JP3863591B2 - Method for producing sintered metal powder - Google Patents

Method for producing sintered metal powder Download PDF

Info

Publication number
JP3863591B2
JP3863591B2 JP07721396A JP7721396A JP3863591B2 JP 3863591 B2 JP3863591 B2 JP 3863591B2 JP 07721396 A JP07721396 A JP 07721396A JP 7721396 A JP7721396 A JP 7721396A JP 3863591 B2 JP3863591 B2 JP 3863591B2
Authority
JP
Japan
Prior art keywords
sintered
sintering
metal powder
insert
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07721396A
Other languages
Japanese (ja)
Other versions
JPH09263804A (en
Inventor
卓弥 児玉
昇司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP07721396A priority Critical patent/JP3863591B2/en
Publication of JPH09263804A publication Critical patent/JPH09263804A/en
Application granted granted Critical
Publication of JP3863591B2 publication Critical patent/JP3863591B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、貫通孔等、肉抜け部が存在する金属粉末焼結体の製造方法に関する。
【0002】
【従来の技術】
従来、貫通孔等、肉抜け部が存在する金属粉末焼結体を製造する方法としては、特開平2−254104号公報に開示されている様に、焼結部品の仮焼結後に焼結部品の肉抜け部にこの焼結部品よりも熱膨張係数が小さく、焼結の冷却終了時まで焼結部品との間に隙間が出来ず、かつ、焼結中に熱変形、焼付きが起こらない入子を挿入後、本焼結を施し、前記肉抜け部の変形が発生しない様にする方法が公知であった。
【0003】
【発明が解決しようとする課題】
しかしながら、特開平2−254104号公報に記載されている方法では、入子の焼付き、熱変形がなく、かつ、変形のない肉抜けの金属粉末焼結体を得ることは可能であるが、焼結部品よりも熱膨張係数が小さな入子を肉抜け部に挿入して焼結すると、焼結温度にて肉抜け部と嵌合した入子の冷却時の熱収縮量は、焼結部品の熱収縮量よりも小さくなるため、焼結炉内から取り出された時には、焼結部品と入子が締まり嵌めの状態となる。この場合、入子が焼き付かずとも、打ち抜き等の取り外すための工程が必要となるため、コストが高くなってしまう。
【0004】
又、焼結部品よりも熱膨張係数が小さな入子を用いるのは、比較的熱膨張係数が大きな物質は、その殆どが金属であり、これら金属を入子として用いると、焼結時に焼結部品と溶着して一体化してしまうことが理由の一つとなっている。
【0005】
本発明は、上記課題に鑑みてなされたものであり、低コストで、変形のない高精度の金属粉末焼結体を簡略な工程で製造できる金属粉末焼結体の製造方法を提供するものである。
【0007】
請求項1記載の発明は、金属粉末及び有機バインダー混練混合物の成形体を脱脂、焼結し、金属粉末焼結体を製造する方法において、成形体を所定の条件にて脱脂した後、この成形体に形成された肉抜け部に、金属粉末の原料金属よりも熱膨張係数が大きく、かつ、被焼結金属粉末を焼結する前記焼結条件にて分解しない材質からなり、前記肉抜け部に対応した形状でかつ焼結部品の焼結前の寸法と焼結部品の焼結収縮率と焼結部品熱膨張係数と入子熱膨張係数を予め決定したときに、下記式を満たす寸法dで形成されるセラミックス製の入子を前記肉抜け部に挿入して焼結し、この後、前記入子を除去して金属粉末焼結体を製造すること、を特徴とするとするものである。
d=b×(1+入子熱膨張係数)
ここに、b=a×(1−焼結部品の焼結収縮率)、c=b/(1+焼結部品熱膨張係数)、c>d。(但し、d:入子の室温T2 時の寸法、a:焼結部品の焼結前の寸法、b:焼結部品の焼結時(温度T1 時)の寸法、c:焼結部品の焼結後の冷却時(室温T2 時)の寸法)
【0008】
