JPH0421704A - Method for sintering green compact of titanium alloy powder - Google Patents

Method for sintering green compact of titanium alloy powder

Info

Publication number
JPH0421704A
JPH0421704A JP12495290A JP12495290A JPH0421704A JP H0421704 A JPH0421704 A JP H0421704A JP 12495290 A JP12495290 A JP 12495290A JP 12495290 A JP12495290 A JP 12495290A JP H0421704 A JPH0421704 A JP H0421704A
Authority
JP
Japan
Prior art keywords
powder
green compact
titanium
sintering
titanium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12495290A
Other languages
Japanese (ja)
Inventor
Osamu Takeuchi
修 竹内
Hidenori Tajima
田島 秀紀
Yuji Kondo
今藤 雄治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP12495290A priority Critical patent/JPH0421704A/en
Publication of JPH0421704A publication Critical patent/JPH0421704A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To prevent deformation and to sinter a green compact of titanium alloy powder by charging the green compact of metal powder consisting of titanium and this alloy component into a heat resistant box body, packing the surroundings with CaO or ZnO2 powder and sintering it in a vacuum heating furnace. CONSTITUTION:The metal powder having titanium and this alloy component is pressed and compacted. The obtd. powder green compact 10 is housed in the heat resistant box body 11 made of Mo, etc. Successively, the surroundings of this green compact 10 are packed with CaO or ZrO2 powder 12. Particle size of this powder 12 is desirable to be about 32-150 mesh. Successively, these are charged into the vacuum heating furnace and heated up to about 1200 deg.C to sinter the above green compact 10. By this method, the titanium alloy sintered body with reduced variation of size without deformation of bending, etc., is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はチタン合金の粉末成形体の焼結方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for sintering a titanium alloy powder compact.

[従来の技術とその課題] 高密度の焼結密度を有する焼結チタン合金を製造するた
め、種々の技術が開発されている0通常のプレス成形を
行う場合の工程は、チタン合金粉末の調整、金型潤滑剤
の混合、プレス成形、脱脂、焼結である。
[Conventional technologies and their problems] Various technologies have been developed to produce sintered titanium alloys with high sintered density.The process of normal press forming is to prepare titanium alloy powder. , mold lubricant mixing, press molding, degreasing, and sintering.

混合粉末をプレスして成形された成形体を焼結する場合
、該成形体は真空加熱炉内に入れるなめ、金属板または
セラミックス板に載置される。
When sintering a molded body formed by pressing a mixed powder, the molded body is placed on a metal plate or a ceramic plate in order to be placed in a vacuum heating furnace.

成形体を載置する前記金属板またはセラミックス板は、
多数回の使用によって、熱サイクルを受け、板の変形ま
たは、割れが生じる。したがって、前記成形体の荷重は
変形された前記金属板またはセラミックス板によって、
点接触または部分的な接触によって支持される場合があ
る。こうした場合、前記成形体が真空加熱炉内で加熱さ
れ、高温になると変形し易くなる。前記成形体が長尺も
のである場合、特にこの傾向が強くなる。
The metal plate or ceramic plate on which the molded body is placed is
After multiple uses, the board undergoes thermal cycling, causing deformation or cracking of the board. Therefore, the load on the molded body is transferred by the deformed metal plate or ceramic plate.
It may be supported by point or partial contact. In such a case, the molded body is heated in a vacuum heating furnace and becomes easily deformed when the temperature reaches a high temperature. This tendency is particularly strong when the molded body is long.

本発明はかかる事情に鑑みてなされたもので、成形体の
焼結中に変形する虞のないチタン合金の粉末成形体の焼
結方法を提供しようとするものである。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method for sintering a powder compact of a titanium alloy without the risk of deformation during sintering of the compact.

[!I題を解決するための手段、作用]本発明によるチ
タン合金の粉末成形体の焼結方法は、チタンおよび合金
成分の金属粉末を含む粉末成形体を耐熱製の箱体に入れ
て、周囲をCaOまたはZrO2の粉末で充填し、真空
加熱炉内で焼結することを特徴とする。
[! Means and operation for solving problem I] In the method of sintering a titanium alloy powder compact according to the present invention, a powder compact containing titanium and metal powder as an alloy component is placed in a heat-resistant box, and the surrounding area is It is characterized by being filled with CaO or ZrO2 powder and sintered in a vacuum heating furnace.

成形体は、チタンと反応しないCa−0まなはZrO2
の粉末で周囲を囲われ、直接荷重を支持される金属板、
またはセラミックス板と接触していないしたがって、前
記成形体はCaOまたはZrO2の粉末を通して荷重を
支持されるので、点接触または部分的な接触による支持
がなく、また、成形体の表面温度分布は一様で、大きな
熱歪みをうける虞がない、したがって、成形体の焼結中
の変形の虞は著しく低減される。
The molded body is made of Ca-0 mana ZrO2 that does not react with titanium.
metal plate surrounded by powder and directly supporting the load,
Therefore, since the compact is supported by the load through the CaO or ZrO2 powder, there is no point contact or partial contact support, and the surface temperature distribution of the compact is uniform. Therefore, the risk of deformation of the molded body during sintering is significantly reduced.

[実施例〕 添付の図面を参照しながら本発明の実施例について詳細
に説明する。第1図は本発明の実施例において、箱体に
入れられた成形体の縦断面図である0図中、10は成形
体、11は箱体、12はCaOの粉末である。
[Examples] Examples of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a longitudinal sectional view of a molded body placed in a box in an embodiment of the present invention. In FIG. 0, 10 is a molded body, 11 is a box, and 12 is CaO powder.

前記箱体11は真空加熱炉に入れられて焼結される。前
記粉体の粒度は32メツシユ乃至150メツシユとする
。150メツシユ以下の細かい粒子である場合、粉体の
装入、焼結体からの除去に際して粉体が錦上がる等、粉
体のハンドリングに際して問題がある。また、32メツ
シユ以上の大きい粒度である場合には、焼結体が安定せ
ず昇温中に粉体との熱膨張率の差もあって、焼結体が動
いて焼結体の温度分布が変わり品質にバラツキを生じる
虞がある。
The box 11 is placed in a vacuum heating furnace and sintered. The particle size of the powder is 32 mesh to 150 mesh. If the particles are fine particles of 150 mesh or less, there will be problems in handling the powder, such as the powder clumping up during charging and removal from the sintered body. In addition, if the particle size is large (32 meshes or more), the sintered body will not be stable and there will be a difference in thermal expansion coefficient with the powder during temperature rise, causing the sintered body to move and cause temperature distribution in the sintered body. There is a risk that the quality may vary due to changes in the quality.

本実施例では、前記粉体12はCaOまたはZrO2と
しているのは、チタンと反応し難く、比較的入手しやす
いものと考えられるためである。
In this embodiment, the powder 12 is CaO or ZrO2 because it is considered to be less likely to react with titanium and relatively easy to obtain.

箱体11の材料としては、本実施例ではMOが使用され
ている0MOは耐熱性に優れ、周囲の材料と反応せず、
高温で安定した性質をもっている。
In this embodiment, MO is used as the material for the box 11. 0MO has excellent heat resistance, does not react with surrounding materials,
It has stable properties at high temperatures.

第1表に本実施例による成形体の変形試験の結果を示す
、試験条件は次の通りである。焼結する試験片の材料は
、Ti−6AI−4Vである。形状は略長方形で、長さ
、幅、高さをそれぞれで、W、Hで表して、150m園
(、Q)X20m■(w) X 20+am(H)であ
る、′iた焼結条件は1200°CX2Hr、真空度が
1O−4Torrで行った。 第1表で収縮率は、(#
!結体寸法/成形体寸法)を表す。
Table 1 shows the results of the deformation test of the molded body according to this example, and the test conditions are as follows. The material of the test piece to be sintered is Ti-6AI-4V. The shape is approximately rectangular, and the length, width, and height are represented by W and H, respectively, and are 150 m (, Q) x 20 m (w) x 20 + am (H), and the sintering conditions are as follows. The test was carried out at 1200°C for 2 hours and at a vacuum degree of 1O-4 Torr. In Table 1, the shrinkage rate is (#
! (solid size/molded body size).

CaOまたはZrO2の粉末を箱体に充填した場合は、
曲がり、そりなどの変形が無く、また、前記粉体の充填
を行わない場合に比較して、焼結前後の長さ、幅および
高さの寸法変化および収縮率は一様である。
If the box is filled with CaO or ZrO2 powder,
There is no deformation such as bending or warping, and dimensional changes in length, width, and height and shrinkage rate before and after sintering are uniform compared to the case where the powder is not filled.

[発明の効果] 本発明のチタン粉末成形体の焼結方法によれば、前記成
形体をの周囲をCaOまたはZrO2の粉末で充填して
焼結を行うので、焼結体の曲がり等の変形がなく、寸法
の変化も低減される。
[Effects of the Invention] According to the method for sintering a titanium powder compact of the present invention, since the periphery of the compact is filled with CaO or ZrO2 powder and sintered, deformation such as bending of the sintered body is prevented. dimensional changes are also reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本実施例において、真空加熱炉に装入される成
形体、箱体を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing a molded body and a box body to be charged into a vacuum heating furnace in this embodiment.

Claims (1)

【特許請求の範囲】[Claims] チタン合金の粉末成形体の焼結方法において、チタンお
よび合金成分の金属粉末を含む粉末成形体を耐熱製の箱
体に入れて、周囲をCaOまたはZrO_2の粉末で充
填し、真空加熱炉中で焼結することを特徴とするチタン
合金粉末の成形体の焼結方法。
In a method for sintering a titanium alloy powder compact, a powder compact containing titanium and metal powder as an alloy component is placed in a heat-resistant box, the surrounding area is filled with CaO or ZrO_2 powder, and the powder compact is placed in a vacuum heating furnace. A method for sintering a compact of titanium alloy powder, characterized by sintering it.
JP12495290A 1990-05-15 1990-05-15 Method for sintering green compact of titanium alloy powder Pending JPH0421704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12495290A JPH0421704A (en) 1990-05-15 1990-05-15 Method for sintering green compact of titanium alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12495290A JPH0421704A (en) 1990-05-15 1990-05-15 Method for sintering green compact of titanium alloy powder

Publications (1)

Publication Number Publication Date
JPH0421704A true JPH0421704A (en) 1992-01-24

Family

ID=14898276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12495290A Pending JPH0421704A (en) 1990-05-15 1990-05-15 Method for sintering green compact of titanium alloy powder

Country Status (1)

Country Link
JP (1) JPH0421704A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06330105A (en) * 1993-05-18 1994-11-29 Kawasaki Steel Corp Production of ti or ti alloy sintered compact
EP0868890A2 (en) * 1997-04-04 1998-10-07 Injex Corporation Abutment tooth model and method of manufacturing a prosthetic restoration to be formed thereon
CN105562686A (en) * 2016-02-19 2016-05-11 宁波恒普真空技术有限公司 Metal thermal field vacuum degreasing sintering furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06330105A (en) * 1993-05-18 1994-11-29 Kawasaki Steel Corp Production of ti or ti alloy sintered compact
EP0868890A2 (en) * 1997-04-04 1998-10-07 Injex Corporation Abutment tooth model and method of manufacturing a prosthetic restoration to be formed thereon
EP0868890A3 (en) * 1997-04-04 2001-11-14 Injex Corporation Abutment tooth model and method of manufacturing a prosthetic restoration to be formed thereon
CN105562686A (en) * 2016-02-19 2016-05-11 宁波恒普真空技术有限公司 Metal thermal field vacuum degreasing sintering furnace

Similar Documents

Publication Publication Date Title
US4240780A (en) Equipment for sintering under pressure
JPH07164196A (en) Preparation of japanese horse-chestnut
JPH0421704A (en) Method for sintering green compact of titanium alloy powder
US5174952A (en) Process for the powder-metallurgical production of a workpiece
JPH0328348A (en) Ceramic/metal composite
US3249662A (en) Method of manufacturing ceramic articles by sintering preformed bodies and ceramic articles thus manufactured
JP3863591B2 (en) Method for producing sintered metal powder
JPH0770610A (en) Method for sintering injection-molded product
JP5002087B2 (en) CHROMIA SINTERED BODY AND ITS MANUFACTURING METHOD
CA2371319A1 (en) Method for connecting a sintered body to a metallic support element
JPH0323272A (en) Production of powder compact
EP0065822A1 (en) Pressure-formed barium sulfate reflectors
JPS596882B2 (en) Method for manufacturing complex-shaped products using hot isostatic pressing
JPS62227703A (en) Method of molding ceramics
JPH07278608A (en) Method for preventing deformation of sintered compact
JPS60224702A (en) Production of sintered metallic body
JPH01281392A (en) Furnace body
JP3156171B2 (en) Method for sintering ZrO2 compact
JP3878316B2 (en) Method for producing metal molded body
JPH0421572A (en) Degreasing method for powder injection molded product
JP3471858B2 (en) Manufacturing method of metal sintered member
JPH05195017A (en) Production of high-density iron-base metal powder sintered compact with deformation reduced in sintering
JP2001247904A (en) Method for producing metallic sintered product
JPS58182883A (en) Manufacture of high density piezoelectric ceramics
JPS63247588A (en) High-temperature heat-insulating structure