032A true JPH04221032A (en) 1992-08-11

Family

ID=18521976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41330490A Pending JPH04221032A (en) 1990-12-21 1990-12-21 High strength and high conductivity copper alloy for die for plastic molding and its manufacture

Country Status (1)

Country Link
JP (1) JPH04221032A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1306453A1 (en) * 2001-10-26 2003-05-02 YKK Corporation Nickel-free white copper alloy, and method of producing nickel-free white copper alloy
US7172665B2 (en) * 2002-02-21 2007-02-06 Ishikawajima-Harima Heavy Industries Co., Ltd. Cu-based alloy and method of manufacturing high strength and high thermal conductive forged article using the same
US7204893B2 (en) * 2000-04-05 2007-04-17 Ishikawajima-Harima Heavy Industries, Co., Ltd. Copper base alloy casting, and methods for producing casting and forging employing copper base alloy casting
WO2002000949A3 (en) * 2000-06-26 2009-08-06 Olin Corp Copper alloy having improved stress relaxation resistance
CN102181744A (en) * 2011-04-27 2011-09-14 东莞市嘉盛铜材有限公司 High-performance beryllium-copper alloy and preparation method thereof
JP2012097305A (en) * 2010-10-29 2012-05-24 Jx Nippon Mining & Metals Corp Titanium-copper for electronic component
JP2012188680A (en) * 2011-03-08 2012-10-04 Jx Nippon Mining & Metals Corp Titanium copper for electronic component
CN112725654A (en) * 2020-12-23 2021-04-30 无锡日月合金材料有限公司 High-strength, high-conductivity and high-toughness copper-titanium alloy for integrated circuit and preparation method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7204893B2 (en) * 2000-04-05 2007-04-17 Ishikawajima-Harima Heavy Industries, Co., Ltd. Copper base alloy casting, and methods for producing casting and forging employing copper base alloy casting
WO2002000949A3 (en) * 2000-06-26 2009-08-06 Olin Corp Copper alloy having improved stress relaxation resistance
EP1306453A1 (en) * 2001-10-26 2003-05-02 YKK Corporation Nickel-free white copper alloy, and method of producing nickel-free white copper alloy
KR100507793B1 (en) * 2001-10-26 2005-08-11 와이케이케이 가부시끼가이샤 Nickel-free white copper alloy, and method of producing nickel-free white copper alloy
CN100462459C (en) * 2001-10-26 2009-02-18 Ykk株式会社 Nickelless argentan alloy and production method of nickelless argentan alloy
US7172665B2 (en) * 2002-02-21 2007-02-06 Ishikawajima-Harima Heavy Industries Co., Ltd. Cu-based alloy and method of manufacturing high strength and high thermal conductive forged article using the same
JP2012097305A (en) * 2010-10-29 2012-05-24 Jx Nippon Mining & Metals Corp Titanium-copper for electronic component
JP2012188680A (en) * 2011-03-08 2012-10-04 Jx Nippon Mining & Metals Corp Titanium copper for electronic component
CN102181744A (en) * 2011-04-27 2011-09-14 东莞市嘉盛铜材有限公司 High-performance beryllium-copper alloy and preparation method thereof
CN112725654A (en) * 2020-12-23 2021-04-30 无锡日月合金材料有限公司 High-strength, high-conductivity and high-toughness copper-titanium alloy for integrated circuit and preparation method thereof
CN112725654B (en) * 2020-12-23 2021-12-24 无锡日月合金材料有限公司 High-strength, high-conductivity and high-toughness copper-titanium alloy for integrated circuit and preparation method thereof

Similar Documents

Publication Publication Date Title
CN110193530B (en) Method for manufacturing curved molded article using aluminum alloy
KR20060127147A (en) Material based an aluminum alloy, method for the production thereof and its use
EP0343292B1 (en) Low thermal expansion casting alloy
JPH04221031A (en) High strength and high thermal conductivity copper alloy for die for plastic molding and its manufacture
US3880678A (en) Processing copper base alloy
JPH04221032A (en) High strength and high conductivity copper alloy for die for plastic molding and its manufacture
SE444456B (en) COPPER ALLOY WITH HIGH ELECTRIC CONDUCTIVE FORM AND GOOD MECHANICAL PROPERTIES
JPH04218630A (en) Copper alloy for metal mold for plastic molding having high strength and high thermal conductivity and its production
US2126827A (en) Copper-cobalt-zinc alloy
JPH04247839A (en) Copper based alloy and method of its manufac- ture
JP2019019373A (en) Manufacturing method of aluminum alloy-made piston of compressor, and the aluminum alloy for piston
JPH04218631A (en) Copper alloy for metal mold for plastic molding
JP2796966B2 (en) Ultra-low thermal expansion alloy and manufacturing method
JP6805583B2 (en) Manufacturing method of precipitation type heat resistant Ni-based alloy
US3627593A (en) Two phase nickel-zinc alloy
JPH04221030A (en) Copper alloy for die for plastic molding
JPH01149934A (en) Heat-resistant continuous casting mold and its production
JPS63134648A (en) Precipitation hardening-type high tensile steel excellent in corrosion resistance
JP2014074202A (en) High strength and high toughness copper alloy forged article
JPS6326192B2 (en)
KR920007884B1 (en) Copper alloy and a process for the production of a continous casting mould by this copper alloy
JPH04218629A (en) Copper alloy for metal mold for plastic molding
JPS5853702B2 (en) Aluminum alloy for tough die casting
JP7140892B1 (en) Aluminum alloy extruded material and manufacturing method thereof
CN103384727A (en) High-strength copper alloy forging