請求項2記載の発明は、金属粉末及び有機バインダー混練混合物の成形体を脱脂、焼結し、金属粉末焼結体を製造する方法において、成形体を所定の条件にて脱脂した後、この成形体に形成された肉抜け部に、金属粉末の原料金属よりも熱膨張係数が大きく、かつ、被焼結金属粉末を焼結する前記焼結条件にて分解しない材質からなり、前記肉抜け部に対応した形状でかつ焼結部品の焼結前の寸法と焼結部品の焼結収縮率と焼結部品熱膨張係数と入子熱膨張係数を予め決定したときに、下記式を満たす寸法dで形成される金属製でセラミックス微粉末を塗布した入子を前記肉抜け部に挿入して焼結し、この後、前記入子を除去して金属粉末焼結体を製造すること、を特徴とするものである。
d=b×(1+入子熱膨張係数)
ここに、b=a×(1−焼結部品の焼結収縮率)、c=b/(1+焼結部品熱膨張係数)、c>d。(但し、d:入子の室温T2 時の寸法、a:焼結部品の焼結前の寸法、b:焼結部品の焼結時(温度T1 時)の寸法、c:焼結部品の焼結後の冷却時(室温T2 時)の寸法)
【0010】
以下、本発明についてさらに詳述する。図1に示す様な直方体形状を呈する肉抜け部である孔部2を有する直方体形状の金属粉末焼結体である焼結部品1を得るものとして以下の説明を行う。この焼結部品1は、例えば、SUSの様な金属の微粉末と有機バインダーの混練混合物を成形材料として射出成形を行い、得られた成形体(グリーンパーツ)を脱脂、焼結して製造する。
【0011】
この際、脱脂後の成形体であるブラウンパーツの孔部2に焼結部品1を形成する金属材質よりも熱膨張係数の大きな材質からなる直方体形状の入子3を挿入する。また、この入子3は、焼結工程で、減圧化、還元雰囲気等の所定の焼結条件でも分解、蒸発しない材質を用いる。
【0012】
前記焼結部品1は焼結時に収縮するが、この時の収縮量は、成形材料中の金属微粉末と有機バインダーの配合比率、焼結温度、金属微粉末の物性等により左右されるが、焼結収縮後の所望の寸法を見込むことは十分可能である。
【0013】
一方、前記入子3は、焼結時には加熱されることで熱膨張するが、その膨張量(膨張後の入子寸法)は、熱膨張係数から容易に算出することが可能である。従って、焼結温度における焼結部品1の孔部2の内径寸法と、入子3の熱膨張時の外径寸法を一致させる様に入子3を設計すれば良いのである。
【0014】
図2に例として図1の焼結部品1の孔部2の内径のA寸法部とこれに挿入する入子3のA寸法部との対応部の焼結における寸法変化を示したグラフを示す。
【0015】
焼結部品1のA寸法部のグリーンパーツ寸法aは、焼結により収縮し、温度T1 でbとなる。このとき、グリーンパーツ寸法aとbとの間には、b=a×(1−焼結収縮率)の関係が成立する。
【0016】
また、焼結後の冷却の後には、室温T2 でグリーンパーツ寸法cとなる。このとき、グリーンパーツ寸法cとbとの間には、c=b/(1+焼結部品熱膨張係数)の関係が成立する。
【0017】
一方、入子3における前記A寸法部に対応する対応部は、室温においては、寸法dであるが、焼結時に温度がT1 に達するとbとなり、このとき、d=b×(1+入子熱膨張係数)の関係が成立し、前記孔部2と嵌合する。そして、焼結後の冷却により室温T2 に戻ると寸法は再びdに戻る。この時、焼結部品1の熱膨張係数は、入子3の熱膨張係数よりも小さいため、焼結温度においてこれら両者は嵌合するが、入子材質は、焼結条件において分解、蒸発することがなく、化学的に安定であるため、焼結部品1とも反応することがなく焼結後の室温T2 ではc>dであり、前記両者間にはc−dのクリアランスが生じる。
【0018】
これにより、焼結後において焼結部品1と入子3の分離は容易に可能となり、焼結温度T1 の嵌合時に孔部2の形状は入子3の形状にならい、この時点で焼結及び収縮が完了しているので、この後に変形が生じることはなく、変形のない高精度の焼結部品1を製造することが可能となる。
【0019】
また、比較的熱膨張係数が大きな物質は金属が多く、これを入子3として用いた際に、焼結部品1と溶着してしまうのは、入子3と焼結部品が直接接触していることにより両者間で物質交換が起きるためである。従って、両者を直接接触させなければ良いわけで、両者間に化学的に安定なセラミックス膜を設けることで解決することが出来る。セラミックス膜は、セラミックスの微粉末を塗布(まぶす)すれば良く、これらセラミックス微粉末は、粒径1μm程度であり、焼結部品1の寸法精度には影響しない。
【0020】
【発明の実施の形態】
[実施の形態1]
以下に本発明の実施の形態1を説明する。図3に示した外径20mm×20mm(厚さt=3mm)で、内径16mm×16mmの孔部6を有した焼結部品5を製造するものとして説明する。
【0021】
部品材質は、SUS316Lであり、焼結温度1320℃での熱膨張係数は11.5×10-6[/℃]である。成形材料にはSUS316L微粉末(平均粒径8μm)100重量部に対して、パラフィンワックス、ポリスチレン、アクリル、ステアリン酸を主成分とした有機バインダーを11重量部を混練混合したものを用いた。
【0022】
この成形材料の焼結時の孔部(内径寸法)収縮率は18.2%であり、従って、金型の対応部寸法は19.55mm×19.55mm程度に仕上げられている

【0023】
一方、脱脂後に挿入する入子には、純度97%のMgOを用い、この入子の1320℃における熱膨張係数は13.3×10-6[/℃]である。従って、1320℃での入子外径寸法が16mm×16mmになる様、室温では15.72mm×15.72mmに仕上げてある。
【0024】
前記成形材料にて成形後、これを330℃で加熱、脱脂を行った後、孔部6に入子を挿入し、真空中1320℃で焼結を行った。焼結後、炉より取り出した焼結部品5と入子を分離(焼結部品の内径は16mm×16mmとなっているが、入子は元の15.72mm×15.72mmのサイズに戻っているため、焼結部品5と入子間には全周に亘り、0.14mmのクリアランスが生じており、分離は容易である)し、この後、変形を測定したが変形は見られなかった。
【0025】
[実施の形態2]
実施の形態1と同様、図3に示した外径20mm×20mm(厚さt=3mm)で内径16mm×16mmの孔部6を有した焼結部品5を製造するものとして説明する。
【0026】
部品材質はSUS316Lであり、焼結温度1320℃での熱膨張係数は11.5×10-6[/℃]である。成形材料ではSUS316L微粉末(平均粒径8μm)100重量部に対して、パラフィンワックス、ポリスチレン、アクリル、ステアリン酸を主成分とした有機バインダーを11重量部を混練混合したものを用いた。
【0027】
この成形材料の焼結時の孔部(内径寸法)収縮率は18.2%であり、従って、金型の対応部寸法は19.55mm×19.55mm程度に仕上げられている。 一方、脱脂後に挿入する入子には、SUS304の溶製材を用い、これの1320℃での熱膨張係数は12×10-6[/℃]である。
【0028】
従って、1320℃での入子外径寸法が16mm×16mmになる様、室温では15.75mm×15.75mmに仕上げてある。成形材料にて成形後、これを330℃で加熱、脱脂を行った後、孔部に挿入するべき入子を粒径1μmのh−BN粉中に埋没した後取り出し、孔部6に挿入し、真空中1320℃で焼結を行った。
【0029】
焼結後、炉より取り出した焼結部品5と入子を分離(焼結部品の内径は16mm×16mmとなっているが、入子は元の15.75mm×15.75mmのサイズに戻っており、入子周囲のh−BN粉により焼結部品5と入子は直接接触しないため焼結部品5と入子間には全周に亘り、0.12mmのクリアランスが生じており、分離は容易である)し、この後、変形を測定したが変形は見られなかった。
【0030】
[実施の形態3]
図4に示した様なコの字形状で溝部13を有する焼結部品10を製造するものとして説明する。
【0031】
焼結部品10の部品材質はSUS316Lであり、焼結温度1320℃での熱膨張係数は11.5×10-6[/℃]である。成形材料には、SUS316L微粉末(平均粒径8μm)100重量部に対して、パラフィンワックス、ポリスチレン、アクリル、フタル酸エステルを主成分とした有機バインダーを9.5重量部を混練混合した物を用いた。
【0032】
この成形材料の焼結時の孔部(内径寸法)収縮率は15.0%であり、従って、金型の対応部寸法は約5.9mm×5.9mm程度に仕上げられている。一方、脱脂後に挿入する入子12には、気孔率30%のジルコニアを用い、これの1320℃での熱膨張係数は11.7×10-6[/℃]である。
【0033】
従って、1320℃で入子外径寸法が15mm×15mm×5mmになる様、室温では14.78mm×14.78mm×4.93mmに仕上げてある。前記成形材料にて成形後、これを図5に示す様に、焼結治具11上に設置し、320℃で加熱、脱脂を行った後、溝部13に挿入すべき入子12を挿入して真空下1320℃で焼結を行った。焼結後、炉より取り出した焼結部品10と入子12との分離(焼結部品10の内径は15mm×15mm×5mmとなっているが、入子12は元の14.78mm×14.78mm×4.93mmになっているので、焼結部品10と溝幅5mmと入子12間には約0.1mmのクリアランスが生じており、かつ、焼結部品10と入子12は溶着しないため、分離は容易である)し、この後、焼結部品10の変形を測定したが変形量は見られなかった。
【0034】
(比較例1)
実施の形態1の方法において、グリーンパーツを脱脂した後、孔部21にMgOの入子を挿入せずに同条件で焼結を行った。この後、図6に示す焼結部品21の変形を測定したが、その孔部21周辺の縁が孔部21の内側に変形し(倒れ)、その変形量は最大0.05mmであった。
【0035】
(比較例2)
実施の形態の方法3において、グリーンパーツを脱脂した後、溝部にジルコニアの入子を挿入せずに同条件で焼結を行い図7に示す焼結部品30を得た。この後、焼結部品30の変形を測定したが、焼結部品30の一片30aにダレが発生し、その変形量は最先端部で最大0.2mmであった。
【0036】
(比較例3)
実施の形態3の方法において、グリーンパーツ41を図8に示す様に設置方法を変えて脱脂し、更に、これに入子を挿入せずに焼結を行って焼結部品40を得た。この後、焼結部品40の変形を測定したが、図9に示す様に一片40aが外側に開く様な変形が生じ、その変形量は、最先端部で最大0.1mmであった。
【0037】
以上の通り、前記孔部2及び前記溝部13に入子12を挿入して焼結する本発明の効果は顕著であり、又、焼結部品1、5、10の熱膨張係数よりも大きな熱膨張係数の入子を使用することで、焼結後の分離も容易であった。
【0039】
請求項1、2記載の発明によれば、変形が生じることなく寸法精度が極めて高い金属粉末焼結体を、簡略な工程で、かつ、従来方法よりも低コストで製造することが可能な製造方法を提供できる。
【図面の簡単な説明】
【図1】本発明の実施の形態1の金属粉末焼結体及び入子を示す斜視図である。
【図2】本発明の実施の形態1における焼結部品の孔部の寸法部Aとこれに挿入する入子の対応部との焼結における寸法変化を示したグラフである。
【図3】本発明の実施の形態2の金属粉末焼結体を示す斜視図である。
【図4】本発明の実施の形態3の金属粉末焼結体を示す斜視図である。
【図5】本発明の実施の形態3の製造工程を示す断面図である。
【図6】比較例1の金属粉末焼結体を示す平面図である。
【図7】比較例2の金属粉末焼結体を示す平面図である。
【図8】比較例3の金属粉末焼結体の製造工程を示す斜視図である。
【図9】比較例3の金属粉末焼結体の変形状態を示す平面図である。
【符号の説明】
1 焼結部品
2 孔部
3 入子
5 焼結部品
6 孔部
10 焼結部品
12 入子
13 溝部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a metal powder sintered body having a hollow portion such as a through hole.
[0002]
[Prior art]
Conventionally, as a method for producing a metal powder sintered body having a hollow portion such as a through hole, as disclosed in JP-A-2-254104, a sintered part is obtained after preliminary sintering of the sintered part. The coefficient of thermal expansion is smaller than that of the sintered part in the hollow portion of the metal, there is no gap between the sintered part until the end of cooling of the sintering, and thermal deformation and seizure do not occur during sintering. A method of performing main sintering after inserting the insert and preventing the deformation of the hollow portion has been known.
[0003]
[Problems to be solved by the invention]
However, in the method described in Japanese Patent Application Laid-Open No. 2-254104, it is possible to obtain a metal powder sintered body that is free from seizure and thermal deformation of the insert and is free from deformation. When an insert with a smaller thermal expansion coefficient than the sintered part is inserted into the hollow part and sintered, the amount of thermal shrinkage when the insert fitted with the hollow part at the sintering temperature is cooled is the sintered part. Therefore, when it is taken out from the inside of the sintering furnace, the sintered part and the insert are in an interference fit state. In this case, even if the insert is not burned in, a process for removing such as punching is required, which increases the cost.
[0004]
In addition, inserts with a smaller coefficient of thermal expansion than sintered parts are used. Most of the materials with relatively large coefficients of thermal expansion are metals. When these metals are used as inserts, sintering is performed during sintering. One of the reasons is that it is fused and integrated with the parts.
[0005]
The present invention has been made in view of the above problems, those at low cost, to provide a method of manufacturing a metal powder sintered compact of high precision metal powder sintered body with no deformation can be manufacturing with a simple process It is.
[0007]
In the method of manufacturing a metal powder sintered body by degreasing and sintering a molded body of the metal powder and the organic binder kneaded mixture, the molded body is degreased under predetermined conditions, and then the molding is performed. The hollow portion formed in the body is made of a material having a coefficient of thermal expansion larger than that of the raw material metal of the metal powder and is not decomposed under the sintering conditions for sintering the sintered metal powder. And a dimension d satisfying the following formula when the dimensions of the sintered part before sintering, the sintering shrinkage rate of the sintered part, the thermal expansion coefficient of the sintered part, and the nested thermal expansion coefficient are determined in advance: The ceramic insert formed by the method is inserted into the hollow portion and sintered, and thereafter the insert is removed to produce a metal powder sintered body. .
d = b × (1 + nesting coefficient of thermal expansion)
Here, b = a × (1−sintering shrinkage ratio of sintered part), c = b / (1 + thermal expansion coefficient of sintered part), c> d. (However, d: dimension of at room temperature T2 of the insert, a: dimensions before sintering the sintered part, b: size during sintering of sintered parts (at temperature T1), c: bake sintered parts Dimensions after cooling ( at room temperature T2)
[0008]
The invention according to claim 2 is a method of manufacturing a metal powder sintered body by degreasing and sintering a molded body of a metal powder and an organic binder kneaded mixture, and then forming the molded body after degreasing the molded body under predetermined conditions. The hollow portion formed in the body is made of a material having a coefficient of thermal expansion larger than that of the raw material metal of the metal powder and is not decomposed under the sintering conditions for sintering the sintered metal powder. And a dimension d satisfying the following formula when the dimensions of the sintered part before sintering, the sintering shrinkage rate of the sintered part, the thermal expansion coefficient of the sintered part, and the nested thermal expansion coefficient are determined in advance: The insert made of a metal and coated with ceramic fine powder is inserted into the hollow portion and sintered, and then the insert is removed to produce a sintered metal powder. It is what.
d = b × (1 + nesting coefficient of thermal expansion)
Here, b = a × (1−sintering shrinkage ratio of sintered part), c = b / (1 + thermal expansion coefficient of sintered part), c> d. (However, d: dimension of at room temperature T2 of the insert, a: dimensions before sintering the sintered part, b: size during sintering of sintered parts (at temperature T1), c: bake sintered parts Dimensions after cooling ( at room temperature T2)
[0010]
Hereinafter, the present invention will be described in further detail. The following description will be given on the assumption that a sintered part 1 which is a rectangular parallelepiped metal powder sintered body having a hole 2 which is a hollow portion having a rectangular parallelepiped shape as shown in FIG. 1 is obtained. The sintered part 1 is manufactured by performing injection molding using a kneaded mixture of a fine metal powder such as SUS and an organic binder as a molding material, and degreasing and sintering the obtained molded body (green part). .
[0011]
At this time, a rectangular parallelepiped shaped insert 3 made of a material having a thermal expansion coefficient larger than that of the metal material forming the sintered part 1 is inserted into the hole 2 of the brown part which is a molded body after degreasing. The insert 3 is made of a material that does not decompose or evaporate even under predetermined sintering conditions such as reduced pressure and reducing atmosphere in the sintering process.
[0012]
The sintered part 1 shrinks during sintering, and the amount of shrinkage at this time depends on the mixing ratio of the metal fine powder and the organic binder in the molding material, the sintering temperature, the physical properties of the metal fine powder, etc. It is fully possible to anticipate the desired dimensions after sintering shrinkage.
[0013]
On the other hand, the insert 3 is thermally expanded by being heated at the time of sintering, but the amount of expansion (an insert size after expansion) can be easily calculated from the coefficient of thermal expansion. Therefore, the insert 3 may be designed so that the inner diameter of the hole 2 of the sintered part 1 at the sintering temperature matches the outer diameter of the insert 3 during thermal expansion.
[0014]
FIG. 2 shows, as an example, a graph showing the dimensional change during sintering of the corresponding portion between the A dimension portion of the inner diameter of the hole 2 of the sintered part 1 of FIG. 1 and the A dimension portion of the insert 3 inserted therein. .
[0015]
The green part dimension a of the dimension A part of the sintered part 1 is shrunk by sintering and becomes b at a temperature T1. At this time, a relationship of b = a × (1−sintering shrinkage ratio) is established between the green part dimensions a and b.
[0016]
Further, after cooling after sintering, the green part size c is obtained at room temperature T2. At this time, a relationship of c = b / (1 + sintered component thermal expansion coefficient) is established between the green part dimensions c and b.
[0017]
On the other hand, the corresponding part of the insert 3 corresponding to the dimension A is d at room temperature, but becomes b when the temperature reaches T1 during sintering. At this time, d = b × (1 + insert (Thermal expansion coefficient) relationship is established, and the hole 2 is fitted. When the temperature returns to room temperature T2 by cooling after sintering, the dimension returns to d again. At this time, since the thermal expansion coefficient of the sintered part 1 is smaller than the thermal expansion coefficient of the insert 3, both of them are fitted at the sintering temperature, but the insert material is decomposed and evaporated under the sintering conditions. Since it is chemically stable and does not react with the sintered part 1, c> d at room temperature T2 after sintering, and a clearance of cd is generated between the two.
[0018]
As a result, the sintered part 1 and the insert 3 can be easily separated after sintering, and the shape of the hole 2 follows the shape of the insert 3 when the sintering temperature T1 is fitted. Since the shrinkage is completed, no deformation occurs after this, and it becomes possible to manufacture a highly accurate sintered part 1 without deformation.
[0019]
In addition, a material having a relatively large coefficient of thermal expansion is often a metal, and when this is used as the insert 3, it is welded to the sintered part 1 because the insert 3 and the sintered part are in direct contact with each other. This is because material exchange occurs between the two. Therefore, it is only necessary that the two are not in direct contact with each other, and this can be solved by providing a chemically stable ceramic film between the two. The ceramic film only needs to be coated (sprayed) with ceramic fine powder, and the ceramic fine powder has a particle size of about 1 μm and does not affect the dimensional accuracy of the sintered part 1.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
[Embodiment 1]
Embodiment 1 of the present invention will be described below. Description will be made assuming that the sintered part 5 having the outer diameter 20 mm × 20 mm (thickness t = 3 mm) shown in FIG. 3 and the hole 6 having an inner diameter of 16 mm × 16 mm is manufactured.
[0021]
The material of the part is SUS316L, and the thermal expansion coefficient at a sintering temperature of 1320 ° C. is 11.5 × 10 −6 [/ ° C.]. The molding material used was a mixture of 11 parts by weight of an organic binder mainly composed of paraffin wax, polystyrene, acrylic and stearic acid with 100 parts by weight of SUS316L fine powder (average particle size 8 μm).
[0022]
The shrinkage ratio of the hole (inner diameter dimension) during sintering of the molding material is 18.2%. Therefore, the corresponding part dimension of the mold is finished to about 19.55 mm × 19.55 mm.
[0023]
On the other hand, MgO having a purity of 97% is used for the insert inserted after degreasing, and the thermal expansion coefficient at 1320 ° C. of this insert is 13.3 × 10 −6 [/ ° C.]. Therefore, the outer diameter of the nesting at 1320 ° C. is finished at 15.72 mm × 15.72 mm at room temperature so that it becomes 16 mm × 16 mm.
[0024]
After molding with the molding material, this was heated and degreased at 330 ° C., and then inserted into the hole 6 and sintered at 1320 ° C. in a vacuum. After sintering, the sintered part 5 and the insert removed from the furnace are separated (the inner diameter of the sintered part is 16 mm × 16 mm, but the insert returns to the original size of 15.72 mm × 15.72 mm. Therefore, there is a clearance of 0.14 mm over the entire circumference between the sintered part 5 and the insert, and separation is easy.) After this, deformation was measured, but no deformation was seen. .
[0025]
[Embodiment 2]
As in the first embodiment, description will be made assuming that the sintered part 5 having the outer diameter 20 mm × 20 mm (thickness t = 3 mm) shown in FIG. 3 and the hole 6 having an inner diameter 16 mm × 16 mm is manufactured.
[0026]
The material of the part is SUS316L, and the thermal expansion coefficient at a sintering temperature of 1320 ° C. is 11.5 × 10 −6 [/ ° C.]. As the molding material, 100 parts by weight of SUS316L fine powder (average particle size 8 μm) was used by kneading and mixing 11 parts by weight of an organic binder mainly composed of paraffin wax, polystyrene, acrylic and stearic acid.
[0027]
The shrinkage ratio of the hole (inner diameter dimension) during sintering of the molding material is 18.2%. Therefore, the corresponding part dimension of the mold is finished to about 19.55 mm × 19.55 mm. On the other hand, a SUS304 melt is used for the insert inserted after degreasing, and its thermal expansion coefficient at 1320 ° C. is 12 × 10 −6 [/ ° C.].
[0028]
Therefore, it is finished at 15.75 mm × 15.75 mm at room temperature so that the outer diameter of the nest at 1320 ° C. is 16 mm × 16 mm. After molding with a molding material, this is heated at 330 ° C. and degreased, and then the insert to be inserted into the hole is taken out after being embedded in h-BN powder having a particle size of 1 μm and inserted into the hole 6. Sintering was performed at 1320 ° C. in vacuum.
[0029]
After sintering, the sintered part 5 taken out of the furnace and the insert are separated (the inner diameter of the sintered part is 16 mm × 16 mm, but the insert returns to the original size of 15.75 mm × 15.75 mm. Since the sintered part 5 and the insert are not in direct contact with the h-BN powder around the insert, a clearance of 0.12 mm occurs between the sintered part 5 and the insert over the entire circumference. After this, deformation was measured, but no deformation was observed.
[0030]
[Embodiment 3]
A description will be given on the assumption that a sintered part 10 having a U-shaped groove 13 as shown in FIG. 4 is manufactured.
[0031]
The component material of the sintered component 10 is SUS316L, and the thermal expansion coefficient at a sintering temperature of 1320 ° C. is 11.5 × 10 −6 [/ ° C.]. The molding material is a mixture of 9.5 parts by weight of organic binder mainly composed of paraffin wax, polystyrene, acrylic and phthalate ester with 100 parts by weight of SUS316L fine powder (average particle size 8 μm). Using.
[0032]
The shrinkage ratio of the hole (inner diameter dimension) during sintering of the molding material is 15.0%. Therefore, the dimension of the corresponding part of the mold is finished to about 5.9 mm × 5.9 mm. On the other hand, for the insert 12 to be inserted after degreasing, zirconia having a porosity of 30% is used, and its thermal expansion coefficient at 1320 ° C. is 11.7 × 10 −6 [/ ° C.].
[0033]
Therefore, it is finished at 14.78 mm × 14.78 mm × 4.93 mm at room temperature so that the outer diameter of the insert is 15 mm × 15 mm × 5 mm at 1320 ° C. After molding with the molding material, as shown in FIG. 5, this is placed on the sintering jig 11, heated and degreased at 320 ° C., and then the insert 12 to be inserted into the groove 13 is inserted. Sintering was performed at 1320 ° C. under vacuum. After sintering, the sintered part 10 and the insert 12 taken out from the furnace are separated (the inner diameter of the sintered part 10 is 15 mm × 15 mm × 5 mm, but the insert 12 is the original 14.78 mm × 14. Since it is 78 mm × 4.93 mm, there is a clearance of about 0.1 mm between the sintered part 10, the groove width 5 mm and the insert 12, and the sintered part 10 and the insert 12 are not welded. Therefore, after that, the deformation of the sintered part 10 was measured, but the amount of deformation was not seen.
[0034]
(Comparative Example 1)
In the method of the first embodiment, after degreasing the green parts, sintering was performed under the same conditions without inserting an insert of MgO into the hole 21. Thereafter, the deformation of the sintered part 21 shown in FIG. 6 was measured. The edge around the hole 21 was deformed (fallen) to the inside of the hole 21 and the deformation amount was 0.05 mm at the maximum.
[0035]
(Comparative Example 2)
In the method 3 of the embodiment, after the green part was degreased, sintering was performed under the same conditions without inserting a zirconia insert in the groove portion, and a sintered part 30 shown in FIG. 7 was obtained. Thereafter, deformation of the sintered part 30 was measured, and sagging occurred in one piece 30a of the sintered part 30, and the amount of deformation was 0.2 mm at the maximum at the most advanced portion.
[0036]
(Comparative Example 3)
In the method of Embodiment 3, the green part 41 was degreased by changing the installation method as shown in FIG. 8, and further sintered without inserting the insert therein to obtain a sintered part 40. Thereafter, the deformation of the sintered part 40 was measured. As shown in FIG. 9, the deformation was such that the piece 40a opened outward, and the amount of deformation was 0.1 mm at the maximum at the foremost part.
[0037]
As described above, the effect of the present invention in which the insert 12 is inserted into the hole 2 and the groove 13 and sintered is remarkable, and the thermal expansion coefficient is larger than the thermal expansion coefficient of the sintered parts 1, 5, and 10. Separation after sintering was easy by using an insert with an expansion coefficient.
[0039]
According to the first and second aspects of the invention, a metal powder sintered body with extremely high dimensional accuracy without deformation can be produced in a simple process and at a lower cost than conventional methods. Can provide a method.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a metal powder sintered body and a nest according to Embodiment 1 of the present invention.
FIG. 2 is a graph showing a dimensional change during sintering of the dimension part A of the hole of the sintered part and the corresponding part of the insert inserted into the hole in the first embodiment of the present invention.
FIG. 3 is a perspective view showing a metal powder sintered body according to Embodiment 2 of the present invention.
FIG. 4 is a perspective view showing a metal powder sintered body according to Embodiment 3 of the present invention.
FIG. 5 is a cross-sectional view showing a manufacturing process of Embodiment 3 of the present invention.
6 is a plan view showing a metal powder sintered body of Comparative Example 1. FIG.
7 is a plan view showing a metal powder sintered body of Comparative Example 2. FIG.
8 is a perspective view showing a process for producing a metal powder sintered body of Comparative Example 3. FIG.
9 is a plan view showing a deformation state of the metal powder sintered body of Comparative Example 3. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Sintered part 2 Hole 3 Insert 5 Sintered part 6 Hole 10 Sintered part 12 Insert 13 Groove part

Claims (2)

金属粉末及び有機バインダー混練混合物の成形体を脱脂、焼結し、金属粉末焼結体を製造する方法において、
成形体を所定の条件にて脱脂した後、この成形体に形成された肉抜け部に、金属粉末の原料金属よりも熱膨張係数が大きく、かつ、被焼結金属粉末を焼結する前記焼結条件にて分解しない材質からなり、
前記肉抜け部に対応した形状でかつ焼結部品の焼結前の寸法と焼結部品の焼結収縮率と焼結部品熱膨張係数と入子熱膨張係数を予め決定したときに、下記式を満たす寸法dで形成されるセラミックス製の入子を前記肉抜け部に挿入して焼結し、 この後、前記入子を除去して金属粉末焼結体を製造すること、
を特徴とする金属粉末焼結体の製造方法。
d=b×(1+入子熱膨張係数)
ここに、b=a×(1−焼結部品の焼結収縮率)、c=b/(1+焼結部品熱膨張係数)、c>d。(但し、d:入子の室温T2 時の寸法、a:焼結部品の焼結前の寸法、b:焼結部品の焼結時(温度T1 時)の寸法、c:焼結部品の焼結後の冷却時(室温T2 時)の寸法)
In a method for producing a metal powder sintered body by degreasing and sintering a molded body of a metal powder and an organic binder kneaded mixture,
After degreasing the molded body under a predetermined condition, the above-mentioned firing which has a larger coefficient of thermal expansion than the raw material metal of the metal powder and sinters the metal powder to be sintered is formed in the hollow portion formed in the molded body. It is made of a material that does not decompose under the sintering conditions.
When the shape corresponding to the hollow portion and the dimensions of the sintered part before sintering, the sintering shrinkage rate of the sintered part, the thermal expansion coefficient of the sintered part, and the nested thermal expansion coefficient are determined in advance, Inserting a ceramic insert formed in a dimension d satisfying the above into the hollow portion and sintering, and thereafter removing the insert to produce a metal powder sintered body,
A method for producing a sintered metal powder.
d = b × (1 + nesting coefficient of thermal expansion)
Here, b = a × (1−sintering shrinkage ratio of sintered part), c = b / (1 + thermal expansion coefficient of sintered part), c> d. (However, d: dimension of at room temperature T2 of the insert, a: dimensions before sintering the sintered part, b: size during sintering of sintered parts (at temperature T1), c: bake sintered parts Dimensions after cooling ( at room temperature T2)
金属粉末及び有機バインダー混練混合物の成形体を脱脂、焼結し、金属粉末焼結体を製造する方法において、
成形体を所定の条件にて脱脂した後、この成形体に形成された肉抜け部に、金属粉末の原料金属よりも熱膨張係数が大きく、かつ、被焼結金属粉末を焼結する前記焼結条件にて分解しない材質からなり、
前記肉抜け部に対応した形状でかつ焼結部品の焼結前の寸法と焼結部品の焼結収縮率と焼結部品熱膨張係数と入子熱膨張係数を予め決定したときに、下記式を満たす寸法dで形成される金属製でセラミックス微粉末を塗布した入子を前記肉抜け部に挿入して焼結し、
この後、前記入子を除去して金属粉末焼結体を製造すること、
を特徴とする金属粉末焼結体の製造方法。
d=b×(1+入子熱膨張係数)
ここに、b=a×(1−焼結部品の焼結収縮率)、c=b/(1+焼結部品熱膨張係数)、c>d。(但し、d:入子の室温T2 時の寸法、a:焼結部品の焼結前の寸法、b:焼結部品の焼結時(温度T1 時)の寸法、c:焼結部品の焼結後の冷却時(室温T2 時)の寸法)
In a method for producing a metal powder sintered body by degreasing and sintering a molded body of a metal powder and an organic binder kneaded mixture,
After degreasing the molded body under a predetermined condition, the above-mentioned firing which has a larger coefficient of thermal expansion than the raw material metal of the metal powder and sinters the metal powder to be sintered is formed in the hollow portion formed in the molded body. It is made of a material that does not decompose under the sintering conditions.
When the shape corresponding to the hollow portion and the dimensions of the sintered part before sintering, the sintering shrinkage rate of the sintered part, the thermal expansion coefficient of the sintered part, and the nested thermal expansion coefficient are determined in advance, Insert a metal insert formed by applying a ceramic fine powder with a dimension d satisfying the condition d into the cutout portion and sinter,
After that, removing the insert to produce a metal powder sintered body,
A method for producing a sintered metal powder.
d = b × (1 + nesting coefficient of thermal expansion)
Here, b = a × (1−sintering shrinkage ratio of sintered part), c = b / (1 + thermal expansion coefficient of sintered part), c> d. (However, d: dimension of at room temperature T2 of the insert, a: dimensions before sintering the sintered part, b: size during sintering of sintered parts (at temperature T1), c: bake sintered parts Dimensions after cooling ( at room temperature T2)
JP07721396A 1996-03-29 1996-03-29 Method for producing sintered metal powder Expired - Fee Related JP3863591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07721396A JP3863591B2 (en) 1996-03-29 1996-03-29 Method for producing sintered metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07721396A JP3863591B2 (en) 1996-03-29 1996-03-29 Method for producing sintered metal powder

Publications (2)

Publication Number Publication Date
JPH09263804A JPH09263804A (en) 1997-10-07
JP3863591B2 true JP3863591B2 (en) 2006-12-27

Family

ID=13627564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07721396A Expired - Fee Related JP3863591B2 (en) 1996-03-29 1996-03-29 Method for producing sintered metal powder

Country Status (1)

Country Link
JP (1) JP3863591B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009036902A1 (en) * 2009-08-11 2011-02-24 Gkn Sinter Metals Holding Gmbh Process for producing a sintered component
EP2610022A1 (en) * 2011-12-29 2013-07-03 Höganäs Aktiebolag (PUBL) Sinter-sizing of sintered steels
KR102392104B1 (en) * 2021-06-10 2022-04-29 한국피아이엠(주) Base product for metallic mobile frame and the method for manufacturing the same
KR102405771B1 (en) * 2021-06-10 2022-06-07 한국피아이엠(주) Base product for metallic mobile frame and the method for manufacturing the same

Also Published As

Publication number Publication date
JPH09263804A (en) 1997-10-07

Similar Documents

Publication Publication Date Title
US6776955B1 (en) Net shaped articles having complex internal undercut features
JP3863591B2 (en) Method for producing sintered metal powder
EP0190114A1 (en) Molded metal object and method to manufacture the same
JPH0741802A (en) Injection molding method of metallic powder
JPH06142822A (en) Production of casting mold for casting high melting active metal
JPH0387302A (en) Metal injection forming method using loose core
JPH05171218A (en) Production of sintered titanium alloy member having hollow part
JP3702406B2 (en) Method for producing powder sintered compact, powder sintered compact, powder injection molded article, powder injection molded article and mold for powder injection molding
JPH0770610A (en) Method for sintering injection-molded product
JPH06158109A (en) Method for dewaxing and sintering molded body of metal or ceramic powder
JPH06318412A (en) Manufacture of oxide superconducting molded body
JP2000087107A (en) Method for injection-molding metal powder and metal sintered compact
JP3788929B2 (en) Method for sintering metal powder compact
JPH06122903A (en) Method for degreasing metal powder compact
JPH05320716A (en) Production of thin-walled cylindrical sintered compact by powder metallurgy
JPH0421704A (en) Method for sintering green compact of titanium alloy powder
JPH11131103A (en) Composition for powder injection molding and production of powder injection molded goods
JPH02254104A (en) Production of sintered parts
US6709700B1 (en) Process assembly utilizing fixturing made of an open-cell ceramic solid foam, and its use
JPH10297974A (en) Sintering of powder molded material and setter therefor
CN115847598A (en) Method for manufacturing ceramic tube, and aerosol-generating device
JPH0450177A (en) Method for defatting ceramic molding
JP3684026B2 (en) Manufacturing method of inorganic powder sintered body
JPH05319938A (en) Production of sintered material
JPH0913103A (en) Production of metallic powder or ceramic powder sintered compact

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees