JP2000090903A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JP2000090903A
JP2000090903A JP10259664A JP25966498A JP2000090903A JP 2000090903 A JP2000090903 A JP 2000090903A JP 10259664 A JP10259664 A JP 10259664A JP 25966498 A JP25966498 A JP 25966498A JP 2000090903 A JP2000090903 A JP 2000090903A
Authority
JP
Japan
Prior art keywords
container
electrode group
electrode
negative electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10259664A
Other languages
Japanese (ja)
Inventor
Hideki Takahashi
秀樹 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP10259664A priority Critical patent/JP2000090903A/en
Publication of JP2000090903A publication Critical patent/JP2000090903A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery having long charge/discharge cycle life. SOLUTION: This secondary battery has an electrode group 2 formed by placing a separator 5 between a positive electrode 3 and a negative electrode 4, a container 1 for housing the electrode group 2 and also serving as a terminal, and conductors 6a, 6b which are compressed between at least one portion on the outside of the electrode group 2 and the inside surface of the container 1, returned to a specified shape in charge/discharge, and has elasticity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二次電池に関する
ものである。
[0001] The present invention relates to a secondary battery.

【0002】[0002]

【従来の技術】携帯用電子機器に用いられる電池とし
て、ニッケルカドミウム二次電池及びニッケル水素二次
電池に代表されるアルカリ二次電池、ニッケル亜鉛二次
電池、リチウムイオン二次電池などが知られている。ア
ルカリ二次電池の一例である角形ニッケル水素二次電池
としては、図6に例示されるような構造を有するものが
知られている。すなわち、負極端子を兼ねる有底矩形筒
状の容器21内には、電極群22が収納されている。前
記電極群22は、4枚の正極23と5枚の負極24とが
その間にセパレータ25を介して交互に積層された構造
を有する。前記電極群22の最外層は、負極24であ
り、前記容器21の内側面と接している。アルカリ電解
液は、前記容器21内に収容されている。中央に孔を有
する(図示しない)矩形の封口板26は、前記容器21
の上部開口部に配置されている。絶縁性ガスケット27
は、例えばナイロンのような合成樹脂から形成されてお
り、前記封口板26の周縁と前記容器21の上部開口部
内面の間に配置されている。前記封口板26は、前記容
器21の上部開口部を内側に縮径するカシメ加工により
前記容器21に前記ガスケット27を介して気密に固定
されている。正極リード28は、一端が前記正極23に
接続、他端が前記封口板26の下面に接続されている。
正極端子29は、前記封口板26上に前記孔を覆うよう
に取り付けられている。弾性弁体(図示しない)は、前
記封口板26と前記正極端子29で囲まれた空間内に前
記孔を塞ぐように配置されている。
2. Description of the Related Art Alkaline secondary batteries such as nickel cadmium secondary batteries and nickel hydrogen secondary batteries, nickel zinc secondary batteries and lithium ion secondary batteries are known as batteries used in portable electronic equipment. ing. As a prismatic nickel-metal hydride secondary battery which is an example of an alkaline secondary battery, one having a structure as illustrated in FIG. 6 is known. That is, the electrode group 22 is housed in the bottomed rectangular cylindrical container 21 also serving as the negative electrode terminal. The electrode group 22 has a structure in which four positive electrodes 23 and five negative electrodes 24 are alternately stacked with a separator 25 interposed therebetween. The outermost layer of the electrode group 22 is the negative electrode 24 and is in contact with the inner surface of the container 21. The alkaline electrolyte is contained in the container 21. A rectangular sealing plate 26 (not shown) having a hole in the center is
Is arranged in the upper opening. Insulating gasket 27
Is formed of a synthetic resin such as nylon, for example, and is disposed between the periphery of the sealing plate 26 and the inner surface of the upper opening of the container 21. The sealing plate 26 is air-tightly fixed to the container 21 via the gasket 27 by caulking to reduce the diameter of the upper opening of the container 21 inward. One end of the positive electrode lead 28 is connected to the positive electrode 23, and the other end is connected to the lower surface of the sealing plate 26.
The positive electrode terminal 29 is mounted on the sealing plate 26 so as to cover the hole. An elastic valve element (not shown) is disposed in a space surrounded by the sealing plate 26 and the positive electrode terminal 29 so as to close the hole.

【0003】[0003]

【発明が解決しようとする課題】前述した構造の角形ニ
ッケル水素二次電池においては、前記正極23と前記正
極端子29とは前記リード28により電気的に接続され
ている。一方、前記負極端子を兼ねる容器21と前記負
極24とは、前記電極群の最外層の負極24と前記容器
21の内側面とが接触することにより電気的に接続され
ている。このように負極と負極端子(容器)間の導通が
両者を接触させることで行われているため、次のような
問題点を有する。
In the prismatic nickel-metal hydride secondary battery having the above-mentioned structure, the positive electrode 23 and the positive electrode terminal 29 are electrically connected by the lead 28. On the other hand, the container 21 also serving as the negative electrode terminal and the negative electrode 24 are electrically connected by the contact of the outermost negative electrode 24 of the electrode group with the inner surface of the container 21. Since the conduction between the negative electrode and the negative electrode terminal (container) is performed by bringing the two into contact with each other, there are the following problems.

【0004】ニッケル水素二次電池は、充放電反応の進
行に伴って電極群の膨張・収縮が繰り返されると、正負
極の形が崩れたり、セパレータの弾力性が低下する等が
生じて前記電極群が収縮し、前記電極群と前記容器との
間に隙間を生じる。その結果、ニッケル水素二次電池
は、充放電サイクルの進行に伴って負極と負極端子であ
る容器との電気的接続が不十分になるため、容量が低下
し、サイクル寿命が短くなるという問題点を生じる。
In a nickel-hydrogen secondary battery, when the electrode group repeatedly expands and contracts as the charge / discharge reaction progresses, the shapes of the positive and negative electrodes are lost, the elasticity of the separator is reduced, and the like. The group shrinks, creating a gap between the electrode group and the container. As a result, the nickel-hydrogen secondary battery has a problem that the capacity is reduced and the cycle life is shortened because the electrical connection between the negative electrode and the container serving as the negative electrode terminal is insufficient with the progress of the charge / discharge cycle. Is generated.

【0005】本発明の目的は、充放電サイクル寿命が向
上された二次電池を提供することである。
An object of the present invention is to provide a secondary battery having an improved charge / discharge cycle life.

【0006】[0006]

【課題を解決するための手段】本発明に係わる二次電池
は、正極と負極の間にセパレータが介在された構造を有
する電極群と、前記電極群が収納され、端子を兼ねる容
器と、前記電極群の外側の面の少なくとも一箇所と前記
容器の内側面との間に圧縮状態で配置され、充放電時に
所定の形状に復帰し、かつ弾性を有する導電体とを具備
することを特徴とするものである。
A secondary battery according to the present invention comprises: an electrode group having a structure in which a separator is interposed between a positive electrode and a negative electrode; a container accommodating the electrode group and also serving as a terminal; It is arranged in a compressed state between at least one portion of the outer surface of the electrode group and the inner surface of the container, returns to a predetermined shape at the time of charging and discharging, and has an elastic conductor. Is what you do.

【0007】本発明に係わる別の二次電池は、正極と負
極がセパレータを介して交互に積層されており、かつ最
外層が負極である構造を有する電極群と、前記電極群が
収納され、負極端子を兼ねる有底矩形筒状容器と、前記
電極群の最外層の少なくとも一方と前記容器の内側面と
の間に配置され、充放電時に所定の形状に復帰し、かつ
弾性を有する導電体とを具備することを特徴とするもの
である。
In another secondary battery according to the present invention, an electrode group having a structure in which a positive electrode and a negative electrode are alternately stacked with a separator interposed therebetween, and the outermost layer is a negative electrode, and the electrode group is housed. A bottomed rectangular cylindrical container also serving as a negative electrode terminal, and is disposed between at least one of the outermost layers of the electrode group and the inner surface of the container, and returns to a predetermined shape during charging and discharging, and has a resilient conductor. And characterized in that:

【0008】[0008]

【発明の実施の形態】以下、本発明を角形アルカリ二次
電池に適用した例を説明する。この角形アルカリ二次電
池を図1〜図3を参照して詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an example in which the present invention is applied to a prismatic alkaline secondary battery will be described. This prismatic alkaline secondary battery will be described in detail with reference to FIGS.

【0009】まず、充放電が行われていない状態の角形
アルカリ二次電池を図1〜図2を参照して説明する。
First, a prismatic alkaline secondary battery in a state where charging and discharging are not performed will be described with reference to FIGS.

【0010】図1に示すように、負極端子を兼ねる有底
矩形筒状の容器1内には、電極群2が収納されている。
前記電極群2は、4枚の正極3と5枚の負極4とがその
間にセパレータ5を介して交互に積層された構造を有す
る。前記電極群2の最外層は、負極4であり、前記容器
1の内側面と接している。ここで、前記容器1内に収納
される前の状態の導電体6a,6bを図2(a)に示
す。図2(a)に示すように、前記導電体6a,6b
は、中央がくの字に屈曲している形状の板バネである。
このような導電体6a,6bは、前記電極群2の最外層
と前記容器1の内側面の間に屈曲点が前記最外層と接す
るようにそれぞれ圧縮状態で配置されている。前記導電
体6a,6bは、充放電時に前述した図2(a)に示さ
れる元の形状に復帰する性質を有する。アルカリ電解液
は、前記容器1内に収容されている。中央に孔を有する
(図示しない)矩形の封口板7は、前記容器1の上部開
口部に配置されている。絶縁性ガスケット8は、例えば
ナイロンのような合成樹脂から形成されており、前記封
口板7の周縁と前記容器1の上部開口部内面の間に配置
されている。前記封口板7は、前記容器1の上部開口部
を内側に縮径するカシメ加工により前記容器1に前記ガ
スケット8を介して気密に固定されている。正極リード
9は、一端が前記正極3に接続、他端が前記封口板7の
下面に接続されている。正極端子10は、前記封口板7
上に前記孔を覆うように取り付けられている。弾性弁体
(図示しない)は、前記封口板7と前記正極端子10で
囲まれた空間内に前記孔を塞ぐように配置されている。
As shown in FIG. 1, an electrode group 2 is accommodated in a bottomed rectangular cylindrical container 1 also serving as a negative electrode terminal.
The electrode group 2 has a structure in which four positive electrodes 3 and five negative electrodes 4 are alternately stacked with a separator 5 interposed therebetween. The outermost layer of the electrode group 2 is the negative electrode 4 and is in contact with the inner surface of the container 1. Here, the conductors 6a and 6b before being housed in the container 1 are shown in FIG. As shown in FIG. 2A, the conductors 6a and 6b
Is a leaf spring having a shape in which the center is bent in a V shape.
The conductors 6a and 6b are arranged in a compressed state between the outermost layer of the electrode group 2 and the inner surface of the container 1 so that a bending point contacts the outermost layer. The conductors 6a and 6b have the property of returning to the original shape shown in FIG. The alkaline electrolyte is contained in the container 1. A rectangular sealing plate 7 (not shown) having a hole in the center is arranged at the upper opening of the container 1. The insulating gasket 8 is formed of a synthetic resin such as nylon, for example, and is disposed between the peripheral edge of the sealing plate 7 and the inner surface of the upper opening of the container 1. The sealing plate 7 is airtightly fixed to the container 1 via the gasket 8 by caulking to reduce the diameter of the upper opening of the container 1 inward. One end of the positive electrode lead 9 is connected to the positive electrode 3, and the other end is connected to the lower surface of the sealing plate 7. The positive electrode terminal 10 is connected to the sealing plate 7.
It is attached so as to cover the hole. An elastic valve element (not shown) is disposed in a space surrounded by the sealing plate 7 and the positive electrode terminal 10 so as to close the hole.

【0011】前述した図1に示す構造を有する二次電池
に充放電が施されると、図3に示すような状態になる。
すなわち、充放電時に前記導電体6a,6bは、前述し
た図2(a)に示す形状に戻ろうとして屈曲するため、
前記電極群2が前記導電体6a,6bにより圧迫され、
前記正極3,前記負極4及び前記セパレータ5の密着性
が向上される。また、このように屈曲が生じている導電
体6a,6bは、前記容器1の内側面を押圧するため、
前記導電体6a,6bと前記容器1の内側面との密着性
が高められる。その結果、前記二次電池は、充放電時、
負極端子を兼ねる容器1と負極4との導通を良好にする
ことができる。
When the secondary battery having the structure shown in FIG. 1 is charged and discharged, the state shown in FIG. 3 is obtained.
That is, the conductors 6a and 6b are bent to return to the shape shown in FIG.
The electrode group 2 is pressed by the conductors 6a and 6b,
The adhesion between the positive electrode 3, the negative electrode 4, and the separator 5 is improved. In addition, since the conductors 6a and 6b which are bent as described above press the inner surface of the container 1,
The adhesion between the conductors 6a and 6b and the inner surface of the container 1 is improved. As a result, the secondary battery is charged and discharged,
The conduction between the container 1 also serving as the negative electrode terminal and the negative electrode 4 can be improved.

【0012】以下、前記導電体6a,6b、正極3、負
極4、セパレータ5およびアルカリ電解液について詳細
に説明する。
Hereinafter, the conductors 6a and 6b, the positive electrode 3, the negative electrode 4, the separator 5, and the alkaline electrolyte will be described in detail.

【0013】1)導電体6a,6b この導電体6a,6bは、前述した図2(a)に示され
るように中央がくの字に屈曲している形状を有し、かつ
充放電時にこの形状に復帰する性質を持つ板バネからな
る。このような導電体6a,6bは、前述した図1に示
すように、前記電極群2の最外層と前記容器1の内側面
の間に屈曲点が前記最外層と接するようにそれぞれ圧縮
状態で配置される。
1) Conductors 6a and 6b The conductors 6a and 6b have a shape in which the center is bent in a V-shape as shown in FIG. It is made of a leaf spring that has the property of returning to the normal state. As shown in FIG. 1 described above, such conductors 6a and 6b are each in a compressed state such that a bending point is in contact with the outermost layer between the outermost layer of the electrode group 2 and the inner surface of the container 1. Be placed.

【0014】この導電体は、ニッケル水素二次電池が充
放電時に発生する熱により元の形状に復帰することが好
ましい。前記導電体は、例えば、形状記憶合金、バイメ
タル、機能性高分子等から形成することができる。特
に、前記導電体としては、形状復帰の生じる温度が30
〜85℃、より好ましくは35〜75℃の範囲にあるも
のが好ましい。形状復帰の生じる温度が35〜75℃で
ある導電体は、例えば、Ti−Ni合金から形成するこ
とができる。
It is preferable that the conductor returns to its original shape by heat generated when the nickel-hydrogen secondary battery is charged and discharged. The conductor can be formed from, for example, a shape memory alloy, a bimetal, a functional polymer, or the like. In particular, as for the conductor, the temperature at which shape return occurs is 30 ° C.
Those having a temperature in the range of -85 ° C, more preferably 35-75 ° C are preferred. The conductor at which the temperature at which the shape return occurs is 35 to 75 ° C. can be formed from, for example, a Ti—Ni alloy.

【0015】前記導電体の形状としては、前述した図2
(a)で説明した形状のほかに、例えば、図2(b)に
示すような波板状や、図2(c)、(d)に示すように
ジグザグに折り曲がった形状等にすることができる。特
に、前述した図2(d)に示す形状は、容器もしくは電
極群と導電体との接触面積が増加するため、好ましい。
The shape of the conductor is as described in FIG.
In addition to the shape described in (a), for example, a corrugated plate shape as shown in FIG. 2B or a zigzag bent shape as shown in FIGS. Can be. In particular, the shape shown in FIG. 2D is preferable because the contact area between the container or the electrode group and the conductor increases.

【0016】2)正極3 この正極3は、水酸化ニッケルを含む。2) Positive electrode 3 This positive electrode 3 contains nickel hydroxide.

【0017】前記正極3は、例えば、水酸化ニッケル粉
末、導電剤及び結着剤を水の存在下で混練してペースト
を調製し、前記ペーストを導電性基板に充填した後、乾
燥し、圧延成形を施すことにより製造される。
The positive electrode 3 is prepared, for example, by kneading a nickel hydroxide powder, a conductive agent and a binder in the presence of water to prepare a paste, filling the conductive substrate with the paste, drying, and rolling. It is manufactured by performing molding.

【0018】前記水酸化ニッケル粉末としては、例え
ば、水酸化ニッケルからなる粉末、または亜鉛及びコバ
ルトが共晶された水酸化ニッケル粉末を用いることがで
きる。後者の水酸化ニッケル粉末を含む正極は高温状態
における充電効率及び充放電サイクル特性を向上させる
ことが可能になる。
As the nickel hydroxide powder, for example, a powder composed of nickel hydroxide or a nickel hydroxide powder in which zinc and cobalt are eutectic can be used. The latter positive electrode containing nickel hydroxide powder can improve charge efficiency and charge / discharge cycle characteristics in a high temperature state.

【0019】前記導電剤としては、コバルト化合物及び
金属コバルトから選ばれる少なくとも1種を用いること
ができる。前記コバルト化合物としては、例えば、一酸
化コバルト、水酸化コバルト等を挙げることができる。
また、前記導電剤を前記ペーストに添加する代わりに、
前記水酸化ニッケル粉末の表面をコバルト化合物及び金
属コバルトから選ばれる少なくとも1種で被覆し、これ
を前記ペーストに添加しても良い。
As the conductive agent, at least one selected from a cobalt compound and metallic cobalt can be used. Examples of the cobalt compound include cobalt monoxide and cobalt hydroxide.
Also, instead of adding the conductive agent to the paste,
The surface of the nickel hydroxide powder may be coated with at least one selected from a cobalt compound and metallic cobalt, and this may be added to the paste.

【0020】前記結着剤としては、例えば、ポリテトラ
フルオロエチレン(PTFE)などのフッ素系樹脂、ポ
リビニルアルコール(PVA)、ポリアクリル酸塩(例
えば、ポリアクリル酸ソーダ、ポリアクリル酸カリウ
ム)、アクリル酸とビニルアルコールとの共重合体、ア
クリル酸塩とビニルアルコールとの共重合体、水溶性セ
ルロース誘導体(例えば、メチルセルロース(MC)、
カルボキシメチルセルロース(CMC)、ヒドロキシプ
ロピルメチルセルロース(HPMC))、ポリアクリル
アミド(PA)、ポリビニルピロリドン(PVP)、ポ
リエチレンオキシド(PEO)等から選ばれる1種また
は2種以上を用いることができる。
Examples of the binder include fluorine resins such as polytetrafluoroethylene (PTFE), polyvinyl alcohol (PVA), polyacrylates (eg, sodium polyacrylate, potassium potassium acrylate), acrylic Copolymer of acid and vinyl alcohol, copolymer of acrylate and vinyl alcohol, water-soluble cellulose derivative (for example, methyl cellulose (MC),
One or more selected from carboxymethylcellulose (CMC), hydroxypropylmethylcellulose (HPMC)), polyacrylamide (PA), polyvinylpyrrolidone (PVP), polyethylene oxide (PEO) and the like can be used.

【0021】前記導電性基板としては、パンチングメタ
ル、エキスパンデッドメタルなどの二次元基板や、ビビ
リ切削振動による繊維状金属多孔体(非メッキタイ
プ)、メッキタイプであるスポンジ状金属多孔体やフェ
ルト状金属多孔体などの三次元基板を用いることができ
る。
Examples of the conductive substrate include a two-dimensional substrate such as a punching metal and an expanded metal, a fibrous metal porous body (non-plating type) by chattering vibration, a sponge-like metal porous body of a plating type, and a felt. A three-dimensional substrate such as a porous metal body can be used.

【0022】3)負極4 この負極4は、水素吸蔵合金を含む。3) Negative electrode 4 This negative electrode 4 contains a hydrogen storage alloy.

【0023】前記負極4は、例えば、水素吸蔵合金粉
末、導電材及び結着剤を純水と共に混練してペーストを
調製し、前記ペーストを導電性基板に塗工し、乾燥した
後、圧延成形することにより製造される。
The negative electrode 4 is prepared by, for example, kneading a hydrogen storage alloy powder, a conductive material and a binder together with pure water to prepare a paste, applying the paste to a conductive substrate, drying the paste, and then rolling and forming the paste. It is manufactured by doing.

【0024】前記水素吸蔵合金は、格別制限されるもの
ではなく、電解液中で電気化学的に発生させた水素を吸
蔵でき、かつ放電時にその吸蔵水素を容易に放出できる
ものであればよい。例えば、LaNi5 、MmNi
5 (MmはCe富化したミッシュメタル)、LmNi5
(LmはLa富化したミッシュメタル)、これら合金の
Niの一部をAl、Mn、Co、Ti、Cu、Zn、Z
r、Cr、Bのような元素で置換した多元素系のもの、
またはTiNi系、TiFe系のものを挙げることがで
きる。特に、一般式LmNiw Cox Mny Alz (原
子比w,x,y,zの合計値は5.00≦w+x+y+
z≦5.50である)で表される組成の水素吸蔵合金
か、または一般式ABx (但し、AはTi及び/または
Zrであり、Bは、Mn、Ni,V,Co,Cr,A
l,Fe,Cu,Mo,La,Ce,Pr及びNdから
選ばれる1種以上の元素とからなり、xは1.8≦x≦
2.5を示す)で表され、合金相の主成分がC14また
はC15のラーベス相である水素吸蔵合金を用いること
が好ましい。
The hydrogen storage alloy is not particularly limited, as long as it can store hydrogen electrochemically generated in an electrolytic solution and can easily release the stored hydrogen during discharge. For example, LaNi 5 , MmNi
5 (Mm is Misch metal enriched in Ce), LmNi 5
(Lm is La-enriched misch metal), and part of Ni of these alloys is Al, Mn, Co, Ti, Cu, Zn, Z
multi-elements substituted with elements such as r, Cr, B,
Alternatively, TiNi-based and TiFe-based materials can be used. In particular, the general formula LmNi w Co x Mn y Al z ( atomic ratio w, x, y, the total value of z is 5.00 ≦ w + x + y +
a hydrogen storage alloy having a composition represented by z ≦ 5.50) or a general formula AB x (where A is Ti and / or Zr, and B is Mn, Ni, V, Co, Cr, A
and at least one element selected from the group consisting of 1, Fe, Cu, Mo, La, Ce, Pr, and Nd, and x is 1.8 ≦ x ≦
It is preferable to use a hydrogen storage alloy represented by the following formula (2.5), wherein the main component of the alloy phase is a C14 or C15 Laves phase.

【0025】前記導電材としては、例えば、カーボンブ
ラック、黒鉛等を挙げることができる。
Examples of the conductive material include carbon black and graphite.

【0026】前記結着剤としては、前述した正極で説明
したポリマーの中から選ばれる1種または2種以上を用
いることができる。
As the binder, one or more selected from the polymers described above for the positive electrode can be used.

【0027】前記導電性基板としては、例えばパンチド
メタル、エキスパンデッドメタル、ニッケルネットなど
の二次元基板や、フェルト状金属多孔体や、スポンジ状
金属多孔体などの三次元基板を挙げることができる。
Examples of the conductive substrate include a two-dimensional substrate such as a punched metal, an expanded metal and a nickel net, and a three-dimensional substrate such as a felt-like metal porous body and a sponge-like metal porous body. it can.

【0028】4)セパレータ5 このセパレータ5としては、ポリアミド繊維製不織布
か、あるいはポリエチレンやポリプロピレンなどのポリ
オレフィン繊維製不織布に親水性官能基を付与したもの
を用いることができる。
4) Separator 5 As the separator 5, a non-woven fabric made of a polyamide fiber or a non-woven fabric made of a polyolefin fiber such as polyethylene or polypropylene provided with a hydrophilic functional group can be used.

【0029】5)アルカリ電解液 前記アルカリ電解液としては、例えば、水酸化カリウム
(KOH)単独、またはこれに水酸化ナトリウム(Na
OH)及び水酸化リチウム(LiOH)のいずれか一方
または両者を添加した組成を有する水溶液等を挙げるこ
とができる。
5) Alkaline Electrolyte As the alkaline electrolyte, for example, potassium hydroxide (KOH) alone or sodium hydroxide (Na)
OH) and lithium hydroxide (LiOH), or an aqueous solution having a composition to which both are added.

【0030】以上詳述したように本発明に係わる二次電
池は、正極と負極の間にセパレータが介在された構造を
有する電極群と、前記電極群が収納され、端子を兼ねる
容器と、前記電極群の外側の面の少なくとも一箇所と前
記容器の内側面との間に圧縮状態で配置され、充放電時
に所定の形状に復帰し、かつ弾性を有する導電体とを具
備する。前述した図1に例示されるように電極群と容器
との間に圧縮状態で配置された導電体は、充放電時に所
定の形状に戻ろうとするため、前述した図3に例示され
るように、充放電時に前記電極群を圧迫して正負極及び
セパレータの密着性を高めることができると共に、前記
容器の内側面を押圧してこの側面との密着性を向上する
ことができる。また、前記導電体は、弾性を有するた
め、充放電時の電極群の膨張・収縮に追随して変形する
ことができ、電極群の膨張・収縮反応の妨げにならな
い。その結果、前記二次電池は、充放電サイクル初期か
ら電極群において所望の緊縛度及び導電性を確保するこ
とができるため、優れた充放電特性を実現することがで
きる。充放電サイクルを繰り返すと前記電極群が次第に
収縮してゆくものの、充放電の度に前記導電体が所定の
形状に復帰しようとするため、充放電サイクルを繰り返
した際にも前記電極群は所望の緊縛度と導電性を維持す
ることができる。その結果、充放電サイクル寿命に優れ
た二次電池を実現することができる。
As described in detail above, the secondary battery according to the present invention includes an electrode group having a structure in which a separator is interposed between a positive electrode and a negative electrode, a container in which the electrode group is housed, and which also serves as a terminal; An elastic conductor is disposed between at least one of the outer surfaces of the electrode group and the inner surface of the container in a compressed state, and returns to a predetermined shape when charged and discharged, and has elasticity. The conductor arranged in a compressed state between the electrode group and the container as illustrated in FIG. 1 described above tries to return to a predetermined shape at the time of charging and discharging. In addition, the electrode group can be pressed during charging and discharging to increase the adhesion between the positive and negative electrodes and the separator, and the inner surface of the container can be pressed to improve the adhesion to the side surface. Further, since the conductor has elasticity, it can be deformed following expansion and contraction of the electrode group during charge and discharge, and does not hinder the expansion and contraction reaction of the electrode group. As a result, the secondary battery can secure a desired degree of tightness and conductivity in the electrode group from the beginning of the charge / discharge cycle, so that excellent charge / discharge characteristics can be realized. When the charge and discharge cycle is repeated, the electrode group gradually shrinks, but the conductor attempts to return to a predetermined shape each time the charge and discharge cycle is performed. Can maintain the degree of tightness and conductivity. As a result, a secondary battery having an excellent charge / discharge cycle life can be realized.

【0031】また、本発明に係る別の二次電池は、正極
と負極がセパレータを介して交互に積層されており、か
つ最外層が負極である構造を有する電極群と、前記電極
群が収納され、負極端子を兼ねる有底矩形筒状容器と、
前記電極群の最外層の少なくとも一方と前記容器の内側
面との間に配置され、充放電時に所定の形状に復帰し、
かつ弾性を有する導電体とを具備する。このような二次
電池によれば、充放電サイクル初期から長期間に亘って
前記電極群が所望の緊縛度と導電性を維持することがで
きるため、高容量を実現することができ、かつ充放電サ
イクル寿命を向上することができる。
In another secondary battery according to the present invention, an electrode group having a structure in which a positive electrode and a negative electrode are alternately stacked with a separator interposed therebetween, and the outermost layer is a negative electrode, and the electrode group is housed. And a bottomed rectangular cylindrical container also serving as a negative electrode terminal,
It is arranged between at least one of the outermost layers of the electrode group and the inner surface of the container, and returns to a predetermined shape during charge and discharge,
And an elastic conductor. According to such a secondary battery, the electrode group can maintain a desired degree of tightness and conductivity for a long period of time from the initial stage of the charge / discharge cycle. Discharge cycle life can be improved.

【0032】[0032]

【実施例】以下、本発明の実施例を前述した図面を参照
して詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings.

【0033】(実施例1) <負極の作製>組成がLmNi5.0-x-y-z Cox Mny
Alz で表される水素吸蔵合金粉末100重量部にポリ
アクリル酸ナトリウム0.5重量部、カルボキシメチル
セルロース(CMC)0.12重量部、ポリテトラフル
オロエチレンのディスパージョン(比重1.5、固形分
60重量%)を固形分換算で1.0重量部、および導電
性材料としてのカーボンブラック1.0重量部を添加
し、水30重量部と共に混合することによりペーストを
調製した。これらのペーストを導電性基板としてのパン
チドメタルに塗布、乾燥し、さらにプレスして負極を作
製した。
[0033] (Example 1) <Production of Negative Electrode> composition LmNi 5.0-xyz Co x Mn y
0.5 part by weight of sodium polyacrylate to 100 parts by weight of the hydrogen storage alloy powder represented by al z, carboxymethyl cellulose (CMC) 0.12 parts by weight, dispersion (specific gravity 1.5 of polytetrafluoroethylene solids 60 parts by weight) and 1.0 part by weight of carbon black as a conductive material were added thereto, and mixed with 30 parts by weight of water to prepare a paste. These pastes were applied to a punched metal as a conductive substrate, dried, and pressed to produce a negative electrode.

【0034】<正極の作製>水酸化ニッケル粉末90重
量部および一酸化コバルト粉末10重量部からなる混合
粉体に、カルボキシメチルセルロース(CMC)0.3
重量部、ポリテトラフルオロエチレンのディスパージョ
ン(比重1.5、固形分60重量%)を固形分換算で
0.5重量部を添加し、純水45重量部と共に混合する
ことによりペーストを調製した。つづいて、このペース
トを発泡ニッケル基板内に充填し、乾燥した後、ローラ
プレスを行って圧延することにより正極を作製した。
<Preparation of Positive Electrode> A mixed powder comprising 90 parts by weight of nickel hydroxide powder and 10 parts by weight of cobalt monoxide powder was mixed with 0.3 parts of carboxymethyl cellulose (CMC).
A paste was prepared by adding 0.5 parts by weight of a polytetrafluoroethylene dispersion (specific gravity 1.5, solid content 60% by weight) in terms of solid content and mixing with 45 parts by weight of pure water. . Subsequently, the paste was filled in a foamed nickel substrate, dried, and then rolled by roller pressing to produce a positive electrode.

【0035】ポリアミド繊維製不織布からなるセパレー
タを二つ折りにして封筒状に成型し、これに前記正極を
収納した。
A separator made of a nonwoven fabric made of polyamide fiber was folded in two and molded into an envelope, and the positive electrode was stored in the envelope.

【0036】次いで、前記負極5枚と前記セパレータ内
に収納された正極4枚とを最外層が前記負極になるよう
に交互に積層して電極群を作製した。前記電極群の最外
層に、前述した図2(a)に示す構造を有し、形状復帰
を生じる温度が40℃の形状記憶合金(Ti−Ni合
金)からなる導電体を屈曲点が前記最外層に接触するよ
うにそれぞれ配置した。このように2枚の導電体で挟ま
れた電極群を負極端子を兼ねる有底矩形筒状容器内に収
納し、2枚の導電体を前記電極群の最外層と前記容器の
内側面の間に圧縮状態で配置した。このような容器内に
7Nの水酸化カリウムおよび1Nの水酸化リチウムから
なる電解液を収容し、封口等を行うことにより前述した
図1に示す構造を有し、理論容量が650mAhである
角形ニッケル水素二次電池を組み立てた。
Next, an electrode group was prepared by alternately stacking the five negative electrodes and the four positive electrodes housed in the separator such that the outermost layer was the negative electrode. In the outermost layer of the electrode group, a conductor made of a shape memory alloy (Ti-Ni alloy) having the structure shown in FIG. Each was arranged so that it might contact an outer layer. The electrode group thus sandwiched between the two conductors is housed in a bottomed rectangular cylindrical container also serving as a negative electrode terminal, and the two conductors are placed between the outermost layer of the electrode group and the inner surface of the container. Placed in a compressed state. An electrolytic solution composed of 7N potassium hydroxide and 1N lithium hydroxide is accommodated in such a container, and the container is sealed and the like, thereby having the structure shown in FIG. 1 described above and having a theoretical capacity of 650 mAh. A hydrogen secondary battery was assembled.

【0037】(実施例2)実施例1と同様な構造の積層
電極群の最外層に、前述した図2(b)に示す構造を有
し、実施例1と同様な種類の形状記憶合金からなる導電
体をそれぞれ配置した。このように2枚の導電体で挟ま
れた電極群を負極端子を兼ねる有底矩形筒状容器内に収
納し、2枚の導電体を前記電極群の最外層と前記容器の
内側面の間に圧縮状態で配置した。このような容器内に
実施例1と同様な組成のアルカリ電解液を収容し、封口
等を行うことにより前述した図1に示す構造を有し、理
論容量が650mAhである角形ニッケル水素二次電池
を組み立てた。
(Embodiment 2) The outermost layer of the laminated electrode group having the same structure as in Embodiment 1 has the structure shown in FIG. 2B described above and is made of the same type of shape memory alloy as in Embodiment 1. Conductors were arranged. The electrode group thus sandwiched between the two conductors is housed in a bottomed rectangular cylindrical container also serving as a negative electrode terminal, and the two conductors are placed between the outermost layer of the electrode group and the inner surface of the container. Placed in a compressed state. A prismatic nickel-metal hydride secondary battery having the structure shown in FIG. 1 described above by containing an alkaline electrolyte having the same composition as in Example 1 in such a container and performing sealing or the like, and having a theoretical capacity of 650 mAh. Was assembled.

【0038】(実施例3)実施例1と同様な構造の積層
電極群の最外層に、前述した図2(c)に示す構造を有
し、実施例1と同様な種類の形状記憶合金からなる導電
体をそれぞれ配置した。このように2枚の導電体で挟ま
れた電極群を負極端子を兼ねる有底矩形筒状容器内に収
納し、2枚の導電体を前記電極群の最外層と前記容器の
内側面の間に圧縮状態で配置した。このような容器内に
実施例1と同様な組成のアルカリ電解液を収容し、封口
等を行うことにより前述した図1に示す構造を有し、理
論容量が650mAhである角形ニッケル水素二次電池
を組み立てた。
(Embodiment 3) The outermost layer of the laminated electrode group having the same structure as in Embodiment 1 has the structure shown in FIG. 2C described above, and is made of the same type of shape memory alloy as in Embodiment 1. Conductors were arranged. The electrode group thus sandwiched between the two conductors is housed in a bottomed rectangular cylindrical container also serving as a negative electrode terminal, and the two conductors are placed between the outermost layer of the electrode group and the inner surface of the container. Placed in a compressed state. A prismatic nickel-metal hydride secondary battery having the structure shown in FIG. 1 described above by containing an alkaline electrolyte having the same composition as in Example 1 in such a container and performing sealing or the like, and having a theoretical capacity of 650 mAh. Was assembled.

【0039】(実施例4)実施例1と同様な構造の積層
電極群の最外層に、前述した図2(d)に示す構造を有
し、実施例1と同様な種類の形状記憶合金からなる導電
体をそれぞれ配置した。このように2枚の導電体で挟ま
れた電極群を負極端子を兼ねる有底矩形筒状容器内に収
納し、2枚の導電体を前記電極群の最外層と前記容器の
内側面の間に圧縮状態で配置した。このような容器内に
実施例1と同様な組成のアルカリ電解液を収容し、封口
等を行うことにより前述した図1に示す構造を有し、理
論容量が650mAhである角形ニッケル水素二次電池
を組み立てた。
(Embodiment 4) The outermost layer of the laminated electrode group having the same structure as in Embodiment 1 has the structure shown in FIG. 2D described above, and is made of the same type of shape memory alloy as in Embodiment 1. Conductors were arranged. The electrode group thus sandwiched between the two conductors is housed in a bottomed rectangular cylindrical container also serving as a negative electrode terminal, and the two conductors are placed between the outermost layer of the electrode group and the inner surface of the container. Placed in a compressed state. A prismatic nickel-metal hydride secondary battery having the structure shown in FIG. 1 described above by containing an alkaline electrolyte having the same composition as in Example 1 in such a container and performing sealing or the like, and having a theoretical capacity of 650 mAh. Was assembled.

【0040】(比較例)実施例1と同様な構造の積層電
極群を負極端子を兼ねる有底矩形筒状容器内に収納した
後、実施例1と同様な組成のアルカリ電解液を収容し、
封口等を行うことにより前述した図1に示す構造を有
し、理論容量が650mAhである角形ニッケル水素二
次電池を組み立てた。
(Comparative Example) After a laminated electrode group having the same structure as in Example 1 was housed in a bottomed rectangular cylindrical container also serving as a negative electrode terminal, an alkaline electrolyte having the same composition as in Example 1 was housed.
By performing sealing and the like, a prismatic nickel-metal hydride secondary battery having the structure shown in FIG. 1 and having a theoretical capacity of 650 mAh was assembled.

【0041】得られた実施例1〜4および比較例の二次
電池について、130mAの電流で90分間充電し、3
0分放置した後、650mAの電流で終始電圧1.0V
まで放電した際の電池電圧を測定し、その結果を図4に
示す。
The obtained secondary batteries of Examples 1 to 4 and Comparative Example were charged at a current of 130 mA for 90 minutes, and charged.
After leaving it for 0 minutes, a voltage of 1.0 V throughout with a current of 650 mA
The battery voltage when the battery was discharged to the maximum was measured, and the result is shown in FIG.

【0042】図4から明らかなように、実施例1〜4の
二次電池は、比較例の二次電池に比べて放電時の電圧が
高く、かつ放電時の電池電圧の低下を抑制できることが
わかる。
As is clear from FIG. 4, the secondary batteries of Examples 1 to 4 have a higher voltage at the time of discharge than the secondary batteries of the comparative examples, and can suppress a decrease in the battery voltage at the time of discharge. Understand.

【0043】実施例1〜4および比較例の二次電池につ
いて、130mAの電流で90分間充電し、30分放置
した後、650mAの電流で終始電圧1.0Vまで放電
する充放電サイクルを繰り返し、各サイクルの放電容量
を測定し、その結果を図5に示す。
The secondary batteries of Examples 1 to 4 and Comparative Example were charged with a current of 130 mA for 90 minutes, left for 30 minutes, and then repeatedly charged and discharged with a current of 650 mA to a voltage of 1.0 V throughout. The discharge capacity in each cycle was measured, and the results are shown in FIG.

【0044】図5から明らかなように、実施例1〜4の
二次電池は、比較例の二次電池に比べて充放電サイクル
寿命が長いことがわかる。
As is apparent from FIG. 5, the secondary batteries of Examples 1 to 4 have a longer charge / discharge cycle life than the secondary batteries of the comparative example.

【0045】なお、前述した実施例では、電極群の両方
の最外層に導電体を配置したが、電極群の最外層のうち
の一方のみに導電体を配置しても良い。
In the above-described embodiment, the conductor is disposed on both outermost layers of the electrode group. However, the conductor may be disposed on only one of the outermost layers of the electrode group.

【0046】また、前述した実施例では、角形ニッケル
水素二次電池に適用した例を説明したが、円筒形ニッケ
ル水素二次電池にも同様に適用することができる。この
場合、正極と負極の間にセパレータを介し、最外周が負
極になるように渦巻き状に捲回した電極群を有底円筒状
容器内に収納し、前記電極群と前記容器の内側面(内周
面)の間に、屏風型で、かつ充放電時にもとの形状に復
帰する性質を有する板バネを圧縮状態で配置すればよ
い。
In the above-described embodiment, an example in which the present invention is applied to a prismatic nickel-metal hydride secondary battery has been described. However, the present invention can be similarly applied to a cylindrical nickel-metal hydride secondary battery. In this case, a group of electrodes wound spirally so that the outermost periphery becomes a negative electrode is accommodated in a bottomed cylindrical container with a separator interposed between the positive electrode and the negative electrode, and the electrode group and the inner surface of the container ( Between the inner peripheral surface), a leaf spring having a folding screen type and having a property of returning to the original shape at the time of charging and discharging may be arranged in a compressed state.

【0047】[0047]

【発明の効果】以上、詳述したように本発明によれば、
充放電サイクル寿命に優れる二次電池を提供することが
できる。
As described in detail above, according to the present invention,
A secondary battery having excellent charge / discharge cycle life can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる二次電池の一例(例えば、角形
アルカリ二次電池)を示す部分切欠断面図。
FIG. 1 is a partially cutaway sectional view showing an example of a secondary battery (for example, a prismatic alkaline secondary battery) according to the present invention.

【図2】図1の二次電池に組み込まれる導電体の具体例
を示す側面図。
FIG. 2 is a side view showing a specific example of a conductor incorporated in the secondary battery of FIG.

【図3】図1の二次電池の充放電時の状態を示す断面
図。
FIG. 3 is a cross-sectional view showing a state of the secondary battery of FIG. 1 during charge and discharge.

【図4】実施例1〜4及び比較例の角形ニッケル水素二
次電池における放電時間と電池電圧との関係を示す特性
図。
FIG. 4 is a characteristic diagram showing a relationship between a discharge time and a battery voltage in the prismatic nickel-metal hydride secondary batteries of Examples 1 to 4 and Comparative Example.

【図5】実施例1〜4及び比較例の角形ニッケル水素二
次電池における充放電サイクル数と放電容量との関係を
示す特性図。
FIG. 5 is a characteristic diagram showing the relationship between the number of charge / discharge cycles and the discharge capacity in the prismatic nickel-metal hydride secondary batteries of Examples 1 to 4 and Comparative Example.

【図6】従来の角形ニッケル水素二次電池を示す断面
図。
FIG. 6 is a sectional view showing a conventional prismatic nickel-metal hydride secondary battery.

【符号の説明】[Explanation of symbols]

1…容器、 2…電極群、 3…正極、 4…負極、 5…セパレータ、 6a,6b…導電体、 7…封口板、 8…絶縁ガスケット。 DESCRIPTION OF SYMBOLS 1 ... Container, 2 ... Electrode group, 3 ... Positive electrode, 4 ... Negative electrode, 5 ... Separator, 6a, 6b ... Conductor, 7 ... Sealing plate, 8 ... Insulating gasket.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極と負極の間にセパレータが介在され
た構造を有する電極群と、前記電極群が収納され、端子
を兼ねる容器と、前記電極群の外側の面の少なくとも一
箇所と前記容器の内側面との間に圧縮状態で配置され、
充放電時に所定の形状に復帰し、かつ弾性を有する導電
体とを具備することを特徴とする二次電池。
1. An electrode group having a structure in which a separator is interposed between a positive electrode and a negative electrode, a container accommodating the electrode group and also serving as a terminal, and at least one location on an outer surface of the electrode group and the container. Placed in a compressed state with the inner surface of the
A rechargeable battery comprising: a conductor that returns to a predetermined shape when charged and discharged and has elasticity.
【請求項2】 正極と負極がセパレータを介して交互に
積層されており、かつ最外層が負極である構造を有する
電極群と、前記電極群が収納され、負極端子を兼ねる有
底矩形筒状容器と、前記電極群の最外層の少なくとも一
方と前記容器の内側面との間に配置され、充放電時に所
定の形状に復帰し、かつ弾性を有する導電体とを具備す
ることを特徴とする二次電池。
2. An electrode group having a structure in which a positive electrode and a negative electrode are alternately laminated with a separator interposed therebetween, and the outermost layer is a negative electrode, and a bottomed rectangular tubular housing the electrode group and serving also as a negative electrode terminal. A container, which is disposed between at least one of the outermost layers of the electrode group and the inner surface of the container, returns to a predetermined shape at the time of charging and discharging, and includes an elastic conductor. Rechargeable battery.
JP10259664A 1998-09-14 1998-09-14 Secondary battery Pending JP2000090903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10259664A JP2000090903A (en) 1998-09-14 1998-09-14 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10259664A JP2000090903A (en) 1998-09-14 1998-09-14 Secondary battery

Publications (1)

Publication Number Publication Date
JP2000090903A true JP2000090903A (en) 2000-03-31

Family

ID=17337195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10259664A Pending JP2000090903A (en) 1998-09-14 1998-09-14 Secondary battery

Country Status (1)

Country Link
JP (1) JP2000090903A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027027A (en) * 2005-07-21 2007-02-01 Sony Corp Battery
KR100776522B1 (en) * 2000-06-22 2007-11-16 소니 가부시끼 가이샤 Non-aqueous electrolyte secondary cell
JP2008529239A (en) * 2005-01-28 2008-07-31 エバレデイ バツテリ カンパニー インコーポレーテツド Electrochemical cell with improved internal contact
JP2011000359A (en) * 2009-06-22 2011-01-06 Sun Wave Corp Article holder
JP2011216398A (en) * 2010-04-01 2011-10-27 Hitachi Vehicle Energy Ltd Secondary battery and method for manufacturing the same
JP2012099476A (en) * 2010-11-03 2012-05-24 Sb Limotive Co Ltd Rechargeable battery
WO2013012084A1 (en) * 2011-07-20 2013-01-24 株式会社Gsユアサ Cylindrically shaped battery
WO2013012085A1 (en) * 2011-07-20 2013-01-24 株式会社Gsユアサ Cylindrically shaped battery
JP2013037996A (en) * 2011-08-10 2013-02-21 Mitsubishi Heavy Ind Ltd Battery
KR101309151B1 (en) * 2010-10-08 2013-09-17 로베르트 보쉬 게엠베하 Secondary battery
JP2014137971A (en) * 2013-01-18 2014-07-28 Toyota Industries Corp Electricity storage device and method for manufacturing the same
CN104112874A (en) * 2014-06-18 2014-10-22 河南创力新能源科技有限公司 Square nickel secondary cell and preparation method thereof
JP2015008090A (en) * 2013-06-25 2015-01-15 株式会社Gsユアサ Battery
US9647246B2 (en) 2012-07-31 2017-05-09 Gs Yuasa International Ltd. Battery
WO2018080285A1 (en) * 2016-10-31 2018-05-03 주식회사 엘지화학 Battery cell having structure for preventing swelling
EP4191759A1 (en) 2021-12-06 2023-06-07 Toyota Jidosha Kabushiki Kaisha Secondary battery

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100776522B1 (en) * 2000-06-22 2007-11-16 소니 가부시끼 가이샤 Non-aqueous electrolyte secondary cell
JP2008529239A (en) * 2005-01-28 2008-07-31 エバレデイ バツテリ カンパニー インコーポレーテツド Electrochemical cell with improved internal contact
JP2007027027A (en) * 2005-07-21 2007-02-01 Sony Corp Battery
JP2011000359A (en) * 2009-06-22 2011-01-06 Sun Wave Corp Article holder
JP2011216398A (en) * 2010-04-01 2011-10-27 Hitachi Vehicle Energy Ltd Secondary battery and method for manufacturing the same
KR101309151B1 (en) * 2010-10-08 2013-09-17 로베르트 보쉬 게엠베하 Secondary battery
US9343772B2 (en) 2010-10-08 2016-05-17 Samsung Sdi Co., Ltd. Rechargeable battery
JP2012099476A (en) * 2010-11-03 2012-05-24 Sb Limotive Co Ltd Rechargeable battery
US8852798B2 (en) 2010-11-03 2014-10-07 Samsung Sdi Co., Ltd. Rechargeable battery including elastic member comprising tapering wall
EP2736096A4 (en) * 2011-07-20 2015-08-12 Gs Yuasa Int Ltd Cylindrically shaped battery
US9722215B2 (en) 2011-07-20 2017-08-01 Gs Yuasa International Ltd. Cylindrical battery
CN103688389A (en) * 2011-07-20 2014-03-26 株式会社杰士汤浅国际 Cylindrically shaped battery
CN103650205A (en) * 2011-07-20 2014-03-19 株式会社杰士汤浅国际 Cylindrically shaped battery
US9379363B2 (en) 2011-07-20 2016-06-28 Gs Yuasa International, Ltd. Cylindrical battery
WO2013012084A1 (en) * 2011-07-20 2013-01-24 株式会社Gsユアサ Cylindrically shaped battery
WO2013012085A1 (en) * 2011-07-20 2013-01-24 株式会社Gsユアサ Cylindrically shaped battery
JPWO2013012085A1 (en) * 2011-07-20 2015-02-23 株式会社Gsユアサ Cylindrical battery
JPWO2013012084A1 (en) * 2011-07-20 2015-02-23 株式会社Gsユアサ Cylindrical battery
JP2013037996A (en) * 2011-08-10 2013-02-21 Mitsubishi Heavy Ind Ltd Battery
US9647246B2 (en) 2012-07-31 2017-05-09 Gs Yuasa International Ltd. Battery
JP2014137971A (en) * 2013-01-18 2014-07-28 Toyota Industries Corp Electricity storage device and method for manufacturing the same
JP2015008090A (en) * 2013-06-25 2015-01-15 株式会社Gsユアサ Battery
CN104112874A (en) * 2014-06-18 2014-10-22 河南创力新能源科技有限公司 Square nickel secondary cell and preparation method thereof
WO2018080285A1 (en) * 2016-10-31 2018-05-03 주식회사 엘지화학 Battery cell having structure for preventing swelling
US11695161B2 (en) 2016-10-31 2023-07-04 Lg Energy Solution, Ltd. Battery cell having structure for prevention of swelling
EP4191759A1 (en) 2021-12-06 2023-06-07 Toyota Jidosha Kabushiki Kaisha Secondary battery

Similar Documents

Publication Publication Date Title
JP2000090903A (en) Secondary battery
JP2002298906A (en) Nickel-hydrogen secondary battery
JPH11162468A (en) Alkaline secondary battery
JP2003045480A (en) ThIN NICKEL - HYDROGEN SECONDARY BATTERY, HYBRID CAR AND ELECTRIC VEHICLE
JP3567021B2 (en) Alkaline secondary battery
JP3352338B2 (en) Manufacturing method of alkaline storage battery
JP2000200612A (en) Rectangular alkaline secondary battery
JP3392700B2 (en) Alkaline secondary battery
JPH11354124A (en) Alkaline secondary battery
JP2001223000A (en) Alkaline secondary battery
JP2001006723A (en) Alkaline secondary battery and manufacture of alkaline secondary battery
JP3387763B2 (en) Manufacturing method of alkaline storage battery
JPH11288734A (en) Alkaline secondary battery
JP2001068145A (en) Rectangular alkaline secondary battery
JP3410340B2 (en) Prismatic alkaline secondary battery
JPH11297353A (en) Manufacture of nickel-hydrogen secondary battery
JPH103928A (en) Nickel-hydrogen secondary battery
JPH1040950A (en) Alkaline secondary battery
JP2000012073A (en) Manufacture of nickel-hydrogen secondary battery
JP2001307764A (en) Alkaline secondary battery and its production
JP2004031140A (en) Square alkaline secondary battery
JP2000113901A (en) Alkaline secondary battery
JP2002279941A (en) Rectangular battery
JPH10233229A (en) Manufacture of alkaline storage battery
JP2000268825A (en) Alkaline secondary battery