JPH04160768A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH04160768A
JPH04160768A JP2284756A JP28475690A JPH04160768A JP H04160768 A JPH04160768 A JP H04160768A JP 2284756 A JP2284756 A JP 2284756A JP 28475690 A JP28475690 A JP 28475690A JP H04160768 A JPH04160768 A JP H04160768A
Authority
JP
Japan
Prior art keywords
positive electrode
manganese dioxide
battery
electrode mixture
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2284756A
Other languages
Japanese (ja)
Other versions
JP3237071B2 (en
Inventor
Hiroaki Yoshida
浩明 吉田
Hisashi Tsukamoto
寿 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP28475690A priority Critical patent/JP3237071B2/en
Publication of JPH04160768A publication Critical patent/JPH04160768A/en
Application granted granted Critical
Publication of JP3237071B2 publication Critical patent/JP3237071B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To restrain the lowering of discharge capacity by using a positive plate in which a positive electrode mixture; composed by mixing manganese dioxide or lithium-manganese dioxide composite oxide, a conductive assistant, and a binding agent; is wrapped with nickel-or stainless-made gauze. CONSTITUTION:A battery is closedly sealed by inwardly caulking the opening end part of a battery case 1 doubling as a positive electrode terminal, and clamping the peripheral edge of a sealing plate 2 doubling as a negative electrode terminal via a gasket 4. In this case, acetylene black (conductive assistant) and ethylene polytetrafluoride (binding agent) are added to heat-treated manganese dioxide to be well kneaded, and then are hot-air dried to prepare a positive electrode mixture 6. The positive electrode mixture 6 is measured, wrapped with a nickel gauze and pressure-formed to be made a possitive electrode. This improves a capacity retaining characteristic following the progress of a charge and discharge cycle.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は正極活物質として二酸化マンガンもしくはリチ
ウム二酸化マンガン複合酸化物を用いた非水電解質二次
電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a nonaqueous electrolyte secondary battery using manganese dioxide or lithium manganese dioxide composite oxide as a positive electrode active material.

従来の技術 非水電解質を用いる二次電池には、負極に金属リチウム
、リチウム合金またはりニヤーグラファイトを用い正極
にT i S2、二酸化マンガンまたはリチウム二酸化
マンガン複合酸化物を用いたものがある。これらの中で
TiS2を用いた非水電解液二次電池は、200サイク
ルを越える長いサイクル寿命を有する点で優れている。
BACKGROUND OF THE INVENTION Some secondary batteries using non-aqueous electrolytes include metal lithium, lithium alloys, or phosphorescent graphite for the negative electrode and T i S2, manganese dioxide, or lithium-manganese dioxide composite oxide for the positive electrode. Among these, non-aqueous electrolyte secondary batteries using TiS2 are superior in that they have a long cycle life of over 200 cycles.

これに対して二酸化マンガンおよびリチウム二酸化マン
ガン複合酸化物を用いたを用いたものは、T i S2
に比較して高い電圧を有し資源的に豊富なので安価であ
るという点で優れている。
On the other hand, those using manganese dioxide and lithium manganese dioxide composite oxide are T i S2
It is superior in that it has a high voltage and is abundant in resources, so it is inexpensive.

従来の非水電解質二次電池の正極板は、活物質と導電助
剤と結着材とを混合してなる正極合剤を加圧成形してな
るペレット、または正極合剤を金属網に塗布してなるも
のが用いられていた。
The positive electrode plate of conventional non-aqueous electrolyte secondary batteries is made of pellets made by press-molding a positive electrode mixture made of a mixture of an active material, a conductive additive, and a binder, or a positive electrode mixture coated on a metal mesh. The following was used.

発明が解決しようとする課題 上述のような従来の正極板を用いた二酸化マンガンもし
くはリチウム二酸化マンガン複合酸化物を正極活物質と
する非水電解質二次電池は、充放電サイクルの進行に伴
って放電容量が著しく減少しサイクル寿命が短いという
問題点を有していた。
Problems to be Solved by the Invention A non-aqueous electrolyte secondary battery using a conventional positive electrode plate as described above and using manganese dioxide or lithium manganese dioxide composite oxide as a positive electrode active material discharges as the charge/discharge cycle progresses. The problem was that the capacity was significantly reduced and the cycle life was short.

