JPS624872Y2 - - Google Patents
Info
- Publication number
- JPS624872Y2 JPS624872Y2 JP7575683U JP7575683U JPS624872Y2 JP S624872 Y2 JPS624872 Y2 JP S624872Y2 JP 7575683 U JP7575683 U JP 7575683U JP 7575683 U JP7575683 U JP 7575683U JP S624872 Y2 JPS624872 Y2 JP S624872Y2
- Authority
- JP
- Japan
- Prior art keywords
- thermocouple
- heater element
- hot isostatic
- isostatic press
- protective tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000010438 heat treatment Methods 0.000 claims description 27
- 230000001681 protective effect Effects 0.000 claims description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 229910002804 graphite Inorganic materials 0.000 description 8
- 239000010439 graphite Substances 0.000 description 8
- 239000007789 gas Substances 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 5
- 229910052582 BN Inorganic materials 0.000 description 4
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 4
- 238000011109 contamination Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- LTPBRCUWZOMYOC-UHFFFAOYSA-N Beryllium oxide Chemical compound O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- 229910000691 Re alloy Inorganic materials 0.000 description 1
- 229910001080 W alloy Inorganic materials 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229910021397 glassy carbon Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- ZCUFMDLYAMJYST-UHFFFAOYSA-N thorium dioxide Chemical compound O=[Th]=O ZCUFMDLYAMJYST-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B11/00—Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
- B30B11/001—Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a flexible element, e.g. diaphragm, urged by fluid pressure; Isostatic presses
- B30B11/002—Isostatic press chambers; Press stands therefor
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Control Of Resistance Heating (AREA)
- Resistance Heating (AREA)
- Powder Metallurgy (AREA)
Description
【考案の詳細な説明】
本考案は熱間静水圧プレス(以下、HIPと略記
する。)装置の改良、特に同装置の加熱装置にお
ける熱電対の配置ならびに構成の改良に関するも
のである。[Detailed Description of the Invention] The present invention relates to improvements in a hot isostatic press (hereinafter abbreviated as HIP) device, and particularly to improvements in the arrangement and configuration of thermocouples in the heating device of the device.
近時、金属あるいはセラミツク粉末の高密度焼
結や鋳造欠陥の除去、焼結部材の残留空孔の除去
などの目的でHIP処理が注目され、実用化が進め
られているが、このHIP処理に用いられる装置は
1000〜3000気圧の高圧不活性ガス雰囲気下で被処
理品を500〜2000℃に加熱し等方圧縮により所定
の形態に成形する機能を有しており、通常、外面
を水冷した高圧容器内にグラフアイトヒータや抵
抗線加熱方式によるヒータと、該ヒータから発生
した熱が直後、高圧容器に伝わるのを防止する断
熱構造体からなる炉構造体を具備して構成されて
いる。そして、この装置において、加圧に使用さ
れる不活性ガスとしてはアルゴン,ヘリウム,窒
素等が一般に用いられるが、これらのガス体は高
圧下で、高密度,低粘性であるために激しい自然
対流を生じ易く、従つてこの自然対流を制御して
処理室内を均熱化するため、通常、ヒータが上下
方向に複数段のゾーンに分割され、各ゾーンへの
投入電力が独立に制御できるように設計される。 Recently, HIP processing has attracted attention and is being put into practical use for purposes such as high-density sintering of metal or ceramic powder, removal of casting defects, and removal of residual pores in sintered parts. The equipment used is
It has the function of heating the processed product to 500 to 2000℃ in a high-pressure inert gas atmosphere of 1000 to 3000 atm and molding it into a specified shape by isotropic compression.It is usually placed in a high-pressure container whose outer surface is water-cooled. The reactor is equipped with a graphite heater or a resistance wire heating type heater, and a furnace structure consisting of a heat insulating structure that prevents the heat generated from the heater from being immediately transmitted to the high-pressure vessel. In this device, argon, helium, nitrogen, etc. are generally used as the inert gases used for pressurization, but these gases have high density and low viscosity under high pressure, so intense natural convection occurs. Therefore, in order to control this natural convection and equalize the temperature inside the processing chamber, the heater is usually divided into multiple zones in the vertical direction, so that the power input to each zone can be controlled independently. Designed.
