JPH04220961A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH04220961A
JPH04220961A JP2412061A JP41206190A JPH04220961A JP H04220961 A JPH04220961 A JP H04220961A JP 2412061 A JP2412061 A JP 2412061A JP 41206190 A JP41206190 A JP 41206190A JP H04220961 A JPH04220961 A JP H04220961A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
battery
sealing plate
batteries
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2412061A
Other languages
Japanese (ja)
Other versions
JP3163444B2 (en
Inventor
Hiroaki Yoshida
浩明 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP41206190A priority Critical patent/JP3163444B2/en
Publication of JPH04220961A publication Critical patent/JPH04220961A/en
Application granted granted Critical
Publication of JP3163444B2 publication Critical patent/JP3163444B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To prolong the cyclic lifetime and provide a high energy density by including a specific amount of Bi in a negative electrode. CONSTITUTION:A case 1 functioning also as a pos. electrode terminal is formed from a stainless steel plate which is subjected to a punchoff process. A sealing plate 2 working also as a negative electrode terminal is alike obtained by punching off a stainless steel plate, and a negative electrode active substance 3 is attached by pressure to the inner wall of this sealing plate. A positive electrode black mix 6 is encapsulated by caulking the open end of the case 1 inward and squeezing the bore of the sealing plate 2 with gasket 4 interposed. 5wt.% Bi or less is included in the negative electrode active substance 3 consisting of Li. This Bi suppresses generation of dendrite lithium, checks Li reaction with organic electrolyte, and prolongs the cyclic lifetime.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、リチウム二次電池の負
極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode for a lithium secondary battery.

【0002】0002

【従来の技術とその課題】リチウム二次電池は、負極で
あるリチウムの電位が極めて卑であるため、電池の電圧
が高く、かつリチウムの体積,重量エネルギー密度が高
いため、高エネルギー密度の二次電池を提供できるとい
う利点を有している。
[Prior art and its problems] Lithium secondary batteries have a high energy density secondary battery because the potential of lithium, which is the negative electrode, is extremely base, so the voltage of the battery is high, and the volume and weight energy density of lithium are high. It has the advantage of being able to provide secondary batteries.

【0003】しかし、従来のリチウム二次電池は、負極
であるリチウムの充放電効率が低いために電池のサイク
ル寿命が短いという問題があった。この、原因として電
析リチウムと有機電解液との反応によるリチウムの消耗
、デンドライトリチウムの脱落にともなうリチウムの消
耗などが考えられている。
However, conventional lithium secondary batteries have a problem in that the cycle life of the battery is short because the charging and discharging efficiency of lithium, which is the negative electrode, is low. The causes of this are thought to be lithium consumption due to the reaction between the electrodeposited lithium and the organic electrolyte, and lithium consumption due to shedding of dendrite lithium.

【0004】そこで、負極のサイクル寿命をのばすため
に、カーボンやアルミニウム合金およびウッド合金をリ
チウムのホストとして用いることが検討されている。確
かに、これらの負極はリチウムの電析をともなわず、リ
チウムイオンを吸蔵放出する事ができるため、電析リチ
ウムと電解液との反応やデンドライトリチウムの発生な
どの問題を解決することができ、負極サイクル寿命を大
きく向上させることができる。
[0004] Therefore, in order to extend the cycle life of the negative electrode, the use of carbon, aluminum alloy, and wood alloy as a host for lithium is being considered. It is true that these negative electrodes can absorb and release lithium ions without electrodeposition of lithium, so they can solve problems such as the reaction between electrodeposited lithium and electrolyte and the generation of dendrite lithium. The cycle life of the negative electrode can be greatly improved.

【0005】しかし、これらホスト化合物はリチウムに
比べ電位が50〜500mV程度貴になること、および
負極の体積エネルギー密度で約1/5以下,重量エネル
ギー密度で約1/10以下へと大きく低下するという問
題を有する。
[0005] However, the potential of these host compounds is about 50 to 500 mV nobler than that of lithium, and the volume energy density of the negative electrode is approximately 1/5 or less, and the gravimetric energy density is significantly reduced to approximately 1/10 or less. There is a problem.

【0006】したがって、従来の負極に代わって、サイ
クル寿命が長く、かつリチウムと同等の電位および体積
,重量エネルギー密度を有するリチウム二次電池用の負
極が強く望まれていた。
[0006] Therefore, in place of conventional negative electrodes, there has been a strong desire for a negative electrode for lithium secondary batteries that has a long cycle life and has a potential, volume, and weight energy density equivalent to that of lithium.

【0007】[0007]

【課題を解決するための手段】本発明は、リチウムを負
極に備えた二次電池において、該負極がビスマスを含有
しており、その含有量が重量百分率で5%以下であるこ
とを特徴とするリチウム二次電池の負極を提供し前記の
課題を解決するものである。
[Means for Solving the Problems] The present invention provides a secondary battery having a lithium negative electrode, characterized in that the negative electrode contains bismuth, and the content thereof is 5% or less in weight percentage. The present invention provides a negative electrode for a lithium secondary battery that solves the above problems.

【0008】[0008]

【実施例】以下に、好適な実施例を用いて本発明を説明
する。
EXAMPLES The present invention will be explained below using preferred examples.

【0009】[実施例1]正極活物質として、50mm
Hg以下の減圧下において375℃で5時間減圧乾燥処
理した後、電気炉で空気中において375℃で20時間
追加熱処理して調製した二酸化マンガンを用いた。
[Example 1] As a positive electrode active material, 50 mm
Manganese dioxide prepared by drying under reduced pressure at 375° C. for 5 hours under a reduced pressure of Hg or less and then additionally heat-treating at 375° C. for 20 hours in air in an electric furnace was used.

【0010】この二酸化マンガン100重量部に対して
アセチレンブラック(導電助剤)を5重量部、およびポ
リ4フッ化エチレン(結着材)を2重量部添加してよく
混練した後、120℃で4時間熱風乾燥して正極合剤を
調整した。そして、その正極合剤を108mg ずつ秤
量して325 メッシュのSUS316製金網に包み込
んで、2トン/cm2 で加圧成形して正極とした。正
極の寸法は、直径15.0mm厚み0.6mm 程度で
ある。この正極を電池に組み込むまえに再度、120℃
で3時間熱風乾燥処理を行った。
To 100 parts by weight of this manganese dioxide, 5 parts by weight of acetylene black (conductivity aid) and 2 parts by weight of polytetrafluoroethylene (binder) were added and kneaded well, and then heated at 120°C. A positive electrode mixture was prepared by drying with hot air for 4 hours. Then, 108 mg of each of the positive electrode mixtures was weighed out, wrapped in a 325-mesh SUS316 wire gauze, and press-molded at 2 tons/cm2 to obtain a positive electrode. The dimensions of the positive electrode are approximately 15.0 mm in diameter and 0.6 mm in thickness. Before assembling this positive electrode into a battery, it was heated to 120℃ again.
A hot air drying process was performed for 3 hours.

【0011】負極には、本発明のビスマスを含有したリ
チウムを用いた。負極中のビスマスの含有量は重量百分
率で1%(1wt%)である。負極のサイズは直径16
mm、厚み0.1mm 程度で、理論容量は40mAh
 である。
[0011] Lithium containing bismuth of the present invention was used for the negative electrode. The content of bismuth in the negative electrode is 1% by weight (1 wt%). The size of the negative electrode is 16 in diameter.
mm, thickness is about 0.1mm, theoretical capacity is 40mAh
It is.

【0012】セパレータにはポリプロピレンのマイクロ
ポーラスセパレータ(セルガードK274)及びポリプ
ロピレンの不織布を重ねて用いて、外径20.0mm,
高さ2.0mm の電池を作成した。
[0012] A polypropylene microporous separator (Celgard K274) and a polypropylene nonwoven fabric were used for the separator, and the outer diameter was 20.0 mm.
A battery with a height of 2.0 mm was created.

【0013】電解液には、EC+4−MeDOL+DO
L(5:3:2.7)混合溶媒に LiClO4 を1
mol/l溶解したものを用いた。
[0013] The electrolyte contains EC+4-MeDOL+DO
1 LiClO4 in L (5:3:2.7) mixed solvent
A mol/l solution was used.

【0014】図1は、電池の縦断面図である。この図に
おいて1は、耐有機電解液性のステンレス鋼板をプレス
によって打ち抜き加工した正極端子を兼ねるケース、2
は同種の材料を打ち抜き加工した負極端子を兼ねる封口
板であり、その内壁には負極活物質3が圧着されている
。5は有機電解液を含浸したポリプロピレンからなるセ
パレーター、6は正極合剤であり正極端子を兼ねるケー
ス1の開口端部を内方へかしめ、ガスケット4を介して
負極端子を兼ねる封口板2の内周を締め付けることによ
り密閉封口している。
FIG. 1 is a longitudinal sectional view of the battery. In this figure, 1 is a case that also serves as a positive terminal, which is made by punching an organic electrolyte-resistant stainless steel plate using a press, and 2
is a sealing plate that also serves as a negative electrode terminal, which is made by punching out the same material, and the negative electrode active material 3 is crimped onto the inner wall of the sealing plate. 5 is a separator made of polypropylene impregnated with an organic electrolyte, and 6 is a positive electrode mixture.The open end of the case 1, which also serves as a positive electrode terminal, is caulked inward, and the inside of the sealing plate 2, which also serves as a negative electrode terminal, is inserted through a gasket 4. It is sealed tightly by tightening the circumference.

【0015】この本発明の負極を用いた電池を電池(A
)とする。
A battery using the negative electrode of the present invention is a battery (A
).

【0016】[実施例2]電池の負極として、ビスマス
を2wt%含有したリチウムを用いることを除いて他は
、負極のサイズと理論容量および電池構成が実施例1と
同様な電池を作成した。この本発明の負極を用いた電池
を電池(B)とする。
[Example 2] A battery was prepared having the same negative electrode size, theoretical capacity, and battery configuration as in Example 1, except that lithium containing 2 wt % bismuth was used as the battery negative electrode. A battery using this negative electrode of the present invention is referred to as battery (B).

【0017】[実施例3]電池の負極として、ビスマス
を5wt%含有したリチウムを用いることを除いて他は
、負極のサイズと理論容量および電池構成が実施例1と
同様の電池を作成した。この本発明の負極を用いた電池
を電池(C)とする。
[Example 3] A battery was prepared having the same negative electrode size, theoretical capacity, and battery configuration as in Example 1, except that lithium containing 5 wt % bismuth was used as the negative electrode. A battery using this negative electrode of the present invention is referred to as battery (C).

【0018】[比較例1]電池の負極として、リチウム
を用いることを除いて他は、負極のサイズと理論容量お
よび電池構成が実施例1と同様の電池を作成した。この
負極を用いた電池を電池(ア)とする。
[Comparative Example 1] A battery was prepared in which the size of the negative electrode, the theoretical capacity, and the battery configuration were the same as in Example 1, except that lithium was used as the negative electrode of the battery. A battery using this negative electrode is referred to as a battery (A).

【0019】[比較例2]電池の負極として、アルミニ
ウムを20wt%含有したリチウムを用いることを除い
て他は、負極のサイズと理論容量および電池構成が実施
例1と同様の電池を作成した。この負極を用いた電池を
電池(イ)とする。
[Comparative Example 2] A battery was prepared in which the size of the negative electrode, the theoretical capacity, and the battery configuration were the same as in Example 1, except that lithium containing 20 wt % of aluminum was used as the negative electrode of the battery. A battery using this negative electrode is called a battery (A).

【0020】電池の種類とその充放電サイクルの進行に
ともなう放電容量変化を図2に示す。  本発明の電池
(A),(B)および(C)は、比較電池(ア)および
(イ)に比較して長いサイクル寿命を有する。
FIG. 2 shows the types of batteries and changes in discharge capacity as the charge/discharge cycle progresses. Batteries (A), (B), and (C) of the present invention have longer cycle lives than comparative batteries (A) and (B).

【0021】本発明の負極を備えた電池が、長いサイク
ル寿命を有する理由は明かではないが、以下のように考
えられる。
The reason why the battery equipped with the negative electrode of the present invention has a long cycle life is not clear, but it is thought to be as follows.

【0022】これら試験終了電池を分解したところ、本
発明の電池を除いた全ての電池において、負極が微粉化
しているのがみられた。これら電池の正極をそのまま用
いて再度電池を組み立て充放電試験を行ったところ、放
電容量が初期容量まで回復した。これら事実より、これ
ら電池の寿命は、全て負極により制限されていることが
わかった。本発明の負極のサイクル寿命が長くなった理
由は明確ではないが、リチウムに含有されているビスマ
スが、デンドライトリチウムの発生とリチウムと有機電
解液との反応を抑制するためであると思われる。
When these test-completed batteries were disassembled, it was found that the negative electrodes of all the batteries except the battery of the present invention had been pulverized. When the batteries were reassembled using the positive electrodes of these batteries and subjected to a charge/discharge test, the discharge capacity recovered to the initial capacity. From these facts, it has been found that the lifespan of these batteries is all limited by the negative electrode. The reason why the cycle life of the negative electrode of the present invention is longer is not clear, but it is thought that bismuth contained in lithium suppresses the generation of dendrite lithium and the reaction between lithium and the organic electrolyte.

【0023】また、本発明の負極は、ビスマスの含有量
が少量のため、電位および体積,重量エネルギー密度が
リチウムとほとんど変わらないという優れた特徴を有し
ている。
Further, the negative electrode of the present invention has excellent characteristics in that the potential, volume, and weight energy density are almost the same as those of lithium because the content of bismuth is small.

【0024】本発明によるリチウム二次電池に用いられ
る正極活物質は、実施例に用いたものに限定されるもの
ではなく、従来のリチウム二次電池に用いられている正
極活物質、すなわちリチウムイオンあるいはアニオンと
電気化学的に可逆反応を行う物質を用いることができる
。たとえば、 MnO2 ,LiMn2  O4 ,L
iCoX Mn2−X  O2,LiCoX Ni1−
X  O2 , CoO2 , TiS2 , V2 
 O5 およびポリアニリンなどがあげられる。
[0024] The positive electrode active material used in the lithium secondary battery according to the present invention is not limited to that used in the examples, but can be any positive electrode active material used in conventional lithium secondary batteries, that is, lithium ion. Alternatively, a substance that electrochemically undergoes a reversible reaction with anions can be used. For example, MnO2, LiMn2 O4, L
iCoX Mn2-X O2, LiCoX Ni1-
XO2, CoO2, TiS2, V2
Examples include O5 and polyaniline.

【0025】また、リチウムイオン伝導性物質である有
機溶媒や固体のイオン導電体も、実施例に用いたもの限
定されず、従来のリチウム二次電池に用いられているも
のを用いることができる。たとえば、有機溶媒としては
非プロトン溶媒であるエチレンカーボネイトなどの環状
エステル類およびテトラハイドロフラン,ジオキソラン
などのエーテル類があげられ、これら単独もしくは2種
以上を混合した溶媒を用いることが出来る。固体のイオ
ン導電体としては、リチウムイオン導電性を有するもの
であれば用いることが出来る。その代表的なものとして
、ポリエチレンオキサイドなどがあげられる。
Further, the organic solvent and solid ion conductor which are lithium ion conductive substances are not limited to those used in the examples, and those used in conventional lithium secondary batteries can be used. For example, organic solvents include cyclic esters such as ethylene carbonate, which are aprotic solvents, and ethers such as tetrahydrofuran and dioxolane, and these solvents may be used alone or in combination of two or more thereof. As the solid ion conductor, any material having lithium ion conductivity can be used. A typical example thereof is polyethylene oxide.

【0026】また、このような有機溶媒あるいは固体の
イオン導電体に溶解される支持電解質も同様に実施例に
限定されるものではない。たとえば、 LiAsF6 
, LiClO4 ,LiBF4 ,LiPF6 ,L
iCF3 SO3 などの1種以上を用いることができ
る。
[0026] Similarly, the supporting electrolyte dissolved in such an organic solvent or solid ionic conductor is not limited to the examples. For example, LiAsF6
, LiClO4 , LiBF4 , LiPF6 , L
One or more types such as iCF3 SO3 can be used.

【0027】なお、前記の実施例に係る電池はいずれも
ボタン形電池であるが、円筒形、角形またはペーパー形
電池に本発明を適用しても同様の効果が得られる。
Although all of the batteries according to the above embodiments are button-shaped batteries, similar effects can be obtained even if the present invention is applied to cylindrical, prismatic, or paper-shaped batteries.

【0028】[0028]

【発明の効果】本発明により従来の電池に比較して優れ
たサイクル寿命性能を有する高エネルギー密度のリチウ
ム二次電池を提供することができるものである。
According to the present invention, it is possible to provide a high energy density lithium secondary battery which has superior cycle life performance compared to conventional batteries.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】リチウム二次電池の一例であるボタン電池の内
部構造を示した図である。
FIG. 1 is a diagram showing the internal structure of a button battery, which is an example of a lithium secondary battery.

【図2】本発明の効果を示した図である。FIG. 2 is a diagram showing the effects of the present invention.

【符号の説明】[Explanation of symbols]

1    電池ケース 2    封口板 3    リチウム 4    ガスケット 5    セパレーター 6    正極合剤 1 Battery case 2 Sealing plate 3 Lithium 4 Gasket 5 Separator 6    Positive electrode mixture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  リチウムを負極に備えた二次電池にお
いて、該負極がビスマスを含有しており、その含有量が
重量百分率で5%以下であることを特徴とするリチウム
二次電池の負極。
1. A negative electrode for a lithium secondary battery comprising lithium as a negative electrode, wherein the negative electrode contains bismuth, and the content thereof is 5% or less by weight percentage.
JP41206190A 1990-12-19 1990-12-19 Lithium secondary battery Expired - Fee Related JP3163444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41206190A JP3163444B2 (en) 1990-12-19 1990-12-19 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41206190A JP3163444B2 (en) 1990-12-19 1990-12-19 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH04220961A true JPH04220961A (en) 1992-08-11
JP3163444B2 JP3163444B2 (en) 2001-05-08

Family

ID=18520950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41206190A Expired - Fee Related JP3163444B2 (en) 1990-12-19 1990-12-19 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3163444B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100603267B1 (en) * 1999-10-27 2006-07-20 삼성에스디아이 주식회사 Secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100603267B1 (en) * 1999-10-27 2006-07-20 삼성에스디아이 주식회사 Secondary battery

Also Published As

Publication number Publication date
JP3163444B2 (en) 2001-05-08

Similar Documents

Publication Publication Date Title
JP3287376B2 (en) Lithium secondary battery and method of manufacturing the same
JPH07335261A (en) Lithium secondary battery
JP2021180064A (en) Lithium primary battery
JPH0745304A (en) Organic electrolyte secondary battery
JP2940015B2 (en) Organic electrolyte secondary battery
JPH07105970A (en) Non-aqueous secondary battery and its manufacture
JPH04220961A (en) Lithium secondary battery
JPH0536401A (en) Lithium secondary battery
JPH0355770A (en) Lithium secondary battery
JPS58137975A (en) Nonaqueous electrolyte secondary battery
JP2845069B2 (en) Organic electrolyte secondary battery
JPH07220758A (en) Lithium battery
JPH05307974A (en) Organic electrolyte secondary battery
JP3447187B2 (en) Non-aqueous electrolyte battery and method for manufacturing the same
RU220659U1 (en) CYLINDRICAL LITHIUM-ION BATTERY WITH A CATHODE BASED ON LITHIUM DIMANGANGE TETRAOXIDE (LiMn2O4)
JPH0462764A (en) Nonaqueous electrolyte cell
JPH0640492B2 (en) Organic electrolyte battery
JPH11195410A (en) Lithium secondary battery
US11728509B2 (en) Rechargeable high energy density magnesium / magnesium sulfide battery
JPH0359963A (en) Lithium secondary battery
JPH02239572A (en) Polyaniline battery
KR20180018064A (en) Ampoule-type lithium-sulfur battery
JP3331608B2 (en) Non-aqueous electrolyte secondary battery
JP3620287B2 (en) Organic electrolyte secondary battery
JP3237071B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees