JP3237071B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP3237071B2
JP3237071B2 JP28475690A JP28475690A JP3237071B2 JP 3237071 B2 JP3237071 B2 JP 3237071B2 JP 28475690 A JP28475690 A JP 28475690A JP 28475690 A JP28475690 A JP 28475690A JP 3237071 B2 JP3237071 B2 JP 3237071B2
Authority
JP
Japan
Prior art keywords
positive electrode
manganese dioxide
battery
electrolyte secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28475690A
Other languages
Japanese (ja)
Other versions
JPH04160768A (en
Inventor
吉田  浩明
寿 塚本
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP28475690A priority Critical patent/JP3237071B2/en
Publication of JPH04160768A publication Critical patent/JPH04160768A/en
Application granted granted Critical
Publication of JP3237071B2 publication Critical patent/JP3237071B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 産業上の利用分野 本発明は正極活物質として二酸化マンガンもしくはリ
チウム二酸化マンガン複合酸化物を用いた非水電解質二
次電池に関するものである。
Description: TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery using manganese dioxide or lithium manganese dioxide composite oxide as a positive electrode active material.

従来の技術 非水電解質を用いる二次電池には、負極に金属リチウ
ム、リチウム合金またはリニヤーグラファイトを用い正
極にTiS2、二酸化マンガンまたはリチウム二酸化マンガ
ン複合酸化物を用いたものがある。これらの中でTiS2
用いた非水電液質二次電池は、200サイクルを越える長
いサイクル寿命を有する点で優れている。これに対して
二酸化マンガンおよびリチウム二酸化マンガン複合酸化
物を用いたを用いたものは、TiS2に比較して高い電圧を
有し資源的に豊富なので安価であるという点で優れてい
る。
2. Description of the Related Art Some secondary batteries using a non-aqueous electrolyte use lithium metal, a lithium alloy or linear graphite for a negative electrode and use TiS 2 , manganese dioxide, or a lithium manganese dioxide composite oxide for a positive electrode. Among these, the non-aqueous electrolyte secondary battery using TiS 2 is excellent in having a long cycle life exceeding 200 cycles. On the other hand, the one using manganese dioxide and lithium manganese dioxide composite oxide is superior in that it has a higher voltage than TiS 2 , is abundant in resources, and is inexpensive.

従来の非水電解質二次電池の正極板は、活物質と導電
助剤と結着材とを混合してなる正極合剤を加圧成形して
なるペレット、または正極合剤を金属網に塗布してなる
ものが用いられていた。
The positive electrode plate of a conventional nonaqueous electrolyte secondary battery is formed by pressing a positive electrode mixture obtained by mixing an active material, a conductive auxiliary agent, and a binder, or a positive electrode mixture is applied to a metal net. What was used was used.

発明が解決しようとする課題 上述のような従来の正極板を用いた二酸化マンガンも
しくはリチウム二酸化マンガン複合酸化物を正極活物質
とする非水電解質二次電池は、充放電サイクルの進行に
伴って放電容量が著しく減少しサイクル寿命が短いとい
う問題点を有していた。
Problems to be Solved by the Invention A non-aqueous electrolyte secondary battery using manganese dioxide or lithium manganese dioxide composite oxide as a positive electrode active material using a conventional positive electrode plate as described above discharges with the progress of a charge / discharge cycle. There was a problem that the capacity was significantly reduced and the cycle life was short.

課題を解決するための手段 本発明は、二酸化マンガンもしくはリチウム二酸化マ
ンガン複合酸化物、導電助剤および結着剤を混合してな
る正極合剤を金属網で包み込み、加圧成形した正極板を
備えたことを特徴とする非水電解質二次電池を提供する
ことで上述の問題を解決するものである。
Means for Solving the Problems The present invention comprises a positive electrode plate formed by wrapping a positive electrode mixture obtained by mixing manganese dioxide or lithium manganese dioxide composite oxide, a conductive auxiliary agent and a binder with a metal net, and press-molding. The above problem is solved by providing a non-aqueous electrolyte secondary battery characterized by the following.

作用 二酸化マンガンおよびリチウム二酸化マンガン複合酸
化物を用いた非水電解質二次電池の放電容量が充放電サ
イクルの進行にともなって低下する原因は、従来主とし
てリチウムイオンのドープ、脱ドープにともなう結晶構
造の崩壊にあるとされてきた。
The cause of the decrease in the discharge capacity of a nonaqueous electrolyte secondary battery using manganese dioxide and lithium manganese dioxide composite oxide with the progress of the charge / discharge cycle is mainly due to the crystal structure associated with doping and undoping of lithium ions. It has been said to be in collapse.