第1図及び第2図はかかるHIP装置の各例を示
し、両図示例共、筒状高圧容器1の上下に夫々上
蓋2,下蓋3がシールリング4,5を介して気密
に嵌着されており、下蓋3の被処理物支持台3′
上に被処理物体Mを載置し、上蓋2の通路を通じ
て不活性ガスを導入し、排出するようになつてい
て、内部の支持円筒8に発熱体、即ちヒータエレ
メントを3段又は2段7a,7b,7cに分割支
持した加熱装置が高圧容器1,上蓋2との間に断
熱構造体9を介装して内装された構成を基本とし
ている。そして、この場合、均熱性のチエツク、
即ち測温のため、少くともヒータエレメントのゾ
ーン数に相当するだけの熱電対10が用いられ、
これら熱電対10はリード線11と連結されて加
熱装置と被処理物体によつて形成される円環状の
空間内に配置されている。 FIGS. 1 and 2 show examples of such a HIP device, and in both examples, an upper lid 2 and a lower lid 3 are airtightly fitted to the upper and lower parts of a cylindrical high-pressure container 1 via seal rings 4 and 5, respectively. The workpiece support stand 3' of the lower cover 3
The object to be processed M is placed thereon, and an inert gas is introduced and discharged through the passage of the upper lid 2, and a heating element, that is, a heater element, is mounted in three or two stages 7a in an internal support cylinder 8. , 7b, 7c, and a heating device is basically installed inside the high-pressure container 1 and the upper lid 2 with a heat insulating structure 9 interposed therebetween. In this case, the temperature uniformity check,
That is, for temperature measurement, at least as many thermocouples 10 as the number of zones of the heater element are used,
These thermocouples 10 are connected to lead wires 11 and arranged in an annular space formed by the heating device and the object to be treated.
ところで、この円環状の空間は、高温高圧の前
記ガス体の性質によれば比較的水平方向には温度
分布が生じ難いことから常圧下又は真空下で使用
する炉と比較すれば狭くても充分であることが知
見され、特に1000〜3000気圧もの高圧下での使用
を念頭におき設計する際には、余分な空間は高圧
容器の大形化を招くので安全面及び製造コストの
観点から好ましくない。 By the way, this annular space is small but sufficient compared to a furnace used under normal pressure or vacuum because it is relatively difficult for temperature distribution to occur in the horizontal direction due to the nature of the gas body, which is high temperature and high pressure. It has been found that, especially when designing with use under high pressures of 1,000 to 3,000 atm in mind, extra space leads to an increase in the size of the high-pressure container, so it is preferable from the viewpoint of safety and manufacturing cost. do not have.
しかしながら、前述の如き熱電対の配置では、
円環状の空間は熱電対の収容のため、いきおい制
約があり、上記の要求には必らずしも適合しな
い。 However, with the arrangement of thermocouples as described above,
Since the annular space accommodates the thermocouple, there are constraints on its performance, and it does not necessarily meet the above requirements.
そこで、各ゾーンにおける熱電対をまとめ、配
置空間を減少することを課題として検討が加えら
れたが、各熱電対の素線間の短絡を防止し、保持
円筒などとの電気絶縁を確保する必要があり、か
つ雰囲気ガス中の不純物や被処理物体から揮発し
て生成した成分による汚染防止も考慮しなければ
ならない等の条件があつて、仲々、満足すべき熱
電対の配置ならびに構成を得るに至つていない。 Therefore, consideration was given to reducing the installation space by grouping the thermocouples in each zone, but it is necessary to prevent short circuits between the wires of each thermocouple and ensure electrical insulation from the holding cylinder, etc. In order to obtain a satisfactory thermocouple arrangement and configuration, there are conditions such as the need to take into consideration the prevention of contamination by impurities in the atmosphere gas and components generated by volatilization from the object to be processed. I haven't reached it yet.
本考案は、かかる実情に鑑み、更に上記課題の
解決を図るべく熱電対の適切な配置ならびに構成
を検討し、互いに隣り合うヒータエレメントリー
ド部間の隙間を活用し、かつ絶縁管,保護管によ
る絶縁,保護を図ることによつて上記要望に適合
した加熱装置を提供し、改善されたHIP装置を提
供することを目的とするものである。 In view of the above circumstances, and in order to further solve the above problems, the present invention considers the appropriate arrangement and configuration of thermocouples, utilizes the gaps between adjacent heater element lead parts, and uses insulating tubes and protective tubes. The purpose of this invention is to provide a heating device that meets the above requirements by providing insulation and protection, and to provide an improved HIP device.
即ち、本考案の特徴とするところは、HIP装置
の加熱装置において、下方に引き出された隣り合
うヒータエレメントリード部間の隙間に熱電対
を、その熱電対素線を絶縁管に通し、かつ全体を
保護管内に収容して挿入せしめた点にある。 In other words, the feature of the present invention is that, in the heating device of a HIP device, a thermocouple is inserted into the gap between adjacent heater element lead parts pulled out downward, the thermocouple wire is passed through an insulating tube, and the entire The main feature is that it is housed and inserted into a protective tube.
以下、添付図面に示す本考案の具体例にもとづ
き更にその詳細を説明する。 Hereinafter, the present invention will be further explained in detail based on a specific example shown in the accompanying drawings.
第3図は本考案に係る熱電対配置を含む加熱装
置の1例であり、1250℃程度までの温度域で使用
するFe−Al−Cr2系発熱体や、1000℃以下の温度
域で使用するNi−Cr系発熱体をヒータエレメン
トとして用いた加熱装置の概要が示される。 Figure 3 shows an example of a heating device that includes a thermocouple arrangement according to the present invention, and shows a Fe-Al-Cr 2 heating element used in a temperature range up to about 1250℃, and a heating device used in a temperature range below 1000℃. An overview of a heating device using a Ni-Cr heating element as a heater element is shown.
なお、上記加熱装置を内包する炉室の構造は別
段、制約されるものではないが、基本的には第1
図,第2図に図示されているので、ここでは省略
する。 The structure of the furnace chamber containing the above-mentioned heating device is not particularly restricted, but basically the
Since it is illustrated in FIG. 2 and FIG. 2, it will be omitted here.
第3図において7は前記第1図,第2図におけ
ると同様、発熱体、即ちヒータエレメントであ
り、上段7a,中段7b,下段7cの上下方向3
つのゾーンに分割され、各々は縦波形に折曲加工
された帯板よりなる。そして、各ヒータエレメン
ト7a,7b,7cは電気絶縁碍子12を介して
耐熱金属製の支持円筒8に懸垂されており、各ヒ
ータエレメント7a,7b,7cの両端部は下方
に引き出されて加熱電力供給のためのリード部
7′a,7′b,7′cを形成している。 In FIG. 3, 7 is a heating element, that is, a heater element, as in FIG. 1 and FIG.
It is divided into two zones, each consisting of a longitudinally corrugated strip. Each of the heater elements 7a, 7b, 7c is suspended from a support cylinder 8 made of heat-resistant metal via an electrical insulator 12, and both ends of each heater element 7a, 7b, 7c are pulled out downward to generate heating power. Lead portions 7'a, 7'b, and 7'c for supply are formed.
かかる構成において、本考案の要部を形成する
熱電対10は上段のヒータエレメント7aの両端
のリード部7′aにより形成される空間に挿入し
て配置される。 In this configuration, the thermocouple 10, which forms the essential part of the present invention, is inserted and arranged in the space formed by the lead portions 7'a at both ends of the upper heater element 7a.
熱電対10はその対となる2本の素線の間の短
絡を防止し、かつ支持円筒8との電気絶縁を確保
するため2穴の孔14を有する絶縁管13に通さ
れ、その絶縁管13は支持円筒8に耐熱金属製の
針金などにより固定される。なお、絶縁管13の
材質は通常アルミナ,ベリリア,トリア,窒化ホ
ウ素などが使用され、セラミツク製が好適であ
る。 The thermocouple 10 is passed through an insulating tube 13 having two holes 14 in order to prevent a short circuit between the pair of two wires and to ensure electrical insulation with the supporting cylinder 8. 13 is fixed to the support cylinder 8 with a heat-resistant metal wire or the like. The material of the insulating tube 13 is usually alumina, beryllia, thoria, boron nitride, etc., and ceramic is preferable.
そして、上記の如き絶縁管13に通された熱電
対は1対又は2対以上をまとめて更に図示の如く
1本の保護管15内に収容される。 One or more pairs of thermocouples passed through the insulating tube 13 as described above are further housed in one protection tube 15 as shown in the figure.
これは、不活性雰囲気ガス中の不純物や処理物
品などから揮発して生成した成分による熱電対の
汚染を防止するためである。保護管15は通常、
モリブデン,アルミナ,グラツシーカーボン,窒
化ホウ素,黒鉛などが使用されるが、機械加工に
よりねじ等を形成し長手方向に継ぐことが出来る
ことを考慮すれば窒化ホウ素が最も有効である。
殊にアルミナなど熱衝撃に弱く割れ易いセラミツ
クス製の保護管の場合には内側又は外側に更にモ
リブデン管を配して二重保護を行なう。又、前記
の汚染を防止するにはその上端を封じた保護管を
使用することが好適である。 This is to prevent contamination of the thermocouple by impurities in the inert atmosphere gas and components volatilized from the processed articles. The protection tube 15 is usually
Molybdenum, alumina, glassy carbon, boron nitride, graphite, etc. are used, but boron nitride is the most effective, considering that it can be machined to form threads and join in the longitudinal direction.
In particular, in the case of a protective tube made of ceramics such as alumina, which is susceptible to thermal shock and easily cracks, a molybdenum tube is placed on the inside or outside for double protection. Further, in order to prevent the above-mentioned contamination, it is preferable to use a protective tube whose upper end is sealed.
勿論、前記の絶縁管13を通した熱電対10は
正確な温度制御を行なうにはヒータエレメントの
ゾーン数と少くとも同数以上使用することが好ま
しく、通常、2対以上の熱電対を組み込む。この
場合、前記の如く1対宛、1本の保護管15に収
容しても2対以上の熱電対を1本の保護管15に
収容してもよい。 Of course, in order to perform accurate temperature control, it is preferable to use at least the same number of thermocouples 10 passed through the insulating tube 13 as the number of zones of the heater element, and usually two or more pairs of thermocouples are incorporated. In this case, one pair of thermocouples may be accommodated in one protection tube 15 as described above, or two or more pairs of thermocouples may be accommodated in one protection tube 15.
第4図は本考案における熱電対を含む加熱装置
の他の実施例を示す。この図に示された加熱装置
は2000℃近傍の高温下でも使用可能なグラフアイ
ト発熱体である。 FIG. 4 shows another embodiment of the heating device including a thermocouple according to the present invention. The heating device shown in this figure is a graphite heating element that can be used even at high temperatures around 2000°C.
この加熱装置においてはヒータエレメントは2
ゾーン構成となつており、円筒状のグラフアイト
を縦軸方向に2分割して上端縁及び下端縁から交
互に上下方向のスリツトを切り込むことにより縦
波形に形成した2個のヒータエレメント7d,7
eとなしている。 In this heating device, there are 2 heater elements.
The heater elements 7d, 7 have a zone configuration, and are formed into a longitudinal waveform by dividing a cylindrical graphite into two in the vertical axis direction and cutting vertical slits alternately from the upper and lower edges.
It is written as e.
このヒータエレメント7d,7eは何れも上端
縁における両端部分に該エレメントの厚み方向に
適宜寸法の巾をもつ突出部16が周方向に延在し
て設けられており、該突出部16に上下に貫通す
る孔が穿設されてグラフアイト製ロツド17によ
つて前記孔の部分で係合され、懸垂状に保持され
ている。グラフアイト製ロツド17は輻射熱遮蔽
用のフイン18と図では明らかでないが必要に応
じて下方向への熱伝導を抑制するための穴が交互
に配設された銅,モリブデン,グラフアイトなど
の金属材料からなる保持用部材に固定して立設さ
れ、加熱電力が供給されるリード部7′d,7′e
を構成する。この場合、2分割された各ヒータエ
レメントに対し各々独立して加熱電力の供給がな
される。 Each of the heater elements 7d and 7e is provided with a protrusion 16 extending in the circumferential direction and having a width of an appropriate size in the thickness direction of the element at both end portions of the upper edge. A hole is drilled through it and is engaged at the hole by a graphite rod 17 and held in a suspended position. The graphite rod 17 is made of metal such as copper, molybdenum, graphite, etc., with fins 18 for shielding radiant heat and holes arranged alternately to suppress downward heat conduction as necessary, although it is not clear in the figure. Lead portions 7'd and 7'e are erected and fixed to a holding member made of a material, and are supplied with heating power.
Configure. In this case, heating power is independently supplied to each of the two divided heater elements.
しかして、この実施例において、熱電対10は
上段側ヒータエレメント7dの両端のリード部
7′d間の隙間に配置される。特に本実施例の如
く2000℃近傍の高温を測定できる熱電対10とし
ては、タングステンとレニウムの合金を組成を変
えてプラス側素線及びマイナス側素線としたもの
が好ましいものとして利用される。そして、これ
ら熱電対素線は前記第3図と同様にして絶縁管1
3に通され保持リング19に固定支持された保護
管15内に収容される。 Thus, in this embodiment, the thermocouple 10 is arranged in the gap between the lead portions 7'd at both ends of the upper heater element 7d. Particularly, as the thermocouple 10 capable of measuring high temperatures around 2000° C. as in this embodiment, an alloy of tungsten and rhenium with a different composition to form a positive wire and a negative wire is preferably used. Then, these thermocouple wires are connected to the insulating tube 1 in the same manner as shown in FIG.
3 and is housed in a protective tube 15 fixedly supported by a retaining ring 19.
なお、絶縁管13及び保護管15の材質は前述
した通りであるが、窒化ホウ素などのセラミツク
ス製が最も一般的である。 The materials for the insulating tube 13 and the protective tube 15 are as described above, and ceramics such as boron nitride are most commonly used.
とりわけ、長尺の保護管で、とくにグラフアイ
トやセラミツクス製の場合、直径の大きなものし
か入手し難いので、1本の保護管に2対以上の熱
電対を収容する方が空間の節約および原価低減の
観点から好ましい。 In particular, it is difficult to obtain long protection tubes, especially those made of graphite or ceramics, with large diameters, so it is better to accommodate two or more pairs of thermocouples in one protection tube to save space and cost. Preferable from the viewpoint of reduction.
本考案は叙上のような構成からなり、かかる加
熱装置を筒状高圧容器と、上下各蓋によつて画成
される炉室内に配設すれば、従来と同様、HIP処
理が行なわれるが、被処理体収容空間が実質上、
熱電対配置分だけ活用できることになり、大型の
被処理体収容空間を得るか、又は装置の小型化を
達成し頗る有効となる。 The present invention has the above-mentioned configuration, and if such a heating device is placed in the furnace chamber defined by the cylindrical high-pressure container and the upper and lower lids, HIP processing can be performed in the same way as in the conventional method. , the processing object accommodation space is substantially
The thermocouple arrangement can be utilized, which is very effective in obtaining a large processing object storage space or achieving miniaturization of the apparatus.
本考案は以上の如くHIP装置の加熱装置におい
て、下方に引き出された隣り合うヒータエレメン
トリード部間の隙間に熱電対を、その素線を絶縁
管に通し、かつ全体を保護管内に収容して挿入配
置せしめたものであり、ヒータエレメントリード
部間の隙間に熱電対を配置することにより、従
来、熱電対装置のために設けられていた円環状の
空間を小さくすることが可能となり、同一の炉室
寸法に対して高圧容器の内容積を小さくすること
ができる。従つて、高圧容器内の圧媒ガスの体
積、即ち、圧力容器内部に蓄えられるガス圧のエ
ネルギーが小さくなり、より安全なHIP装置を提
供することが可能となる。しかも、装置の製造に
おいて高圧容器の寸法が小さくなる分だけ製作コ
ストも低減し、実用性を高めると共に、使用時の
経済性についても運転時に必要なガスの消費量や
所定の圧力に昇圧するまでの時間が短縮される等
の優れた性能を発揮する。 As described above, the present invention is a heating device for a HIP device, in which a thermocouple is placed in the gap between the adjacent heater element leads pulled out downward, the wires of the thermocouple are passed through an insulating tube, and the entire body is housed in a protective tube. By placing the thermocouple in the gap between the heater element leads, it is possible to reduce the annular space conventionally provided for the thermocouple device. The internal volume of the high-pressure vessel can be made small relative to the furnace chamber dimensions. Therefore, the volume of the pressure medium gas in the high pressure container, ie, the energy of the gas pressure stored inside the pressure container, becomes smaller, making it possible to provide a safer HIP device. In addition, manufacturing costs are reduced as the dimensions of the high-pressure vessel are reduced in the production of the device, increasing practicality and improving economic efficiency during operation. It exhibits excellent performance such as shortening the time required.
殊に本考案においては、熱電対素線を絶縁管に
通しているため、前記隙間を利用しての熱電対の
配置が容易となり、2本の素線間の短絡の恐れも
なく、安全性が増大されると共に、保護管の使用
によつて不純物や処理物体等から揮発して生成し
た成分による熱電対の汚染を防止し、正確な温度
制御を確保する利点があり、実用化段階における
HIP装置の温度制御装置として工業上ならびに経
済上にもたらす効用は頗る甚大である。 In particular, in this invention, since the thermocouple wire is passed through the insulating tube, it is easy to arrange the thermocouple using the gap, and there is no risk of short circuit between the two wires, improving safety. In addition, the use of a protective tube has the advantage of preventing contamination of the thermocouple by impurities and components volatilized from processing objects, etc., and ensuring accurate temperature control.
The industrial and economic benefits of the HIP device as a temperature control device are enormous.
第1図及び第2図は一般的な熱電対装置の配置
を含むHIP装置の代表例を示す断面概要図、第3
図は本考案の要部をなす熱電対の配置構成を含む
加熱装置の概要斜視図、第4図イ,ロ及びハは本
考案における加熱装置の他の実施例を示す正面側
一部断面概要図、A−A矢視断面図及びB−B断
面図である。
7a〜7e……ヒータエレメント、7′a〜
7′e……ヒータエレメントリード部、10……
熱電対、13……絶縁管、15……保護管、19
……保持リング。
Figures 1 and 2 are cross-sectional schematic diagrams showing typical examples of HIP equipment including the arrangement of general thermocouple equipment;
The figure is a schematic perspective view of a heating device including the arrangement of thermocouples, which constitutes the essential part of the present invention, and Figures 4A, 4B, and 4 are schematic partial cross-sectional views of the front side showing other embodiments of the heating device of the present invention. FIG. 7a~7e...Heater element, 7'a~
7'e... Heater element lead section, 10...
Thermocouple, 13...Insulation tube, 15...Protection tube, 19
...Retaining ring.
Claims (1)
する熱間静水圧プレス装置の炉室内に装設さ
れ、ヒータエレメントリード部が隣り合うヒー
タエレメントリード部との間に隙間を存して下
方に引き出された加熱装置において、前記隣り
合うヒータエレメントリード間の隙間に熱電対
を、その熱電対素線を絶縁管に通し、かつ全体
を保護管内に収容して挿入してなることを特徴
とする熱間静水圧プレス装置。 2 保護管の中に熱電対が一対以上収容されてい
る実用新案登録請求の範囲第1項記載の熱間静
水圧プレス装置。 3 保護管の上端が封じられている実用新案登録
請求の範囲第1項又は第2項記載の熱間静水圧
プレス装置。 4 保護管がヒータエレメントを固定している保
持円筒又はリングに固定されている実用新案登
録請求の範囲第1項,第2項又は第3項記載の
熱間静水圧プレス装置。[Scope of Claim for Utility Model Registration] 1. A hot isostatic press device installed in the furnace chamber of a hot isostatic press device that pressurizes and heats a workpiece in a high-temperature, high-pressure gas atmosphere, in which a heater element lead portion is connected to an adjacent heater element lead portion. In the heating device that is pulled out downward with a gap between them, a thermocouple is inserted into the gap between the adjacent heater element leads, the thermocouple wire is passed through an insulating tube, and the entire body is housed in a protective tube. A hot isostatic press device characterized by being inserted. 2. The hot isostatic press apparatus according to claim 1, wherein one or more pairs of thermocouples are housed in the protective tube. 3. The hot isostatic press apparatus according to claim 1 or 2, wherein the upper end of the protective tube is sealed. 4. The hot isostatic press device according to claim 1, 2, or 3, wherein the protective tube is fixed to a holding cylinder or ring that fixes the heater element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7575683U JPS59193998U (en) | 1983-05-19 | 1983-05-19 | Hot isostatic press equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7575683U JPS59193998U (en) | 1983-05-19 | 1983-05-19 | Hot isostatic press equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59193998U JPS59193998U (en) | 1984-12-22 |
JPS624872Y2 true JPS624872Y2 (en) | 1987-02-04 |
Family
ID=30205816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7575683U Granted JPS59193998U (en) | 1983-05-19 | 1983-05-19 | Hot isostatic press equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59193998U (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0334640Y2 (en) * | 1986-11-05 | 1991-07-23 |
-
1983
- 1983-05-19 JP JP7575683U patent/JPS59193998U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59193998U (en) | 1984-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4565159B2 (en) | Temperature fixed point cell, temperature fixed point device, and thermometer calibration method | |
US4126757A (en) | Multizone graphite heating element furnace | |
US3419935A (en) | Hot-isostatic-pressing apparatus | |
US20070172378A1 (en) | Tungsten based sintered compact and method for production thereof | |
US2215587A (en) | Rodlike heating element | |
CN110577399A (en) | Multi-field coupling flash sintering system based on induction heating | |
GB1594869A (en) | Apparatus for treating a specimen or workpiece at an elevated temperature and pressure | |
JP3828465B2 (en) | Refractory metal carbide-carbon material thermocouple type temperature measuring device and method of manufacturing the device | |
US3427011A (en) | High pressure furnace | |
US4249032A (en) | Multizone graphite heating element furnace | |
JPS624872Y2 (en) | ||
US3403212A (en) | Electric furnace having a heating element of carbon or graphite for producing temperatures under high pressures | |
US3128325A (en) | High temperature furnace | |
US3598378A (en) | Furnace for heat-treating objects under high pressure | |
JPS6224237Y2 (en) | ||
US3234640A (en) | Method of making shielding for high temperature furnace | |
US3695597A (en) | Furnace for heat treating objects under pressure | |
JPH0123113Y2 (en) | ||
JPS6323732A (en) | Oxidizing atmosphere oven | |
EP4350018A1 (en) | Ultrafast high-temperature sintering apparatus | |
US3632954A (en) | Diffusion bonding apparatus | |
JPS6229706B2 (en) | ||
JPH018955Y2 (en) | ||
JPS5825405A (en) | High pressure high temperature furnace | |
EP0434839B1 (en) | Oxidizing atmosphere hot isotropic press |