課題を解決するための手段 本発明は、二酸化マンガンもしくはリチウム二酸化マン
ガン複合酸化物、導電助剤および結着剤を混合してなる
正極合剤を電導性および電解液の浸透性を有する正極合
剤圧迫保持ケースに収納してなる正極板を備えたことを
特徴とする非水電解質二次電池を提供することで上述の
問題を解決するものである。
Means for Solving the Problems The present invention provides a positive electrode mixture having electrical conductivity and electrolyte permeability, which is obtained by mixing manganese dioxide or lithium manganese dioxide composite oxide, a conductive additive, and a binder. The above-mentioned problem is solved by providing a non-aqueous electrolyte secondary battery characterized by having a positive electrode plate housed in a compression holding case.

作用 二酸化マンガンおよびリチウム二酸化マンガン複合酸化
物を用いた非水電解質二次電池の放電容量が充放電サイ
クルの進行にともなって低下する原因は、従来主として
リチウムイオンのドープ、脱ドープにともなう結晶構造
の崩壊にあるとされてきた。
The main reason that the discharge capacity of non-aqueous electrolyte secondary batteries using manganese dioxide and lithium manganese dioxide composite oxides decreases as the charge/discharge cycle progresses is due to the change in crystal structure due to doping and dedoping of lithium ions. It has been said that it is in a state of collapse.

しかし、この容量低下について詳しく検討した結果、結
晶構造の崩壊よりも活物質が正極板中で下記のように電
気的に絶縁されることが放電容量の大きな低下の原因で
あることを見いだした。二階化マンガンおよびリチウム
二酸化マンガン複合酸化物は、放電にともなって活物質
が体積膨張する。この結果、正極活物質と導電助剤との
電気的接続が部分的に失われ易い。一方、放電生成物で
あるリチウムマンカネイ) (LiMn02)は、電子
伝導性がきオつめて低いので活物質の表面の電気的な接
続が失われると次の充電が非常に困難になる。このよう
な現象は、放電反応の進行にともなって電気絶縁性に変
化する二酸化マンガンおよびリチウム二酸化マンガン複
合酸化物の独自の性質によるものである。すなわち、放
電にともなう体積膨張は同様におこるが放電後も良好な
電子伝導性を示すT i S2ては認められない現象で
ある。
However, as a result of a detailed study of this decrease in capacity, it was found that the reason for the large decrease in discharge capacity was that the active material was electrically insulated in the positive electrode plate as described below rather than the collapse of the crystal structure. In the dual-layer manganese and lithium manganese dioxide composite oxides, the active material expands in volume with discharge. As a result, the electrical connection between the positive electrode active material and the conductive additive is likely to be partially lost. On the other hand, lithium mankanei (LiMn02), which is a discharge product, has very low electronic conductivity, so if the electrical connection on the surface of the active material is lost, subsequent charging becomes extremely difficult. This phenomenon is due to the unique properties of manganese dioxide and lithium manganese dioxide composite oxide, which change to electrically insulating properties as the discharge reaction progresses. That is, this phenomenon is not observed in T i S2, which similarly undergoes volumetric expansion due to discharge, but exhibits good electronic conductivity even after discharge.

そこで、二酸化マンガンもしくはリチウム二酸化マンガ
ン複合酸化物、導電助剤および結着剤を混合してなる正
極合剤をニッケルまたはステンレス製の金網で包み込ん
だ正極板を用いて非水電解質電池を試作しサイクル寿命
試験をおこなったところ、後の実施例に示すように放電
容量の低下が著しく抑制されることがわかフた。これは
、合剤を電子伝導性および電解液浸透層に優れた合剤ケ
ースで圧迫保持することが、活物質の膨張収縮の結果活
物質表面の電気的接続が失われるのを抑制する作用を有
することによるものである。
Therefore, we fabricated a prototype nonaqueous electrolyte battery using a positive electrode plate in which a positive electrode mixture made of manganese dioxide or lithium manganese dioxide composite oxide, a conductive agent, and a binder was wrapped in a nickel or stainless wire mesh. When a life test was conducted, it was found that the decrease in discharge capacity was significantly suppressed, as shown in the later examples. This is because compressing and holding the mixture in a mixture case with excellent electronic conductivity and an electrolyte permeation layer has the effect of suppressing loss of electrical connection on the surface of the active material as a result of expansion and contraction of the active material. This is due to having.

金網で活物質を包み込んだ正極板は、ニッケルカドミウ
ム電池で従来から用いられているが、非水電解質電池で
は一般に用いられていない。それは、金網などの合剤ケ
ースを用いると電池のエネルギー密度が低下すること、
および、従来のTiS2を用いた電池は合剤ケースを用
いなくても十分なサイクル寿命性能を示していたからで
ある。
A positive electrode plate in which the active material is wrapped in a wire mesh has traditionally been used in nickel-cadmium batteries, but is generally not used in non-aqueous electrolyte batteries. This is because the energy density of the battery decreases when a mixture case such as a wire mesh is used.
Another reason is that conventional batteries using TiS2 exhibited sufficient cycle life performance even without using a mixture case.

実施例 本発明を好適な実施例を用いて説明する。以下の実施例
では、第一図に示したようなボタン型電池について述べ
る。同図中の1は耐有機電解液性ステンレス鋼板をプレ
ス加工した正極端子を兼ねるケース、2は同種の材料を
加工した負極端子を兼ねる封口板であり、その内壁には
負極活物質のリチウムアルミ合金3が圧着されている。
Examples The present invention will be explained using preferred examples. In the following examples, a button type battery as shown in FIG. 1 will be described. In the figure, 1 is a case that doubles as a positive electrode terminal, which is made by pressing an organic electrolyte-resistant stainless steel plate, and 2 is a sealing plate that also serves as a negative electrode terminal, which is made of the same material. Alloy 3 is crimped.

5は有機電解液を含浸したセパレーター、6は合剤圧迫
保持ケースに収納された正極合剤である。電池は、正極
端子を兼ねる電池ケース1の開口端部を内方へかしめ、
ガスケット4を介して負極端子を兼ねる封口板2の周縁
を締め付けることにより密閉封口されている。電池の外
径は20.0mm高さは2.0mgwである。
5 is a separator impregnated with an organic electrolyte, and 6 is a positive electrode mixture housed in a mixture compression holding case. The battery is installed by caulking the open end of the battery case 1, which also serves as the positive terminal, inward.
Hermetically sealed sealing is achieved by tightening the periphery of a sealing plate 2, which also serves as a negative electrode terminal, via a gasket 4. The outer diameter of the battery is 20.0 mm and the height is 2.0 mgw.

[惠流側1] γ型二酸化マンガンを、50mml(g以下の減圧下に
おいて375℃で5時間熱処理した後、空気中において
375℃で5時間熱処理した。
[Flow-through side 1] γ-type manganese dioxide was heat-treated at 375° C. for 5 hours under reduced pressure of 50 mml (g or less), and then heat-treated at 375° C. for 5 hours in air.

この熱処理済み二酸化マンガン100重量部に対してア
セチレンブラック(導電助剤)を5重量部、およびポリ
4フツ化エチレン(結着材)を2重量部添加してよく混
練した後、120℃で5時間温風轄燥し正極合剤を調製
した。この正極合剤をl07mgずつ秤量して直径25
.0mmの180メツシユのニッケル金網に包み込んで
、2トン/cm’で加圧成形して正極とした。正極の寸
法は、直径15.0+n+n厚み0.6mm程度である
。この正極を電池に組み込むまえに再度120”Cで3
時間熱風乾燥処理を行った。
To 100 parts by weight of this heat-treated manganese dioxide, 5 parts by weight of acetylene black (conductivity aid) and 2 parts by weight of polytetrafluoroethylene (binder) were added, kneaded well, and heated to 120°C for 5 parts by weight. A positive electrode mixture was prepared by drying in hot air for a period of time. Weigh out 107 mg of this positive electrode mixture and
.. It was wrapped in a 0 mm 180 mesh nickel wire gauze and press-molded at 2 tons/cm' to form a positive electrode. The dimensions of the positive electrode are approximately 15.0 mm in diameter and 0.6 mm in thickness. Before assembling this positive electrode into the battery, heat it again at 120"C for 3 seconds.
A hot air drying process was performed for a period of time.

負極には厚み0.4m+nのリチウムアルミ合金板<8
0wtXLi)をアルゴン置換したドライボックス中で
、直径1(no@に打ち抜いたものを用いた。また電解
液は2メチルテトラヒドロフラン(2Me−T)IF)
に6フッ化ヒ酸リチウム(LiAsFe)を1.5モル
/リットル溶解したものを用い、セパレータにはポリプ
ロピレンのマイクロポーラスセパレータ(セルガード2
400)及びポリプロピレンの不縁布を重ねて用いた。
The negative electrode is a lithium aluminum alloy plate with a thickness of 0.4 m + n < 8
0 wt
A polypropylene microporous separator (Celguard 2) was used as the separator.
400) and a non-lined polypropylene cloth were used in layers.

この電池を本発明の実施例の電池A1とする。This battery is referred to as battery A1 of the embodiment of the present invention.

[実施例2] γ型二酸化マンガン100gと水酸化リチウム25gを
乳鉢にて混合した後、空気中で375℃で20時間熱処
理して得たリチウム二酸化マンガン複合酸化物を正極活
物質に用いたこと以外は、実施例AIと同様の電池を作
成した。この本発明電池を81とする。
[Example 2] A lithium manganese dioxide composite oxide obtained by mixing 100 g of γ-type manganese dioxide and 25 g of lithium hydroxide in a mortar and then heat-treating the mixture at 375° C. for 20 hours in air was used as a positive electrode active material. Except for this, a battery similar to Example AI was produced. This invention battery is designated as 81.

[比較例1] 正極合剤のみを2トン/cm2で加圧成形して正極とし
たことを除いて他は、実施例1と同様の電池を作成した
。この比較電池をA2とする。
[Comparative Example 1] A battery similar to Example 1 was prepared except that only the positive electrode mixture was pressure-molded at 2 tons/cm 2 to form a positive electrode. This comparison battery is designated as A2.

[比較例2] 正極と正極缶の接触部分にニッケル網がくるように、直
径15.0mmで180メツシユのニッケル網を正極合
剤中に挿入した。そして、2トン/cm2で加圧成形し
て正極とした。そしてこの正極を用いることを除いて他
は、実施例1と同様の電池を作成した。この比較電池を
A3とする。
[Comparative Example 2] A 180-mesh nickel mesh with a diameter of 15.0 mm was inserted into the positive electrode mixture so that the nickel mesh was located in the contact area between the positive electrode and the positive electrode can. Then, it was press-molded at 2 tons/cm2 to form a positive electrode. A battery similar to that of Example 1 was produced except for using this positive electrode. This comparison battery is designated as A3.

[比較例3] 正極活物質としてリチウム二酸化マンガン複合酸化物を
用いることを除いて他は、比較例1と同様の電池を作成
した。この比較電池をB2とする。
[Comparative Example 3] A battery similar to Comparative Example 1 was produced except for using lithium manganese dioxide composite oxide as the positive electrode active material. This comparison battery is designated as B2.

[比較例4] 正極活物質としてリチウム二酸化マンガン複合酸化物を
用いることを除いて他は、実施例1と同様の電池を作成
した。この比較電池を83とする。
[Comparative Example 4] A battery similar to Example 1 was produced except for using lithium manganese dioxide composite oxide as the positive electrode active material. This comparison battery is designated as 83.

第二図および第三図は、これら電池を20℃恒温槽中に
て以下の条件で充放電を行った際の充放電サイクルの進
行にともなう容量保持特性図である。充電終止電圧3.
4V、放電終止電圧2.Ovとし、充放電電流は1.8
mA(1,0mA/cmりである。第一図、第二図より
明らかなように、本発明電池(AI)(BI)は、比較
電池(A2)(A3)(B2)(83)に比して充放電
サイクルの進行にともなう容量保持特性が飛躍的に向上
している。
Figures 2 and 3 are capacity retention characteristics as the charge/discharge cycle progresses when these batteries are charged and discharged in a constant temperature bath at 20°C under the following conditions. Charging end voltage 3.
4V, discharge end voltage 2. Ov, and the charging/discharging current is 1.8
mA (1.0 mA/cm. In comparison, the capacity retention characteristics as the charge/discharge cycle progresses are dramatically improved.

上述の実施例では、ニッケル金網を用いているがより強
度の高いステンレス類の金網を用いた場合にはさらに圧
迫保持性能が増すのでより優れたサイクル寿命が得られ
る。また、穿孔板からなる合剤圧迫保持ケースを用いた
場合にも優れた効果が得られる。
In the above-mentioned embodiment, a nickel wire mesh is used, but if a stronger stainless steel wire mesh is used, the compression holding performance will further increase, and a more excellent cycle life will be obtained. Further, excellent effects can also be obtained when a mixture compression holding case made of a perforated plate is used.

発明の効果 上述したことく本発明は、二酸化マンガンもしくはリチ
ウム二酸化マンガン複合酸化物を正極活物質とする非水
電解質二次電池の充放電サイクルの進行にともなう容量
保持特性を飛躍的に向上させることができるものであり
その工業的価値は極めて大である。
Effects of the Invention As described above, the present invention dramatically improves the capacity retention characteristics of a nonaqueous electrolyte secondary battery that uses manganese dioxide or lithium manganese dioxide composite oxide as a positive electrode active material as the charge/discharge cycle progresses. The industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第一図は、実施例における電池の縦断面図である。第二
図および第三図は、充放電サイクルと放電容量との関係
を示した図である。 l −−−一電池ケース 2−  封口板 3・ −リチウム合金 4−−ガスケット 5−   セパレーター 6−一 合剤圧迫保持ケースに収納された正極合剤 第 −図 サイクrv(田フ サイクル 0コ)
FIG. 1 is a longitudinal cross-sectional view of a battery in an example. FIGS. 2 and 3 are diagrams showing the relationship between charge/discharge cycles and discharge capacity. l - - Battery case 2 - Sealing plate 3 - Lithium alloy 4 - Gasket 5 - Separator 6-1 Positive electrode mixture stored in the mixture compression holding case

Claims (1)

【特許請求の範囲】[Claims]  二酸化マンガンもしくはリチウム二酸化マンガン複合
酸化物、導電助剤および結着剤を混合してなる正極合剤
を電導性および電解液の浸透性を有する正極合剤圧迫保
持ケースに収納してなる正極板を備えたことを特徴とす
る非水電解質二次電池。
A positive electrode plate is made by storing a positive electrode mixture made by mixing manganese dioxide or lithium manganese dioxide composite oxide, a conductive additive, and a binder in a positive electrode mixture compression holding case that has conductivity and electrolyte permeability. A non-aqueous electrolyte secondary battery comprising:
JP28475690A 1990-10-22 1990-10-22 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3237071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28475690A JP3237071B2 (en) 1990-10-22 1990-10-22 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28475690A JP3237071B2 (en) 1990-10-22 1990-10-22 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH04160768A true JPH04160768A (en) 1992-06-04
JP3237071B2 JP3237071B2 (en) 2001-12-10

Family

ID=17682600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28475690A Expired - Fee Related JP3237071B2 (en) 1990-10-22 1990-10-22 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3237071B2 (en)

Also Published As

Publication number Publication date
JP3237071B2 (en) 2001-12-10

Similar Documents

Publication Publication Date Title
JP4366101B2 (en) Lithium secondary battery
US6465125B1 (en) Nonaqueous electrolyte secondary battery and method of manufacturing nonaqueous electrolyte secondary battery
US7378185B2 (en) Prismatic lithium secondary battery having a porous heat resistant layer
US7419743B2 (en) Cylindrical lithium battery resistant to breakage of the porous heat resistant layer
JPH10112318A (en) Nonaqueous electrolyte secondary battery
JP2000011991A (en) Organic electrolyte secondary battery
JP3396696B2 (en) Rechargeable battery
JP2000090903A (en) Secondary battery
JP4453882B2 (en) Flat non-aqueous electrolyte secondary battery
JP4310937B2 (en) Lithium secondary battery
JP3508411B2 (en) Lithium ion secondary battery
JP2000357505A (en) Nonaqueous electrolyte secondary battery
JP2002008655A (en) Negative electrode and non-aqueous electrolyte cell
JP2003045494A (en) Flat non-aqueous electrolyte secondary battery
JPH0495363A (en) Nonaqueous secondary-battery
JPH07105935A (en) Non-aqueous electrolyte secondary battery
WO2003067688A1 (en) Nonaqueous electrolyte secondary cell
JPH11162468A (en) Alkaline secondary battery
JPH04160768A (en) Nonaqueous electrolyte secondary battery
JP2005019086A (en) Nonaqueous electrolyte secondary battery
US20010033970A1 (en) Nickel electrode for alkaline storage battery and method of manufacturing the same
JP3281223B2 (en) Non-aqueous electrolyte secondary battery
JP2001110406A (en) Nonaqueous electrolyte secondary battery
JP2000138062A (en) Nonaqueous electrolyte secondary battery
JP3343413B2 (en) Alkaline secondary battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071005

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081005

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees