JPS63247588A - High-temperature heat-insulating structure - Google Patents

High-temperature heat-insulating structure

Info

Publication number
JPS63247588A
JPS63247588A JP8126387A JP8126387A JPS63247588A JP S63247588 A JPS63247588 A JP S63247588A JP 8126387 A JP8126387 A JP 8126387A JP 8126387 A JP8126387 A JP 8126387A JP S63247588 A JPS63247588 A JP S63247588A
Authority
JP
Japan
Prior art keywords
carbon
hollow
heat
hollow container
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8126387A
Other languages
Japanese (ja)
Inventor
高橋 祥介
和広 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP8126387A priority Critical patent/JPS63247588A/en
Publication of JPS63247588A publication Critical patent/JPS63247588A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高温断熱構造に関し、更に詳しくは、100
0〜3000℃の高温かつ不活性ガスまたは真空雰囲気
下で優れた断熱性能を有する高温断熱構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high temperature insulation structure, and more specifically,
The present invention relates to a high-temperature insulation structure having excellent insulation performance at high temperatures of 0 to 3000°C and under an inert gas or vacuum atmosphere.

〔従来の技術〕[Conventional technology]

従来、1000〜3000℃の高温かつ不活性ガスまた
は真空雰囲気下における断熱材は炭素系断熱材が用いら
れており、その中でも炭素繊維をフェルト状にして積層
し、さらに所望の形に成型したものは高温真空炉などに
よく用いられている。また、タングステン、モリブデン
などの高融点金属もコイル状に巻いて熱遮蔽板として高
温真空ホットプレスなどに用いられている。
Conventionally, carbon-based insulation materials have been used as insulation materials at high temperatures of 1000 to 3000°C and in an inert gas or vacuum atmosphere. Among these, carbon fibers are laminated in the form of felt and then molded into the desired shape. is often used in high-temperature vacuum furnaces. In addition, high-melting point metals such as tungsten and molybdenum are also wound into coils and used as heat shielding plates in high-temperature vacuum hot presses and the like.

第2図に従来から用いられているHIP(HotIso
static Press) (熱間等方圧成型、以下
HIPという)装置の一例を示している。第2図では、
4は発熱体、5は加圧部、6は成型用サンプル、7は断
熱壁、8は熱遮蔽コイルである。
Figure 2 shows HIP (HotIso), which has been used conventionally.
An example of a static press (hot isostatic press, hereinafter referred to as HIP) device is shown. In Figure 2,
4 is a heating element, 5 is a pressurizing part, 6 is a sample for molding, 7 is a heat insulating wall, and 8 is a heat shielding coil.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した炭素繊維成型体は取扱い易さの点では優れてい
るが、毛羽立ちが多く短繊維となって飛散するので雰囲
気や被処理物を汚染し易いという難点がある。
Although the above-mentioned carbon fiber molded product is excellent in terms of ease of handling, it has a drawback in that it has a lot of fuzz and becomes short fibers that are scattered and easily contaminate the atmosphere and the object to be treated.

また、成型に多くの工程を必要とし高価となるほか高融
点金属板での遮蔽は、熱輻射はある程度防ぐことができ
るが対流による熱伝導は防ぐことができないという問題
がある。
In addition, it requires many molding steps and is expensive, and shielding with a high melting point metal plate can prevent heat radiation to a certain extent, but it cannot prevent heat conduction by convection.

さらに、炭素微小中空体をバインダで成型し、加熱炭化
して得たカーボンフオームも断熱材として使用されてい
るが、大型成型品や任意形状の成型品の製造が技術的に
困難であり、かつ高価である。
Furthermore, carbon foam obtained by molding carbon micro hollow bodies with a binder and heating and carbonizing them is also used as a heat insulating material, but it is technically difficult to manufacture large molded products or molded products of arbitrary shapes, and It's expensive.

従来のHIP装置の例では、第2図に示すように熱遮蔽
コイル8は断熱特性が不十分であり、熱流の一部を遮蔽
するに過ず、従って、熱遮蔽コイル8の外側をさらに断
熱壁7で断熱する必要があった。
In the example of a conventional HIP device, as shown in FIG. 2, the heat shielding coil 8 has insufficient insulation properties and only blocks part of the heat flow, so the outside of the heat shielding coil 8 is further insulated. It was necessary to insulate it with wall 7.

本発明は上述の問題点を解決するために提案されたもの
であり、以下に要約したような性質を有する高温断熱構
造を提供することを目的とするものである。
The present invention has been proposed in order to solve the above-mentioned problems, and it is an object of the present invention to provide a high-temperature heat insulating structure having the properties summarized below.

■ダストが発生しにくい。■Dust is less likely to be generated.

■炭素微小中空体のままでは形状が維持できないので自
立型とする。
■Since the shape cannot be maintained as a carbon micro hollow body, it is made into a self-supporting type.

■低熱伝導性とする。■Low thermal conductivity.

■カーボンフオームにせず炭素微小中空体を粒状のまま
用い優れた断熱性を保有させる。
■Using fine hollow carbon particles in their granular form without converting them into carbon foam provides excellent heat insulation properties.

■簡便で取扱い易い。■Simple and easy to handle.

■加工性、施工性が優れている。■Excellent workability and workability.

■高温(1000〜3000℃)に耐える。■Withstands high temperatures (1000-3000℃).

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上述の問題点を解決するものであり、1000
℃以上、3000℃以下の高温下の不活性ガスまたは真
空雰囲気下で使用する高温断熱構造に適用され次の技術
手段を採った。すなわち、1000℃以上でかつ使用温
度より高い融点を持つ金属(タングステン、モリブデン
、チタン、ニッケル、クロム、鉄、コバルト、銅、イリ
ジウム、オスミウム、ニオビウム、タンタルなどおよび
これらの合金)、セラミックス、炭素(黒鉛を含む)、
硼素、C/Cコンポジットなどからなる板でそれぞれ底
面、側面、上面を形成した中空容器の中空部に炭素微小
中空体を充填した。
The present invention solves the above-mentioned problems and has 1000
The following technical measures were applied to high-temperature insulation structures used in inert gas or vacuum atmospheres at high temperatures between 3000°C and above. In other words, metals (tungsten, molybdenum, titanium, nickel, chromium, iron, cobalt, copper, iridium, osmium, niobium, tantalum, etc. and their alloys), ceramics, and carbon (such as tungsten, molybdenum, titanium, nickel, chromium, iron, cobalt, copper, iridium, osmium, niobium, tantalum, etc., and alloys thereof), which have a melting point of 1000°C or higher and higher than the operating temperature. (contains graphite),
The hollow part of a hollow container whose bottom, side, and top surfaces were formed with plates made of boron, C/C composite, etc., was filled with carbon microhollow bodies.

なお、中空容器の材質として、1000℃以上でかつ使
用温度より高い融点を持つ金属を使用したのは、任意形
状の容器を容易に造ることができるからである。
Note that the reason why a metal having a melting point of 1000° C. or higher and higher than the operating temperature was used as the material for the hollow container is that a container of any shape can be easily manufactured.

〔作用〕[Effect]

本発明の高温断熱構造は、耐熱性材料で構成された中空
容器に充填した炭素微小中空体が熱伝導を妨げ良好な断
熱作用を果すことができる。また、炭素微小中空体をバ
インダなどで成型してカーボンフオームとしないので製
造コストを軽減することができる。
In the high-temperature insulation structure of the present invention, the carbon micro hollow bodies filled in the hollow container made of a heat-resistant material prevent heat conduction and can achieve a good insulation effect. Further, since the carbon micro hollow bodies are not molded with a binder or the like to form carbon foam, manufacturing costs can be reduced.

〔実施例〕〔Example〕

第1図は本発明に基づく中空容器1を中空円筒としてH
IP装芒に適用した例である。laは上部蓋、2はクッ
ション材、3は炭素微小中空体、4は発熱体、5は加圧
部、6は成型品である。
FIG. 1 shows a hollow container 1 according to the present invention as a hollow cylinder.
This is an example applied to IP awning. la is an upper lid, 2 is a cushioning material, 3 is a carbon micro hollow body, 4 is a heating element, 5 is a pressurizing part, and 6 is a molded product.

第2図に示す従来例とは異なり、中空容器1のみで優れ
た断熱壁を兼ねることができる。
Unlike the conventional example shown in FIG. 2, the hollow container 1 alone can serve as an excellent heat insulating wall.

第1図は本発明の一例示に過ぎず、形状は使用部位と使
用方法によって任意に構成することができる0例えば、
炉壁の平面部であれば、立方体や直方体の中空容器に炭
素微小中空体を充填し、適宜止め具で炉壁に固定すれば
断熱性のよい炉壁を構築することができる。また、飛行
体の機体を高熱から保護する断熱材として使用するには
、機体の形状に合せた金属の中空成型体に炭素微小中空
体を充填して固定すればよい6例えば、大気圏突入時の
ような短時間の高熱下では外殻をなす高融点金属が溶融
しないという条件下で断熱材として使用可能である。
FIG. 1 is only one example of the present invention, and the shape can be arbitrarily configured depending on the site and method of use. For example,
In the case of a flat part of the furnace wall, a furnace wall with good heat insulation can be constructed by filling a cubic or rectangular parallelepiped hollow container with carbon micro hollow bodies and fixing it to the furnace wall with appropriate fasteners. In addition, in order to use it as a heat insulating material to protect the fuselage of an aircraft from high heat, carbon micro hollow bodies can be filled and fixed in a metal hollow molded body that matches the shape of the aircraft6.For example, when entering the atmosphere, It can be used as a heat insulating material under the condition that the high melting point metal forming the outer shell does not melt under such short-term high heat conditions.

本発明の炭素微小中空体を中空容器に充填する手段は従
来のカーボンフオームに比べ熱伝導率は約1/3になり
、断熱性が向上する。
The means for filling a hollow container with the carbon microhollow bodies of the present invention has a thermal conductivity that is approximately 1/3 that of conventional carbon foam, and the heat insulation properties are improved.

なお、本発明に使用した炭素微小中空体は、本出願人が
特開昭61−14110号公報で提案した製造方法によ
って製造したものである。
The carbon microhollow bodies used in the present invention were manufactured by the manufacturing method proposed by the applicant in Japanese Patent Application Laid-open No. 14110/1983.

〔発明の効果〕 本発明は次のような優れた効果を奏する。〔Effect of the invention〕 The present invention has the following excellent effects.

■炭素微小中空体をカーボンフオームにせず粒状のまま
用いているため、断熱性のよい高温断熱構造を極めて安
価で提供することができる。
■Since the carbon micro hollow bodies are used in granular form without being converted into carbon foam, a high temperature insulation structure with good insulation properties can be provided at an extremely low cost.

■中空容器の形状や固定具の工夫により応用範囲の広い
多彩な断熱施工が可能となる。
■A variety of insulation constructions with a wide range of applications are possible by changing the shape of the hollow container and the fixings.

■ダストの発生が殆どなく、かつ吸湿性の低い高温断熱
構造が得られ炭素繊維成型体の持つ欠点をカバーするこ
とができる。
(2) A high-temperature insulation structure with almost no dust generation and low hygroscopicity can be obtained, making it possible to overcome the drawbacks of carbon fiber molded bodies.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明をHIP装置に適用したものであり、第
1図(a)は縦断面図、第1図(b)t4横断面図、第
2図は従来のHIP装置を示し第2図(a)は縦断面図
、第2図(b)は横断面図である。 l・・・中空容器    1a・・・上部蓋2・・・ク
ッション材  3・・・炭素微小中空体4・・・発熱体
     5・・・加圧部6・・・成型用サンプル 7
・・・断8壁8・・・熱遮蔽コイル
Figure 1 shows the application of the present invention to a HIP device, where Figure 1 (a) is a longitudinal sectional view, Figure 1 (b) is a t4 cross sectional view, and Figure 2 shows a conventional HIP device. FIG. 2(a) is a longitudinal cross-sectional view, and FIG. 2(b) is a cross-sectional view. l...Hollow container 1a...Top lid 2...Cushion material 3...Carbon micro hollow body 4...Heating element 5...Pressure part 6...Molding sample 7
... Section 8 Wall 8 ... Heat shielding coil

Claims (1)

【特許請求の範囲】 1 1000℃以上、3000℃以下の高温下の不活性
ガスまたは真空雰囲気下で使用する高温断熱構造におい
て、 外殻を形成する中空容器と、該中空容器に充填された炭
素微小中空体とからなることを特徴とする高温断熱構造
。 2 中空容器の材質が融点1000℃以上の金属である
特許請求の範囲第1項に記載の高温断熱構造。
[Claims] 1. A high-temperature insulation structure used in an inert gas or vacuum atmosphere at a high temperature of 1000°C or higher and 3000°C or lower, comprising: a hollow container forming an outer shell; and carbon filled in the hollow container. A high-temperature insulation structure characterized by consisting of micro hollow bodies. 2. The high-temperature insulation structure according to claim 1, wherein the material of the hollow container is a metal with a melting point of 1000° C. or higher.
JP8126387A 1987-04-03 1987-04-03 High-temperature heat-insulating structure Pending JPS63247588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8126387A JPS63247588A (en) 1987-04-03 1987-04-03 High-temperature heat-insulating structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8126387A JPS63247588A (en) 1987-04-03 1987-04-03 High-temperature heat-insulating structure

Publications (1)

Publication Number Publication Date
JPS63247588A true JPS63247588A (en) 1988-10-14

Family

ID=13741474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8126387A Pending JPS63247588A (en) 1987-04-03 1987-04-03 High-temperature heat-insulating structure

Country Status (1)

Country Link
JP (1) JPS63247588A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0889012A1 (en) * 1997-07-01 1999-01-07 Daimler-Benz Aktiengesellschaft Process for filling cavities in workpieces or semi-finished products and components for mounting in a vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0889012A1 (en) * 1997-07-01 1999-01-07 Daimler-Benz Aktiengesellschaft Process for filling cavities in workpieces or semi-finished products and components for mounting in a vehicle

Similar Documents

Publication Publication Date Title
JPS5829129Y2 (en) Multilayer molded insulation material for vacuum furnaces
IT9020763A1 (en) METHOD FOR FORMING SINTERED PRODUCTS
IT9020673A1 (en) METHOD FOR FORMING SINTERED PRODUCTS
US4789506A (en) Method of producing tubular ceramic articles
ITMI991840A1 (en) METAL MATRIX COMPOSITE ELEMENT MMC
US4240780A (en) Equipment for sintering under pressure
EP0164830A2 (en) Reaction bonded carbide, nitride, boride, silicide or sulfide bodies
US3036017A (en) Heat resistant and oxidation proof materials
JPS63247588A (en) High-temperature heat-insulating structure
US11866371B2 (en) Heating element comprising chromium alloyed molybdenum disilicide and the use thereof
US3435881A (en) Anisotropic continuous casting mold
US5071685A (en) Ceramic articles, methods and apparatus for their manufacture
JP2013014487A (en) Method for producing conductive ceramics
JPS6338885A (en) High-pressure sintering furnace
US5265118A (en) Silicon carbide whisker production apparatus
JPS6224237Y2 (en)
US5125822A (en) Apparatus for the production of ceramic articles
US3378622A (en) Method of joining electrode bodies of dissimilar thermal coefficients of expansion
JP4728506B2 (en) Molding method of glass fiber molded product
JP2842445B2 (en) Method for manufacturing container having setter and method for firing aluminum nitride substrate using the same
CN102625502B (en) Heater for vacuum hot-pressing furnace
JPS63388B2 (en)
JPS624872Y2 (en)
JPH0421704A (en) Method for sintering green compact of titanium alloy powder
JPS63391B2 (en)