しかし、この容量低下について詳しく検討した結果、
結晶構造の崩壊よりも活物質が正極板中で下記のように
電気的に絶縁されることが放電容量の大きな低下の原因
であることを見いだした。二酸化マンガンおよびリチウ
ム二酸化マンガン複合酸化物は、放電にともなって活物
質が体積膨張する。この結果、正極活物質と導電助剤と
の電気的接続が部分的に失われ易い。一方、放電生成物
であるリチウムマンガネイト(LiMnO2)は、電子伝導性
がきわめて低いので活物質の表面の電気的な接続が失わ
れると次の充電が非常に困難になる。このような現象
は、放電反応の進行にともなって電気絶縁性に変化する
二酸化マンガンおよびリチウム二酸化マンガン複合酸化
物の独自の性質によるものである。すなわち、放電にと
もなう体積膨張は同様におこるが放電後も良好な電子伝
導性を示すTiS2では認められない現象である。
However, as a result of detailed examination of this capacity decrease,
It has been found that the fact that the active material is electrically insulated in the positive electrode plate rather than the collapse of the crystal structure causes a large decrease in the discharge capacity as described below. In the manganese dioxide and lithium manganese dioxide composite oxide, the active material expands in volume with discharge. As a result, the electrical connection between the positive electrode active material and the conductive additive tends to be partially lost. On the other hand, lithium manganate (LiMnO 2 ), which is a discharge product, has extremely low electron conductivity, so that if the electrical connection on the surface of the active material is lost, the next charge becomes extremely difficult. Such a phenomenon is due to the unique properties of manganese dioxide and lithium manganese dioxide composite oxide, which change into electrical insulation as the discharge reaction proceeds. That is, the volume expansion accompanying the discharge occurs similarly, but is a phenomenon that is not observed in TiS 2 which shows good electron conductivity even after the discharge.

そこで、二酸化マンガンもしくはリチウム二酸化マン
ガン複合酸化物、導電助剤および結着剤を混合してなる
正極合剤をニッケルまたはステンレス製の金網で包み込
んだ正極板を用いて非水電解質電池を試作しサイクル寿
命試験をおこなったところ、後の実施例に示すように放
電容量の低下が著しく抑制されることがわかった。これ
は、合剤を電子伝導性および電解液浸透製に優れた合剤
ケースで圧迫保持することが、活物質の膨張収縮の結果
活物質表面の電気的接続が失われるのを抑制する作用を
有することによるものである。
Therefore, a non-aqueous electrolyte battery was prototyped by using a positive electrode plate in which a positive electrode mixture obtained by mixing manganese dioxide or lithium manganese dioxide composite oxide, a conductive additive and a binder was wrapped with a nickel or stainless steel wire mesh. When a life test was performed, it was found that a decrease in the discharge capacity was significantly suppressed as shown in Examples below. This is because holding the mixture in a mixture case excellent in electron conductivity and electrolyte penetration suppresses the loss of electrical connection on the active material surface as a result of expansion and contraction of the active material. It is due to having.

金網で活物質を包み込んだ正極板は、ニッケルカドミ
ウム電池で従来から用いられているが、非水電解質電池
では一般に用いられていない。それは、金網などの合剤
ケースを用いると電池のエネルギー密度が低下するこ
と、および、従来のTiS2を用いた電池は合剤ケースを用
いなくても十分なサイクル寿命性能を示していたからで
ある。
A positive electrode plate in which an active material is wrapped by a wire mesh has been used in a nickel cadmium battery, but is not generally used in a nonaqueous electrolyte battery. This is because the use of a mixture case such as a wire mesh lowers the energy density of the battery, and the conventional battery using TiS 2 exhibited sufficient cycle life performance without using the mixture case.

実施例 本発明を好適な実施例を用いて説明する。以下の実施
例では、第一図に示したようなボタン型電池について述
べる。同図中の1は耐有機電解液性ステンレス鋼板をプ
レス加工した正極端子を兼ねるケース、2は同種の材料
を加工した負極端子を兼ねる封口板であり、その内壁に
は負極活物質のリチウムアルミ合金3が圧着されてい
る。5は有機電解質を含浸したセパレーター、6は金属
網で包み込み、加圧成形された正極合剤である。電池
は、正極端子を兼ねる電池ケース1の開口端部を内方へ
かしめ、ガスケット4を介して負極端子を兼ねる封口板
2の周縁を締め付けることにより密閉封口されている。
電池の外径は20.0mm高さは2.0mmである。
Examples The present invention will be described using preferred examples. In the following examples, a button type battery as shown in FIG. 1 will be described. In the figure, reference numeral 1 denotes a case which also serves as a positive electrode terminal formed by pressing an organic electrolyte-resistant stainless steel sheet, and 2 denotes a sealing plate which also serves as a negative electrode terminal formed by processing the same kind of material. Alloy 3 is crimped. Reference numeral 5 denotes a separator impregnated with an organic electrolyte, and reference numeral 6 denotes a positive electrode mixture wrapped in a metal net and pressure-formed. The battery is hermetically sealed by caulking an opening end of the battery case 1 also serving as a positive electrode terminal inward and tightening a peripheral edge of a sealing plate 2 also serving as a negative electrode terminal via a gasket 4.
The outer diameter of the battery is 20.0 mm and the height is 2.0 mm.

[実施例1] γ型二酸化マンガンを、50mmHg以下の減圧下において
375℃で5時間熱処理した後、空気中において375℃で5
時間熱処理した。
Example 1 γ-type manganese dioxide was reduced under reduced pressure of 50 mmHg or less.
After heat treatment at 375 ° C for 5 hours, 5 hours at 375 ° C in air.
Heat treated for hours.

この熱処理済み二酸化マンガン100重量部に対してア
セチレンブラック(導電助剤)を5重量部、およびポリ
4フッ化エチレン(結着材)を2重量部添加してよく混
練した後、120℃で5時間温風乾燥し正極合剤を調製し
た。この正極合剤を107mgずつ秤量して直径25.0mmの180
メッシュのニッケル金網に包み込んで、2トン/cm2で加
圧成形して正極とした。正極の寸法は、直径15.0mm厚み
0.6mm程度である。この正極を電池に組み込むまえに再
度120℃で3時間熱風乾燥処理を行った。
After adding 5 parts by weight of acetylene black (conduction aid) and 2 parts by weight of polytetrafluoroethylene (binder) to 100 parts by weight of the heat-treated manganese dioxide, kneading the mixture at 120 ° C. The mixture was dried with warm air for an hour to prepare a positive electrode mixture. This positive electrode mixture was weighed 107 mg at a time and 180
The positive electrode was wrapped in a mesh nickel wire net and pressure-molded at 2 ton / cm 2 to form a positive electrode. The dimensions of the positive electrode are 15.0 mm in diameter and thickness
It is about 0.6mm. Before incorporating this positive electrode into a battery, hot air drying treatment was performed again at 120 ° C. for 3 hours.

負極には厚み0.4mmのリチウムアルミ合金板(80wt%L
i)をアルゴン置換したドライボックス中で、直径16mm
に打ち抜いたものを用いた。また電解液は2メチルテト
ラヒドロフラン(2Me−THF)に6フッ化ヒ酸リチウム
(LiAsF6)を1.5モル/リットル溶解したものを用い、
セパレータにはポリプロピレンのマイクロポーラスセパ
レータ(セルガード2400)及びポリプロピレンの不織布
を重ねて用いた。この電池を本発明の実施例の電池A1と
する。
A 0.4mm thick lithium aluminum alloy plate (80wt% L
i) In a dry box in which argon has been replaced, the diameter is 16 mm.
Was used. The electrolytic solution used hexafluoride Kahisan lithium 2-methyltetrahydrofuran (2Me-THF) to (LiAsF 6) obtained by dissolving 1.5 mol / l,
A microporous separator made of polypropylene (Celgard 2400) and a nonwoven fabric made of polypropylene were used as the separator. This battery is referred to as battery A1 of the example of the present invention.

[実施例2] γ型二酸化マンガン100gと水酸化リチウム25gを乳鉢
にて混合した後、空気中で375℃で20時間熱処理して得
たリチウム二酸化マンガン複合酸化物を正極活物質に用
いたこと以外は、実施例A1と同様の電池を作成した。こ
の本発明電池をB1とする。
Example 2 100 g of γ-type manganese dioxide and 25 g of lithium hydroxide were mixed in a mortar, and then heat-treated at 375 ° C. for 20 hours in air to obtain a lithium manganese dioxide composite oxide as a positive electrode active material. Except for the above, a battery similar to that in Example A1 was produced. This battery of the present invention is referred to as B1.

[比較例1] 正極合剤のみを2トン/cm2で加圧成形して正極とした
ことを除いて他は、実施例1と同様の電池を作成した。
この比較電池をA2とする。
Comparative Example 1 A battery similar to that of Example 1 was made except that only the positive electrode mixture was pressure-molded at 2 ton / cm 2 to form a positive electrode.
This comparative battery is designated as A2.

[比較例2] 正極と正極缶の接触部分にニッケル網がくるように、
直径15.0mmで180メッシュのニッケル網を正極合剤中に
挿入した。そして、2トン/cm2で加圧成形して正極とし
た。そしてこの正極を用いることを除いて他は、実施例
1と同様の電池を作成した。この比較電池をA3とする。
[Comparative Example 2] In such a manner that a nickel mesh comes at the contact portion between the positive electrode and the positive electrode
A 180 mesh nickel mesh having a diameter of 15.0 mm was inserted into the positive electrode mixture. Then, pressure molding was performed at 2 ton / cm 2 to obtain a positive electrode. A battery similar to that of Example 1 was made except that this positive electrode was used. This comparative battery is designated as A3.

[比較例3] 正極活物質としてリチウム二酸化マンガン複合酸化物
を用いることを除いて他は、比較例1と同様の電池を作
成した。この比較電池をB2とする。
Comparative Example 3 A battery similar to Comparative Example 1 was made except that a lithium manganese dioxide composite oxide was used as the positive electrode active material. This comparative battery is designated as B2.

[比較例4] 正極活物質としてリチウム二酸化マンガン複合酸化物
を用いることを除いて他は、実施例1と同様の電池を作
成した。この比較電池をB3とする。
Comparative Example 4 A battery similar to that of Example 1 was made except that a lithium manganese dioxide composite oxide was used as a positive electrode active material. This comparative battery is designated as B3.

第二図および第三図は、これら電池を20℃恒温槽中に
て以下の条件で充放電を行った際の充放電サイクルの進
行にともなう容量保持特性図である。充電終止電圧3.4
V,放電終止電圧2.0Vとし、充放電電流は1.8mA(1.0mA/c
m2)である。第一図、第二図より明らかなように、本発
明電池(A1)(B1)は、比較電池(A2)(A3)(B2)
(B3)に比して充放電サイクルの進行にともなう容量保
持特性が飛躍的に向上している。
FIG. 2 and FIG. 3 are capacity retention characteristics diagrams as the charge / discharge cycle progresses when these batteries are charged / discharged in a thermostat at 20 ° C. under the following conditions. Charge end voltage 3.4
V, discharge end voltage 2.0V, charge / discharge current is 1.8mA (1.0mA / c
m 2 ). As is clear from FIGS. 1 and 2, the batteries (A1) and (B1) of the present invention were compared with the comparative batteries (A2) (A3) (B2).
Compared with (B3), the capacity retention characteristics with the progress of the charge / discharge cycle are dramatically improved.

上述の実施例では、ニッケル金網を用いているがより
強度の高いステンレス製の金網を用いた場合にはさらに
圧迫保持性能が増すのでより優れたサイクル寿命が得ら
れる。また、穿孔板からなる合剤圧迫保持ケースを用い
た場合にも優れた効果が得られる。
In the above embodiment, a nickel wire mesh is used. However, when a stainless steel wire mesh having higher strength is used, the compression holding performance is further increased, so that a better cycle life can be obtained. Also, excellent effects can be obtained when a mixture pressurization holding case made of a perforated plate is used.

発明の効果 上述したごとく本発明は、二酸化マンガンもしくはリ
チウム二酸化マンガン複合酸化物を正極活物質とする非
水電解質二次電池の充放電サイクルの進行にともなう容
量保持特性を飛躍的に向上させることができるものであ
りその工業的価値は極めて大である。
Effect of the Invention As described above, the present invention can dramatically improve the capacity retention characteristics of a nonaqueous electrolyte secondary battery using manganese dioxide or lithium manganese dioxide composite oxide as a positive electrode active material as the charge / discharge cycle progresses. It is possible and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

第一図は、実施例における電池の縦断面図である。第二
図および第三図は、充放電サイクルと放電容量との関係
を示した図である。 1……電池ケース 2……封口板 3……リチウム合金 4……ガスケット 5……セパレーター 6……金属網で包み込み、加圧成形された正極合剤
FIG. 1 is a longitudinal sectional view of a battery in an example. FIGS. 2 and 3 are diagrams showing the relationship between the charge / discharge cycle and the discharge capacity. DESCRIPTION OF SYMBOLS 1 ... Battery case 2 ... Sealing plate 3 ... Lithium alloy 4 ... Gasket 5 ... Separator 6 ... Positive electrode mixture wrapped in a metal net and pressed

フロントページの続き (56)参考文献 特開 昭63−121248(JP,A) 特開 昭50−45929(JP,A) 特開 昭64−81167(JP,A) 特開 昭63−261675(JP,A) 特開 平4−51459(JP,A) 特開 昭64−35871(JP,A) 特開 昭63−150867(JP,A) 特開 昭63−138646(JP,A) 特開 平2−256177(JP,A) 特開 平2−114448(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 H01M 4/02 H01M 4/04 Continuation of the front page (56) References JP-A-63-121248 (JP, A) JP-A-50-45929 (JP, A) JP-A-64-81167 (JP, A) JP-A-63-261675 (JP, A) JP-A-4-51459 (JP, A) JP-A-64-35871 (JP, A) JP-A-63-150867 (JP, A) JP-A-63-138646 (JP, A) 2-256177 (JP, A) JP-A-2-114448 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 10/40 H01M 4/02 H01M 4/04

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】二酸化マンガンもしくはリチウム二酸化マ
ンガン複合酸化物、導電助剤および結着剤を混合してな
る正極合剤を金属網で包み込み、加圧成形した正極板を
備えたことを特徴とする非水電解質二次電池。
1. A positive electrode plate comprising a positive electrode plate formed by wrapping a positive electrode mixture obtained by mixing a manganese dioxide or lithium manganese dioxide composite oxide, a conductive auxiliary agent and a binder in a metal net, and press-forming. Non-aqueous electrolyte secondary battery.
JP28475690A 1990-10-22 1990-10-22 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3237071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28475690A JP3237071B2 (en) 1990-10-22 1990-10-22 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28475690A JP3237071B2 (en) 1990-10-22 1990-10-22 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH04160768A JPH04160768A (en) 1992-06-04
JP3237071B2 true JP3237071B2 (en) 2001-12-10

Family

ID=17682600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28475690A Expired - Fee Related JP3237071B2 (en) 1990-10-22 1990-10-22 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3237071B2 (en)

Also Published As

Publication number Publication date
JPH04160768A (en) 1992-06-04

Similar Documents

Publication Publication Date Title
JPH11176446A (en) Lithium secondary battery
US5682592A (en) Fabrication method for paste-type metal hydride electrode
JP3197684B2 (en) Non-aqueous electrolyte secondary battery
JP2000348722A (en) Nonaqueous electrolyte battery
JP3237071B2 (en) Non-aqueous electrolyte secondary battery
JP3022758B2 (en) Alkaline manganese battery
JPS60167280A (en) Electrochemical device capable of recharging
JP2000306608A (en) Lithium ion secondary battery having three electrodes
JP3268924B2 (en) Non-aqueous electrolyte battery
JPS6335069B2 (en)
JPH0536401A (en) Lithium secondary battery
JP3163444B2 (en) Lithium secondary battery
JP3447187B2 (en) Non-aqueous electrolyte battery and method for manufacturing the same
JP2000106187A (en) Nonaqueous electrolytic secondary battery
JPH1050312A (en) Nonaqueous electrolyte secondary battery
JP3167518B2 (en) Non-aqueous electrolyte secondary battery
JP3331608B2 (en) Non-aqueous electrolyte secondary battery
JPH03214562A (en) Manufacture of positive electrode for secondary battery with non-aqueous electrolyte
JP2000173602A (en) Cylindrical alkaline battery
JP3005961B2 (en) Lithium battery
JP3343413B2 (en) Alkaline secondary battery
JP3182277B2 (en) Non-aqueous electrolyte secondary battery
JPH067493B2 (en) Flat battery
JPS6151749A (en) Nonaqueous electrolyte battery
JP3043775B2 (en) Cadmium negative electrode for alkaline storage batteries

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071005

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081005

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees